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1. INTRODUCTION

The considerations in this paper are based on an analogy between Boolean algebras
and lattice ordered groups.

Let B be a Boolean algebra. B is called homogeneous if for each 0 < b € B the
interval [0, b] is isomorphic with B. If for each 0 < b € B there is b, € B with 0 <
< by < b such that the intervals [0, b] and [0, b,] fail to be isomorphic, then B
is said to be totally inhomogeneous.

R. S. PiErcE [10] proposed the question whether each complete Boolean algebra
is a direct product of homogeneous Boolean algebras. This is equivalent with the
question whether there exist totally inhomogeneous complete Boolean algebras. The
answer to this question is affirmative (cf. BUKOVSKY [2], MACALOON [9]).

If 0 < b € B, then the interval [0, b] is

(a) a principal ideal of the lattice B;
(b) a direct factor of the lattice B.

(In fact, the mapping @(x) = (x A b, x A b') (x€ B) is an isomorphism of the
lattice B onto the direct product [0, b] x [0, b].)

Thus the homogeneity of B can be expressed either in terms of principal ideals
or in terms of direct factors as follows:

(a;) Each principal ideal of B distinct from {0} is isomorphic with B.

(b,) Each direct factor of B distinct from {0} is isomorphic with B.

Similarly we can characterize the total inhomogeneity of B in terms of principal
ideals or in terms of direct factors of B.

Let us now replace the Boolean algebra B by a lattice ordered group G and the
ideals of B by I-ideals of G. We arrive at the following definitions:

(az) G is called a-homogeneous if each principal l-ideal of G distinct from {0} is
isomorphic with G. If for each principal I-ideal B # {0} of G there exists a principal
l-ideal By # {0} of G such that B, = B and B, is not isomorphic with B, then G
is said to be totally a-inhomogeneous.
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(b,) G is called b-homogeneous if each direct factor of G distinct from {0} is
isomorphic with G. If for each direct factor B = {0} of G there exists a direct factor
B, # {0} of G with B; = B such that B, is not isomorphic with B, then G is called
totally b-inhomogeneous.

A lattice ordered group G is both a-homogeneous and totally a-inhomogeneous
if and only if G = {0}. An analogous assertion holds for the b-homogeneity.

In this note the question of existence of complete lattice ordered groups G # {0}
that are either totally a-inhomogeneous or totally b-inhomogeneous will be dealt
with and the relations between these types of lattice ordered groups and totally
inhomogeneous Boolean algebras will be examined.

2. PRELIMINARIES AND RESULTS

We shall use the standard notation for lattice ordered groups (cf. BIRKHOFF [1],
Fucss [4]).
Let G be a lattice ordered group, X < G. The set

X% = {geG:lgl A lx| = 0 for each x € X}

is called a polar of G. We denote by P(G) the set of all polars of G. If P(G) is partially
ordered by the inclusion and G {0}, then it turns out to be a complete Boolean
algebra (cf. Six [12]). For each complete Boolean algebra B there exists a complete
lattice ordered group G such that P(G) is isomorphic with B (cf., e.g., VuLICH [14],
Thm. V. 2.3, and Lemma 3.5 below).

Let a, be G, a < b. The set
[a,b] ={xeG:a < x < b}

is called a nontrivial interval of G. The center C([a, b]) of [a, b] consists of those
elements x € [a, b] that have a relative complement in the interval [a, b]. If G is
complete, then (since G is infinitely distributive) it fo'lows from [5] that C([a, b]) is
a closed sublattice of G; thus C([a, b]) is a complete Boolean algebra.

The main results of this note are as follows. Let G # {0} be a complete lattice
ordered group.

The following conditions for G are equivalent:

(a) G is totally a-inhomogeneous.

(b) The Boolean algebra P(G) is totally inhomogeneous.

(c) The center of each nontrivial interval of G is a totally inhomogeneous Boolean
algebra.

(d) For each 0 < g € G there is g; € G with 0 < g; < g such that the center of
the interval [0, g,] is totally inhomogeneous.
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From the equivalence of the conditions (a) and (b) and from the existence of totally
inhomogeneous complete Boolean algebras we obtain that totally a-inhomogeneous
complete lattice ordered groups distinct from {0} do exist.

If G is totally a-inhomogeneous then it is totally b-inhomogeneous. If G is totally
b-inhomogeneous and orthogonally complete, then G is totally a-inhomogeneous.

Let o be an infinite cardinal. There exists a complete lattice ordered group G,
with card G, = o such that

(a;) G, is totally b-inhomogeneous;

(b,) the Boolean algebra P(G,) is homogeneous.

Hence the notions of the total a-inhomogeneity and the total b-inhomogeneity for
complete lattice ordered groups are not equivalent.

Further, it will be shown that totally a-inhomogeneous complete vector lattices G
can be characterized by using the representation of G as a system of extended real
valued functions. Let us recall some relevant notions.

Let R be the set of all reals and let R, = R U {— 00, oo}. The set Ry is linearly
ordered and topologized in the natural way. Let B be a complete Boolean algebra.
We denote by S(B) the Stone space of B. Let F,(B) be the set of all continuous
functions f : S(B) - R, such that the set

{xe S(B):f(x) ¢ R}

is nowhere dense in S(B). Then F,(B) is an additive complete lattice ordered group
(for more details, cf. Vulich [14], Chap. V, § 2). Let F,(B) be the set of all bounded
functions belonging to F,(B).

The following assertions will be proved:

(A) Let G # {0} be a complete vector lattice. Then G is totally a-inhomogeneous
if and only if G is isomorphic with a completely subdirect product of vector lattice G,
(k € K) such that for each k € K there is a totally inhomogeneous complete Boolean
algebra B, having the property that G, is an l-subgroup of F(B,) with F,(B,) < G,.

(B) Let G + {0} be a complete vector lattice. Suppose that G is orthogonally
complete. Then G is totally b-inhomogeneous if and only if G is isomorphic with
a completely subdirect product of lattice ordered groups G (k € K) such that for
each ke K there is a totally inhomogeneous complete Boolean algebra B, with
F.(B) = G,.

3. TOTAL a-INHOMOGENEITY

Let us recall some notions and results we shall need in the sequel. Let G be a lattice
ordered group.

Each polar of G is a closed convex I-subgroup of G. If § + {4;} = P(G), then
A = NA; € P(G) and A = A4, in the Boolean algebra P(G) (cf. Six [12]). If X is
a one-element subset of G, then X® is said to be a principal polar of G.
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Let A, B be l-subgroups of G such that (1) the group G is a direct product of its
subgroups A4, B and (ii)if ge G,ae A, beB, g =a + b, then g 2 Oonly ifa = 0
and b = 0. Under these assumptions the lattice ordered group G is said to be a direct
product of its I-subgroups 4 and B; we write G = A X B. The I-subgroups 4 and B
are called direct factors of G. Each direct factor of G is a closed convex [-subgroup
of G. Under the above notation, the element a will be called the component of g
in A and it will be denoted by g(4). A convex I-subgroup H of G is a direct factor
of G if and only if for each 0 < g € G the set

Hy={heH:0< h<g}

possesses the greatest element (if this is the case, then the greatest element of H, is
the component of g in H). G is called strongly projectable (projectable) if each polar
(each principal polar) of G is a direct factor of G. If G is complete, then it is strongly
projectable.

An element 0 < s€ G is called singular if x A (s — x) = 0 for each x € G with
0 < x = 5. The lattice ordered group G is said to be singular if for each 0 < g€ G
there exists a singular element se G with 0 < s < g.

Let g € G. The smallest I-ideal of G containing the element g will be called the
principal l-ideal of G generated by g and it will be denoted by [g]. For each g€ G
we have [g] = [|g|]; hence each principal l-ideal is generated by a positive element.
If G is abelian (in particular, if G is complete) and 0 < g € G, then

[9]1 =U[-ng,ng]l (n=1,2,..).

Let0 = eeG.If e A g > 0 foreach 0 < g € G, then e is called a weak unit of G.
If [e] = G, then e is said to be a strong unit of G.

A system 0 = {a;} (i € I) of elements of G is called disjoint if a, > 0 for each i eI
and a; A a; = 0 for each pair i, j of distinct elements of I. If each disjoint system
of elements of G possesses the least upper bound in G, then G is called orthogonally
complete.

Let {G,} (i € I) be a system of lattice ordered groups. Their (external) direct product
or direct sum will be denoted by [[.; G; or ¥ .; G, respectively. Let H be an I-sub-
group of []is G; such that Y ;s G; € H. Then H is called a completely subdirect
product of the system {G,} (i € I). The notion of a completely subdirect product of
lattice ordered groups has been introduced by Sik [13].

Let H be a completely subdirect product of the system {G;} (i €I). For each
i el let G} be the set of all f e H such that f(j) = 0 for each jel, j % i. Then for
each 0 < he H there are uniquely determined elements h® e G? such that h =
= Vier hi. :

Let G be a lattice ordered group and let {G;} (i €I) be a system of I-subgroups
of G. Suppose that the following condition is fulfilled:

(a) For each 0 < g € G there are uniquely determined elements g; € G; such that
9=V g
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It is not hard to verify that then there exists an I-subgroup G’ of ]
isomorphism ¢ of G onto G’ such that

ier G; and an

(i) G is a completely subdirect product of the system {G;} (i €I),
(ii) if g and {g,} are as above, then (¢(g)) (i) = g; for each i e I.

Hence we may take the condition (a) as an internal definition of a completely
subdirect product; we say that G is a completely subdirect product of its I-sub-
groups G, (i €1) if (a) is valid.

If G is a completely subdirect product of its I-subgroups G; (i €I), then clearly
each G, is a direct factor of G.

3.1. Lemma. Suppose that G is a completely subdirect product of its l-subgroups
G; (iel). Then G is totally a-inhomogeneous if and only if each G; is totally
a-inhomogeneous.

Proof. Assume that G is totally a-inhomogeneous. Since G; are convex [-sub-
groups of G, they are totally a-inhomogeneous as well. Conversely, assume that
all G, are totally a-inhomogeneous. Let D # {0} be a principal l-ideal of G. Then D
is a completely subdirect product of its I-subgroups D n G, (i €I) and each D n G;
is principal. There exists i €l with D n G; # {0}. Since G; is totally a-inhomo-
geneous, there is a principal I-ideal D, = {0} in D N G, such that D, is not isomorphic
with D n G;. Thus D n G; and D, are principal l-ideals in D such that either
D n G; or D, fails to be isomorphic with D. Hence G is totally a-inhomogeneous.

3.2. Corollary. Let G = A x A’. Then G is totally a-inhomogeneous if and
only if both A and A’ are totally a-inhomogeneous.

In the remainder of this paragraph we assume that G is a complete lattice ordered
group (unless otherwise stated).

3.3. Lemma. Suppose that G * {0} is totally a-inhomogeneous. Then there is
a system {G,} (i €I) of convex I-subgroups of G such that

(i) for each i€l, G, is a totally a-inhomogeneous lattice ordered group with
a weak unit; -

(ii) G is a completely subdirect product of the system {G;} (i €I).

Proof. From the Axiom of Choice it follows that there exists a maximal disjoint
system {e;} (i €I) in G. For each i € I we put

Gi = {ei}‘” .

Then, since G is complete, each G; is a direct factor of G. If i, jel,i + j,0 < a e G,
0=<beGjthena A b=0.Let 0 < geG.Put g, = g(G,) for each i e I. We have
g;<gforeachiel. If h < gandg; < hforeachiel, thentheelement0 < g — h
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must be disjoint with each e;, which is a contradiction. Thus g = Vier 9i- Suppose
that for each i el we have 0 < h; € G; and that g = V. h;. Then g(G,-) = h; for
each i € I. Therefore G is a completely subdirect product of the system {G;} (i € ).
For each i €1, e; is a weak unit in G;. According to 3.1, all G, are totally a-inhomo-
geneous.

3.4. Lemma. Let G; be a complete lattice ordered group. Then G; can be written
as G; = A; x A}, where A; is a vector lattice and A} is singular. If G; has a weak
unit, then both A; and A; have a weak unit.

Proof. The first assertion has been proved in [3]. If e; is a weak unit in G;, then
ej(A;) and eA;) is a weak unit in 4; or A}, respectively.

For 0 < g e G we denote C([0, g]) = C(g).

3.5. Lemma. Let G have a weak unit e. Then P(G) is isomorphic with C(e).

Proof. For each X, € P(G) we put ¢(X,) = e(X,). If X,, X, € P(G), X, = X,,
then e(X,) < e(X,). We have X, = {e,}* where ¢, = ¢(X), since e, is a weak unit
in X,. Thus if e; = ¢(X;), i = 1,2, then e; < e, implies X; = X,.

For each e, € C(e), the relation ¢({ey}”) = e, is valid. This can be verified as
folows. We have ¢({e,}?°) = e({eo}*); let us denote this element by e,. Then e, is the
least upper bound of the set {a € {€,}?* : 0 < a < e}; the element ¢, belongs to this
set and hence e, < e;. On the other hand, e, possesses a relative complement e
in [0, e]. Thus e, is the greatest of those elements belonging to [0, e] which are
disjoint with ej; e, is one of these elements, since e € {eo}* implies e, A ey = 0.
From this we obtain e, < e,. Hence we conclude ¢, = e;. Therefore ¢ is an iso-
morphism of P(G) onto C(e).

3.6. Corollary. Let ey, e, be weak units in G. Then C(e,) is isomorphic with C(e,).
For the proofs of the following results cf. [14] (Thm. V. 4.1; Thm. V.3.1; Thms.
V.5.1 and V.5.2).

(*¥) Let G be a complete vector lattice with a weak unit. Then there exists an
isomorphism @ of G into F (B) with B = P(G) such that F,(B) < ¢(G).

(**) Let G be a complete vector lattice with a strong unit. Then there exists an
isomorphism of G onto Fy(B) with B = P(G).

(*#x) Let G be a complete vector lattice. Assume that G is orthogonally complete.
Then G is isomorphic with F ,(B), where B = P(G).

3.7. Lemma. Let A + {O} be a complete vector lattice with a weak unit. Assume
that A is totally a-inhomogeneous. Then the Boolean algebra P(A) is totally
inhomogeneous.
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Proof. Let e be a weak unit in 4. Suppose that P(A) fails to be totally inhomo-
geneous. According to Lemma 3.5, C(e) is not totally inhomogeneous. Thus there is
0 < e, € C(e) such that the set C; = {e;€ C(e) : ¢; < e,} is a homogeneous Boolean
algebra. Clearly C; = C(e,).

Put D, = [e,]. Thus e, is a strong unit in D,. Since 4 is totally a-inhomogeneous,
there exists a principal I-ideal D, = {0} of 4 with D, = D, such that D, is not
isomorphic with D,. Let D, be generated by an element 0 < e,. Put

D3 — {ez}dé

where the symbol ¢ is taken with respect to the lattice ordered group D,. Then D,
is a direct factor of D;. Thus the element e* = e,(D;) is a strong unit in D;. This
implies that e* is a weak unit in D3. From the definition of Dj; it follows immediately
that e, is a weak unit in D;. Thus according to Corollary 3.6, C(e,) is isomorphic
with C(e*). Since the Boolean algebra C(e,) is homogeneous and since 0 < e* € C(e, )
we obtain that C(e*) is isomorphic with C(e,). Thus C(e,) is isomorphic with C(e;).
Hence we infer from 3.5 and (*x) that D, is isomorphic with D;, which is a con-
tradiction.

3.8. Lemma. Let S; # {0} be a singular complete lattice ordered group with
a weak unit e. Then there exists a singular element sy in Sy such that s, is a weak
unit in S;. Moreover, s, is the join of all singular elements of S;.

Proof. Let S, be the set of all singular elements s € S; with s < e. Denote s, =
= sup Sy. Then s, is singular. Assume that there exists a singular element s in S
such that snon < so. Puts; = s, Vv s. Then s, is singular, s, < s;. Hence 0 < 5, =
= §; — So is singular and s, A s, = 0. We have s, A e > 0, s, A e is singular and
(52 A e) Aso=e A (s, Asy)=0.On the other hand, since s, A e < e, we infer
that s, A e < so, hence 0 < s, A e = (s, A €) A sy, Which is a contradiction.
Thus s, is the join of all singular elements. Since S, is singular, s, is a weak unitin S,.

Let S, = {0} be a singular complete lattice ordered group with a weak unit s,
such that s, is a singular element of S,. Put B = C(s,) = [0, so].

Let N be the set of all positive integers.

The following result has been proved in [6] (Thm. 3.2):

(o) If Sy is orthogonally complete and 0 < g € Sy, then there is a subset N(g) <
S N and a disjoint system {t,} (n € N(g)) such that s, Z t, for each n € N(g) and

g = Vnt, (neN(g)).

It can be easily verified that the assumption of orthogonal completeness is re-
dundant in (o). If we put 1, = 0 for each n€ N\N(g) and t, = 5o — Vpen t,» We
obtain:

(+) Let 0 < g € S;. Then there exist elements t,€ B (n = 0, 1,2 ...) with
g=Vnt, (n=01,2,..)

such that Vt, = so and 1, A 1, = 0 whenever n, me {0, 1, 2, }, n =% m.
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If S, is orthogonally complete, then for each disjoint subset {t,} (n =1,2,..)
of elements of B the join Vnt, exists in S;. Hence from 3.3, [6] and from (+) it
follows that (S;)* is determined up to isomorphism by the Boolean algebra B.
Since S, is uniquely determined by (S;)*, we obtain:

(+ +) Let S; be orthogonally complete. Then S, is determined up to isomorphism
by C(so).

Suppose that s, is a strong unit in S; and let g, ¢, be as in (+) There is a positive
integer n, with n;s, = g. Let n > ny. Suppose that t, > 0. Thus nt, > n,t,. Denote
{(), 1,2, } = No. We have

nISO = nl(VmeNo tm) = vaNo nltm >

ntn é g é VmeNo nltm
and hence

ntn = ntn A (VmsNo nltm) = VmeNo (ntn A nltm) =

=nt, A nyt, = (n A ny)t, =ngt,
which is a contradiction. Thus #, = 0 for each n > n; and thus
g=1t V2 V..VW‘t,.
Hence S; is determined up to isomorphism by B and therefore we have:

(+++) Let S; have a strong unit that is a singular element in S;. Then S, is
determined up to isomorphism by C(s).

3.9. Lemma. Let S, + {0} be a complete singular lattice ordered group with
a weak unit. Suppose that S, is totally a-inhomogeneous. Then the Boolean algebra
P(S,) is totally inhomogeneous.

Proof. According to Lemma 3.8, the join s, of all singular elements of S, is
a weak unit in S;. Assume that P(S) is not totally inhomogeneous. Thus by Lemma
3.5, C(so) is not totally inhomogeneous. Since s, is singular, we have C(so) = [0, so].
Hence there is 0 < s, < s, such that the Boolean algebra [0, s,] is homogeneous.
Put S, = [s,]. Because S; is totally a-inhomogeneous, there exists a principal
l-ideal S; # {0} of S; with S; = S, such that S is not isomorphic with S,. There
is 0 < eeS, with S; = [e]. Moreover, S; is singular and complete. Since s, is
a singular strong unit in S, = [s,] and e € S,, we obtain by an analogous reasoning
as above that there are elements #;€ [0, s,] (i = 1,2, ..., n;) withe = t; v 2t, v

.V ngty, t, A t, =0 whenever n,me{1,2, ..., ny}, n # m. All t; are singular
and belong to S;, hence the element s; = ¢; v ... Vv t, issingular as welland s; € S3.
We have n;s; = nyt; vV ... v nit, 2 e. Because e is a strong unit in S; = [e],
the element s; is a strong unit in S;. Obviously 0 < s; < s, and hence [0, s5] is
isomorphic with [0, s,]. Thus according to (++ +), S; is isomorphic with S,,
which is a contradiction.
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3.10. Proposition. Let G =+ {0} be a complete lattice ordered group that is totally
a-inhomogeneous. Then G fulfils the following condition:

(c) G is a completely subdirect product of lattice ordered groups H; + {0} (j € J)
such that for each je J, H; has a weak unit, the Boolean algebra P(H;) = B;
is totally inhomogeneous and either

(i) there exists an isomorphism ¢; of Hj into F (B;) such that Fy(B;) < ¢(H}),
or

(ii) H; is singular.

Proof. Let {G;} (i €I) be as in Lemma 3.3. Further, let 4; and 4; be as in 3.4.
Let {H;} (j € J) be the system of all I-subgroups 4; and A; that are distinct from {0}.
According to 3.2, all H; are totally a-inhomogeneous. Because G is a completely
subdirect product of the system {G;} (i €I), it is also a completely subdirect product
of the system {H;} (j € J). Let j e J. If H; is a vector lattice, then by (%) and 3.7 the
condition (i) holds and P(H)) is totally inhomogeneous. If H; is singular, then ac-
cording to 3.9, P(H;) is totally inhomogeneous.

3.11. Theorem. Let G =+ {0} be a complete lattice ordered group such that the
Boolean algebra P(G) is totally inhomogeneous. Then G is both totally a-inhomo-
geneous and totally b-inhomogeneous.

Proof. Let [x,] be a principal I-ideal of G with x; > 0. Put X, = {x;}*. Then
X, € P(G) and the interval [{0}, X,] of P(G) coincides with P(X,). Hence P(X,) is
totally inhomogeneous. Thus according to 3.5, C(x,) is totally inhomogeneous.
Hence there is 0 < x, € C(x,) such that C(x,) is not isomorphic with C(x,). There-
fore [x,] < [x,], P([x,]) is isomorphic with C(x,), P([x,]) is isomorphic with
C(xz) and thus [x,] is not isomorphic with [x;]. Hence G is totally a-inhomogeneous.

Let X # {0} be a direct factor of G. Choose 0 < x; € X and let x, be as above.
Put X; = {x,}%, X, = {x,}?. Then x; is a weak unit in X; (i = 1, 2) and similarly
as we did above for [x,], [x,] we can verify that X, is not isomorphic with X,.
Both X, and X, are direct factors of G, X; € X (i = 1, 2) and either X, or X,
fails to be isomorphic with X. Thus G is totally b-inhomogeneous.

3.12. Proposition. Let G + {0} be a complete lattice ordered group fulfilling the
condition (c) from 3.10. Then G is totally a-inhomogeneous.

Proof. According to 3.11 all lattice ordered groups H; are totally a-inhomo-
geneous and hence by 3.1, G is totally a-inhomogeneous as well.

From 3.10 and 3.11 it follows that the assertion (A) in § 2 is valid.

3.13. Theorem. Let G =+ {0} be a complete lattice ordered group that is totally
a-inhomogeneous. Then the Boolean algebra P(G) is totally inhomogeneous.
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Proof. Assume that P(G) is not totally inhomogeneous. Then there exists {0} =+
+ X € P{G) such that the interval [ {0}, X] of P(G) is homogeneous. Choose 0 < x €
€ X and put {x}** = X,. Then the interval [{0}, X,] of P(G) coincides with P(X,).
Hence P(X,) is homogeneous. Since x is a weak unit in X, we infer from 3.5 that
C(x) is homogeneous.

Let {H;} (j € J) be as in 3.10. The lattice ordered group X is a completely subdirect
product of lattice ordered groups X; n H; (j € J) and for each je J, x; = x(H;) is
a weak unit in X; n H;. There exists j € J with X; n H; # {0}; then x; > 0. We
have x; € C(x) and hence C(x;) < C(x). Thus C(x;) is homogeneous. Hence with -
respect to 3.5, P(X; N H;) is homogeneous.

X, N H;is complete and it follows from 3.10 that X; n H; is either a vector lattice
or a singular lattice ordered group. Since G is totally a-inhomogeneous, X; N H;
is totally a-inhomogeneous as well. Hence we obtain from 3.7 and 3.9 that P(X; n H})
is totally inhomogeneous, which is a contradiction.

From 3.11 and 3.13 we obtain:

3.14. Corollary. Let G be a complete lattice ordered group that is totally a-
inhomogeneous. Then G is totally b-inhomogeneous.

3.15. Theorem. Let G =+ {0} be a complete lattice ordered group that is totally
a-inhomogeneous. Then the center of each nontrivial interval of G is a totally
inhomogeneous Boolean algebra.

Proof. Let a, be G, a < b. Assume that C([a, b]) is not totally inhomogeneous.
Put y = b — a. Since the intervals [a, b] and [0, y] are isomorphic, the Boolean
algebra C(y) is not totally inhomogeneous. Hence thereis 0 < x € C(y) such that C(x)
is homogeneous. Put X; = {x}*. Now by the same method as in the proof of 3.12
we arrive at a contradiction.

3.16. Theorem. Let G =+ {0} be a complete lattice ordered group. Suppose that
foreach 0 < g € G there exists 0 < g, € G with gy < g such that the center of the
interval [0, g,] is a totally inhomogeneous Boolean algebra. Then G is totally
a-inhomogeneous.

Proof. According to 3.11 it suffices to show that P(G) is totally inhomogeneous.
Assume that P(G) fails to be totally inhomogeneous. Then there is X € P(G), X + {0}
such that the interval [{0}, X] of P(G) is homogeneous. Choose 0 < x € X. Ac-
cording to the assumption there is 0 < x; € G with x; < x such that C(x, ) is totally
inhomogeneous. We have {x,}?> = X and P({x,}*) coincides with the interval
[{0}, {x,}?] of P(G). Hence P({x,}?) is homogeneous; by using 3.5 we get that
C(x,) is homogeneous, which is a contradiction.

From 3.11, 3.12, 3.15 and 3.16 it follows that the conditions (a)—(c) mentioned
in § 2 are equivalent.
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Let G be a lattice ordered group that need not be abelian. For g € G let ¢(g) be the
convex [-subgroup of G generated by g. Suppose that for each 0 < g, € G there is
0 < g, € ¢(g,) such that ¢(g,) is not isomorphic with ¢(g,). Then G is called totally
inhomogeneous [7]. For abelian lattice ordered groups the notions of the total
inhomogeneity and that of the total g-inhomogeneity coincide. In [7] (Thm. 5.5)
it has been shown that in each lattice ordered group G there is a largest convex
totally inhomogeneous I-subgroup, but the existence of totally inhomogeneous com-
plete lattice ordered groups distinct from {0} was not examined in [7].

4. TOTAL b-INHOMOGENEITY

4.1. Lemma. Let A + {0} be a complete vector lattice with a strong unit. Suppose
that A is totally b-inhomogeneous. Then the Boolean algebra P(A) is totally
inhomogeneous.

Proof. Let e be a strong unit in A. According to 3.5 it suffices to verify that C(e)
is totally inhomogeneous. Let 0 < e, € C(e), A4; = {e,}?. Then A, is a direct factor
of A with a strong unit e,. According to the assumption there is a direct factor
A, # {0} of A such that A, = A, and A, is not isomorphic with A,. The element
e, = e,(4,) = ¢(A,)is astrongunitin A,. According to (*x) and 3.5, 4, is isomorphic
with F,(C(e;)) (i = 1,2). Thus C(e,) is not isomorphic with C(e,). Hence C(e) is
totally inhomogeneous.

4.2. Lemma. Let S be a complete singular lattice ordered group that is totally
b-inhomogeneous. Suppose that S possesses a strong unit s, such that sq is a singular
element of S. Then the Boolean algebra P(S) is totally inhomogeneous.

The proof is analogous to that of 4.1 with the distinction that we use (+ + +)
instead of ().

For a lattice ordered group G we denote by Sy(G) the set of all singular elements
of G and we put S(G) = (S,(G))”. Then S(G) is the largest convex singular [-sub-
group of G. If G is complete, then S(G) is a direct factor of G.

4.3. Theorem. Let G be a complete lattice ordered group with a strong unit e
such that e(S(G)) is a singular element in G. Suppose that G is totally b-inhomo-
geneous. Then P(G) is totally inhomogeneous.

Proof. According to 3.4 we have G = A x S(G), where A is a vector lattice. The
element ¢(A) is a strong unit in 4. Hence by 4.1, P(A) is totally inhomogeneous.
Moreover, by 4.2 P(S(G)) is totally inhomogeneous. Since G is a direct product
A x S(G), P(G) is isomorphic with the direct product P(4) x P(S(B)). From this
it easily follows that P(G) is totally inhomogeneous.
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From 4.3 and 3.13 we obtain:

4.4. Corollary. Let G be a complete lattice ordered group with a strong unit e
such that e(S(G)) is singular. Suppose that G is totally b-inhomogeneous. Then G
is totally a-inhomogeneous.

4.5. Theorem. Let G + {0} be a complete lattice ordered group that is orthogonal-
ly complete. Suppose that G is totally b-inhomogeneous. Then P(G) is totally
inhomogeneous.

Proof. We have G = A x S(G), where 4 is a vector lattice. Both 4 and S(G) are
orthogonally complete and totally b-inhomogeneous. By the same method as in the
proof of 4.1 (with the distinction that we use (#xx) instead of (+*)) we obtain that P(4)
is totally inhomogeneous. Similarly, by using (+ +), we get that P(S(G)) is totally
inhomogeneous. Hence P(G) is totally inhomogeneous.

4.6. Corollary. Let G be a complete lattice ordered group that is orthogonally
complete. If G is totally b-inhomogeneous. the it is totally a-inhomogeneous.

From 4.6, (++*), 3.14 and the assertion (A) from § 2 it follows that the assertion (B)
in § 2 is valid.

In the next section it will be shown that in general the total b-inhomogeneity does
not imply the total a-inhomogeneity for complete lattice ordered groups.

5. TOTALLY b-INHOMOGENEOUS LATTICE ORDERED GROUPS
WITH HOMOGENEOUS BOOLEAN ALGEBRAS OF POLARS

Let N be the set of all positive integers. Let o, f, o, (n € N) be infinite cardinals
with o« < o <oy <...<f. Let Q be a set with card Q = . The system of all
sequences {g,} (n = 1, 2, ...) of elements of Q will be denoted by S. Let m be a posi-
tive integer and let g4, q,, ..., q,, be fixed elements of Q. We denote by S(q, ..., q,)
the set of all sequences {p,,} € S such that p; = q;for i = 1, ..., m. The system of all
S(q1, ---» qm) (With gy, ..., q,, running over Q) will be denoted by S,

Let H be the set of all integer valued functions defined on the set S. The set H is
a group under addition. For hy, h, € H we put hy; < h, if hy(x) < hy(x) for each
x € S. Then H is a lattice ordered group.

Let h e H and let m, n € N. We put

s(h, m, n) = {YeS,, : |h(y)| > n for some ye Y},
so(h, m) = inf {card s(h, m, n)},cn .

Let Ye S,,. We denote by F(Y) the set of all h € H such that h(x) = 0 for each
x € S\ Y. Further, let F(Y) be the set of all h € F(Y) that are constant on Y (i.e.,
h(xy) = h(x,) for each pair x;, x, € Y).
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Let us denote by H' the set of all h, € H* such that either h; = 0 or h, can be
written as

hl = Vier hi

where {h;} (i €I) is a disjoint subset of H such that for each i € I there exist m(i) € N
and Y; € S,,(;) with h; € F(Y;). We denote by H the set of all h € H such that both h™
and h~ belong to H!. Then H? is an [-subgroup of H. Let m e N, Ye S,,; we put

H*(Y) = F(Y) n H?.

Then H?(Y) is a direct factor of H2. Moreover, from the construction of H? it follows
that H? is orthogonally complete and thus for each polar X # {0} in H? there is
0 < hy € X such that X = {h,}?. Hence each polar of H? is principal.

Let hy, h;, X be as above. Let 0 < h € H?. There are subsets Y; (j € J) of S such
that I n J = 0, each Y; belongs to some S,,;, and there are elements h; € F(Y))
such that {h;} is a disjoint subset of H? and

h=Veh,.

Ifiel, je J, then either Y; N Y; = 0 or there is m(i, j) € N such that Y; N Y; € Spu(i -
We define h’ € H as follows. Let x € S. If there are i €I and j € J such that x €
€Y, nY;, then we put
h(x) = h(x);

otherwise we set h'(x) = 0.
It is not hard to verify that h’ belongs to X and that h" is the greatest element of the
set {h" € X : h" £ h}. Hence X is a direct factor of H2. Thus we have the following
5.1. Lemma. The lattice ordered group H? is strongly projectable.

Let H° be the set of all elements & € H? such that
so(h, m) £ a,,

is valid for each m € N. Then H° is a convex Il-subgroup of H2. Since each convex
l-subgroup of a strongly projectable lattice ordered group is again strongly pro-
jectable, 5.1 yields:

5.2. Lemma. The lattice ordered group H° is strongly projectable.

FormeN, Ye S, put F(Y) n H® = H(Y). Clearly H°(Y) is a direct factor of H°.
Let us denote by G the Dedekind completion of H®. For m e N, Ye S,, we set

G(¥) = (H(V)*.
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5.3. Lemma. For each m € N and each Y€ S,, we have
(a) G(Y) is direct factor of G;
(b) G(Y) is a Dedekind completion of H(Y).

Proof. In [8] (Thm. 2.6) it has been shown that if B is the Dedekind completion
of an archimedean lattice ordered group A and if A = 4; x A,,then B = B, x B,,
where B; is the convex I-subgroup of B generated by A4;, and B; is the Dedekind
completion of 4; (i = 1,2). Thus to prove the assertion of the lemma it suffices
to verify that (under the above notation) we have B, = (4,)? (the symbol & being
taken with respect to B).

Let 0 < x € B;. Since By is the Dedekind completion of A4;, there is a € A; with
x = a. Because (4,)” is a convex I-subgroup of B and a € (4,)”, we get x € (4,)”.
Hence B, < (4,)*. Conversely, suppose that 0 < x € (4,)*. Then there are elements
0 < b;eB, (i =1,2) with x = by + b,. Further, there is a, € A, with b, < a,.
From A = A, x A, it follows that a, € 4}, hence b, € A} and thus x A b, = 0.
Since x A b, = b,, we obtain b, = 0, therefore x = b, € B,. Hence (4,)” < B,.

5.4. Lemma. Let me N, Ye S,,. Let y be a cardinal with a,,, <y = p. Then
there is a disjoint subset {h;,} (i€, neN) in G(Y) such that

(i) card I = y;

(ii) the set {h,;,} (i€l, neN) is not upper bounded in G(Y).

Proof. There exists a system {Z;,} (i €1, n € N) of mutually disjoint nonempty
sets {Z,-,,,} such that card I = y, each Z; , belongs to S,,+; and is a subset of Y. For
iel and n e N we define h; , € H as follows:

h;,(x) = nif xeZ,, and h,,(x) = 0 otherwise. Then each h,, belongs to G(Y)
and obviously {h;,} is a disjoint system.

Suppose that the system {h; ,} has an upper bound g in G(Y). From the assertion
(b) of 5.3 it follows that there exists hy € H°(Y) with g < hy. Let h be the join of the
system {h;,} in H (this join exists since H is orthogonally complete). We have
h < hy. In view of the construction of the system {h ,-,,,} we get

SO(h’ m + 1) =Y > Oy
and thus
so(ho, m + 1) > oy,
hence h, does not belong to H(Y) = H°, which is a contradiction.
For 0 + Z = H°® we denote

Z! = {h°eH®: |h°| A |z] =0 foreach zeZ}.
5.5. Lemma. Let me N, YeS,,. Let y be an infinite cardinal with y < op+1-
Let {h;,} (iel, neN) be a disjoint subset of G(Y) such that card I = y. Then the
set {h;,} is upper bounded in G(Y).
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Proof. For each i eI and each n € N let

Xip=1{hoeH°:0 < hy < hy,}, Y,

in

= (X;.)"”.

According to 5.2, each Y;, is a direct factor of H°. By the same argument as in the
proof of 5.3 we obtain that (Y,-,,,)‘” is a direct factor of G and the Dedekind completion
of Y; .

We have h;, = sup X, , in G, X;, = (Y,,)”, and since (Y;,)* is a closed I-sub-
group of G, we get h;,€(Y;,)”. This together with the fact that (Y;,)? is the
Dedekind completion of Y; , implies that there is h;, € Y; , with

hi,n é h;,n .

The disjointness of the system {h; ,} implies that the system {h;,} is a disjoint subset
of H® and clearly {h;,} = H%(Y). Since the cardinality of the set {h},} is 7 < 4y,
the least upper bound of the set {h;,} in H(Y) exists. Thus the set {h;,} is upper
bounded in G(Y).

5.6. Lemma. Let m, keN, m <k, Y,€S,, Y,€S, Then G(Y;) is not iso-
morphic with G(Y,).

The proof follows from 5.4 and 5.5.

5.7. Lemma. The lattice ordered group G is totally b-inhomogeneous and
card G > o.

Proof. As we have shown above, for each m € N and each cardinal y with «,, <
< y = P there exists a disjoint set of elements of G such that the cardinality of this
set is y. Since a < a,,, we get card G > «.

Let A # {0} be a direct factor of G. Thus there is 0 < a € A. Hence there exists
h e H® such that 0 < h < a. From the definition of H® it follows that there are
meN and Y; € S,, such that h(y) = h(y’) % 0 for each pair of elements y, y' € Y.
From this we obtain that H%(Y;) € 4 and therefore G(Y;) = A.

Let k > m. Choose Y, € S, such that Y, = Y;. Then H%(Y,) = H%(Y;) and thus
G(Y,) = G(Y;) € A. Both G(Y;) and G(Y,) are direct factors of G and according
to 5.6, G(Y;) is not isomorphic with G(Y,). Hence 4 fails to be isomorphic either
with G(Y,) or with G(Y,). Therefore G is totally b-inhomogeneous.

Let e € H such that e(x) = 1 for each x € S. The principal l-ideal of H generated
by e will be denoted by H,. Let me N, Ye S,,. We put

H) = H°nH,, HY),=H%Y)nH,.

5.8. Lemma. The Boolean algebras P(H®) and P(Hy) are isomorphic.

Proof. The elemént e is a weak unit in both lattice ordered groups H® and Hj.
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Since the interval [0, e] of H® is a subset of Hj, it follows from 3.5 that P(H°®) and
P(H}) are isomorphic.

5.9. Lemma. The lattice ordered groups Hy and H(Y), are isomorphic.

Proof. According to the definition of S,, there are elements ¢, ..., g,, € Q such
that Yis the set of all sequences s of the form

41> 925 +-+5 Qm> P1>P25 P3» - --

with p; running over Q for each i€ N. Let p = {p,},ey € S. Consider the mapping
@(p) = s, where s is as above. Then ¢ : S — Y is a bijection. Let h € Hy. Let us
define a function h’ on the set S as follows. For each x € S\ Y let h'(x) = 0. For
each ye Y we put

W(y) = he™'(y)) -
Then h’' € H(Y),. From the construction of H® and Hj it follows that the mapping
Y : Hy - H%(Y), defined by
Y(h) = h' foreach heH,

is an isomorphism of Hy into H%(Y),.
We need the following result of Sikorski1 [11]:
(S) Let By, B, be o-complete Boolean algebras. Suppose that there exists an iso-

morphism of By onto an ideal of B, and an isomorphism of B, onto an ideal of B;.
Then B, and B, are isomorphic.

5.10. Lemma. The Boolean algebra P(H,(,’) is homogeneous.

Proof. Since e is a weak unit in Hy, according to 3.5 it suffices to verify that the
center C(e) of the interval [0, e] in Hy is homogeneous. Let 0 < ¢, € C(e). There
exist m € N and Ye S,, such that eo(y) = eo()’) = 0 for each pair y, y' € Y. Put

e, = eo(HY(Y)).

Then e, € H(Y), and, moreover, 0 < e, € C(e), e; < e,. Let y be as in 5.9. We
have obviously

‘/’(e) =€,

hence Y is an isomorphism of C(e) onto C(e;). Because C(e,) is a sublattice of C(eo),
Y is an isomorphism of C(e) into C(e,). Let ¥, be the identical mapping on C(eo);
hence ¥, is an isomorphism of C(e,) into C(e). Clearly C(e,) is an ideal in C(e) and
C(e,) is an ideal in C(e,). Because C(e) is complete (being isomorphic with P(H})),
we obtain from (S) that C(e) is isomorphic with C(e,). Hence C(e) is homogeneous.
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5.11. Lemma. The Boolean algebra P(G) is homogeneous.

Proof. From 5.8 and 5.10 it follows that P(H,) is homogeneous. For each
archimedean lattice ordered group G, the Boolean algebras P(G,) and P(D(G,)) are
isomorphic, where D(G,) is the Dedekind completion of G,. Hence P(G) is iso-
morphic with P(H®). Thus P(G) is homogeneous.

5.12. Theorem. For each cardinal o there exists a complete lattice ordered
group G such that

(i) card G > o,
ii) G is totally b-inhomogeneous,
y g
iii) the Boolean algebra P(G) is homogeneous.
(

The proof follows from 5.7 and 5.11.
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