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Let G be a lattice ordered group. The underlying lattice will be denoted by l(G).
A lattice ordered group is said to be strongly projectable if each its polar is a direct
factor. We denote by o(G) the orthogonal hull of G. The following result has been
proved in [8]:

(A) Let G, and G, be complete lattice ordered groups such that I(G,) is iso-
morphic with I(G,). Then I(o(G,)) is isomorphic with 1(o(G,)).

In this note the following theorem will be established:

(A") Let G, and G, be lattice ordered groups such that I(G,) is isomorphic with
)(G,). Suppose that G, is strongly projectable. Then

(i) G, is strongly projectable;

(i) K(o(G,)) is isomorphic with 1(o(G,)).

1. PRELIMINARIES

We shall use the standard notation for lattice ordered groups (cf. BIRKHOFF [3],
Fucas [6] and CoNRAD [4]). Let G be a lattice ordered group, @ + X < G. The set

X’ ={yeG:|y| A |x| = 0 for each x e X}

is said to be a polar of G. We put (X?)° = X®. If X = {x} is a one-element set,
then we denote {x}* = [x]; [x] is called a principal polar. Each polar is a convex
l-subgroup of G.

A polar Yis said to be a direct factor of G if for each 0 < ze G the set {z; € Y :
:z; < z} possesses a greatest element z,. In such a case we put z(Y) = z, and for
any t € G we denote {(Y) = t*(Y) — t7(Y); the element #(Y) is called the component
of tin Y. If Yis a direct factor of G, then the mapping t — #(Y) is a homomorphism
of G onto Yand Y° is a direct factor of G as well; for each te G we have ¢t = #(Y) +
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+ #Y°) and ¢t = 0 if and only if #(Y) 2 0, #(Y°) = 0. Under the above assumptions
we write G = Y@ Y°.

If X and Y are direct factors of G, then X n Yis also a direct factor of G and for
each t € G we have

(X 0 Y) = (X)) (Y) = («(Y)) (X).
If X = [x] is a direct factor, then we write f[x] instead of #([x]).

Let I be a nonempty set. A system {g;};; of elements of G will be called disjoint
if g; =2 0 for each i el and g; A g; = 0 whenever i and j are distinct elements of I.
The lattice ordered group G is called orthogonally complete if each disjoint system
in G possesses the least upper bound in G.

An l-subgroup A of G is said to be dense if for each 0 < g € G there exists a € 4
with 0 <a =< g.

Let G and G’ be lattice ordered groups such that

(i) G is a dense I-subgroup of G';
(ii) G’ is orthogonally complete;

(iii) if G” is an I-subgroup of G’ with G = G” and if G” is orthogonally complete,
then G" = G'.

Under these assumptions G’ is said to be an orthogonal hull of G. Each lattice
ordered group possesses an orthogonal hull and this is defined uniquely up to iso-
morphism (cf. BERNAU [1]; for representable lattice ordered groups this was proved
by Conrad [5] and for complete lattice ordered groups by PINSKER [10] and NAKANO
[9)).

If G is archimedean and orthogonally complete, then it is strongly projectable
(Bernau [2] and Rotkovi¢ [11]); a non-archimedean orthogonally complete lattice
ordered group need not be strongly projectable (cf. Ex. 6.1 below).

2. STRONG PROJECTABILITY

Let G, and G, be lattice ordered groups such that G, is strongly projectable.
Assume that ¢ is an isomorphism of the lattice I(G,) onto I(G,). Then the mapping ¥
defined by

¥(x) = o(x) — 9(0)

is an isomorphism of the lattice I(G,) onto I(G,) fulfilling ¥(0) = 0.

Let us remark that the notion of strong projectability of G, is defined by means
of properties of polars, and defining polars we used the operation |x| for xeG.
When proving the strong projectability of G, we could attempt to use the relation

(1) v(lx]) = W)

for elements x € G;. However, this method is impossible, since (1) fails to be valid
in general (cf. Ex. 6.2 below).
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Let G be a lattice ordered group. Consider the lattice ordered semigroup (G*:
+, £). Let P, Q be subsets of G* with the following properties:

(i) P and Q are subsemigroups and sublattices in G*;

(ii) for each g € G* there are uniquely determined elements g, € P and g, € Q
with g =g, + g, = g, + gy;

(i) if x, yeG™, x(, ¥, €P, X3, y, €0, X = X, + X5, = y; + yy, then x 0y =
= (X1 0%;) + (y1 0 yy) for each o€ {+, A, V}.

Under these assumptions the lattice ordered semigroup G* will be said to be
a direct sum of P and Q; we write GT™ = P @ Q.

The following result is well-known (cf. SiMBIREVA [14]).

2.1. Theorem. Let P, Q = G* with G* = P @ Q. Then there are l-subgroups P’
and Q' in G such that P = (P')*, Q = (Q)* and G =P' @ Q.

2.2. Lemma. Let P, Q be convex sublattices of the lattice (G*; <) with P 0 Q =
= {0}. Assume that for each g€ G there exist pe P and qe Q such that g =
=pvVvq ThenG" =P ® Q.

Proof. From Pn Q = {0} and from the convexity of the sublattices P, Q we
infer that p A g = O for each p e P and each g € Q. Let py, p, € P. Then p; + p, e
€ G*, hence there are elements pe P and ge Q with p; + p, = p v q. Since
piAq=0(i=1,2), we have g = g A (p; + p,) = 0 and therefore p, + p, =
= p e P. Thus P is a subsemigroup of G*. Analogously, Q is a subsemigroup of G*.

LetgeG,p,p1eP,q,9,€Q,9g=pV q=p, Vv q, Then
p=pAg=pA(pVa)=pArp,

and similarly we obtain p; = p A p,. Hence p = p, and analogously g = q,.
Therefore in the expression g = p v q (p€ P, g€ Q) the elements p and ¢ are
uniquely determined by g. Moreover, from p A g = 0 it follows that

) g=pvg=p+q=q+p.

Hence the conditions (i) and (ii) are valid. The condition (iii) is an easy consequence
of (2).

2.3. Theorem. Let G, and G, be lattice ordered groups such that the lattices
I(G,) and I(G,) are isomorphic. Suppose that G, is strongly projectable. Then G,
is strongly projectable.

Proof. As we have already remarked above, there exists an isomorphism ¥
of I(G,) onto }(G,) such that (0) = 0. Let Ybe a polarin G,, Z = Y°. Put P = Y*,
Q=2* P =y Y(P), Q; = ¢y~YQ). From the definition of P and Q and from
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the isomorphism ¥ ~! we obtain that

P, ={QEG1+:gAq1 = 0 for each qlte},
0, =1{9€G{ :9g A p, =0 foreach p, e P,} .

Hence there are polars Y, and Z, in G, such that Z, = Y, P, = Y{ and Q; = Z{.

Since G, is strongly projectable, we have G, = Y; @ Z,. From this we obtain
immediately that G = P, @ Q,. Thus if g, € G;, then there are elements p, € P,
and ¢, € Q; withg, = p, + ¢q,. Moreover, P, n Q, = {0} and henceg, = p; Vv ¢;.
Clearly P n Q = {0} and from the isomorphism y it follows that for each g € G5
there are pe P and g € Q with g = p v q. The sets P and Q are convex sublattices
of the lattice (G; ; <). Thus according to 2.2, Gy = P @ Q.

Now according to 2.1 there are I-subgroups P’ and Q' of G, such that P = (P')*,
Q =(Q)" and G, = P’ ® Q'. Since each I-subgroup of G, is uniquely determined
by its positive cone, we obtain P’ = Y, Q' = Z. Therefore G, = Y@® Z. Thus G,
is strongly projectable.

Letx.yeG x =20 y < 0. We put x J y if there exists z € G such that z A 0 = y,
zv0=x

2.4. Lemma. Let a, b € G. The following conditions are equivalent:

(i) la| A |p| =0.

(ii)(@avO)a(bv0)y=0,(an0)v(ba0)=0,(av0)sAa0),(bvo0)s
d(a A 0).

Proof. Let (i) be valid. We have a € [a], b € [a]’. Hence a A 0, a v 0 e [a] and
b A0, bvOe[al’. Thus (a vO) A(bvO0)=0and (a An0)v (baoO)=0. Put
z=(avO0)+(bao0)lItis a routine to verify that zA0=b A0, zv 0=
= a v 0. Therefore (a v 0) 3 (b A 0). Analogously, (b v 0) 5 (a A 0).

Conversely, assume that (ii) holds. Hence there are elements z, z, in G such that z,
is the relative complement of 0 in the interval [b A 0, a v 0] and z, is the relative
complement of 0 in the interval [a A 0, b v 0]. Thus z{ =a v 0, —zf = b A 0,
23 =bv0, —z; =aA0 Beause z Azf =0=1z] Az; and |a| =
=(a A0)v (—(a A0), ]b] =(b A0)v (—(bAO0)), we easily obtain that
la| A |b] =o0.

2.5. Lemma. Let G, and G, be lattice ordered groups and let y be an isomorphism
of I(G,) onto I(G,) such that y(0) = 0. Let A be a polar in G,. Then y(A) is a polar
in G, and Y(A°) = (Y(A4))’.

Proof. From 2.4 it follows that for each set § &= M < G, the polar M’ can be
constructed by using merely the set M, the element 0 and the lattice operations in

I(G,). Hence y(M?) = (y(M))® holds. This implies (y(A))” = Wy(A%) = Y(A), thus
Y(A) is a polar in G,.
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Let A, B be lattices. Their direct product will be denoted by A x B (cf. [3]). Let L
be a lattice and let @ be an isomorphism of Lonto 4 x B. Let xo € L, ¢(x,) =
= (ao, bo). Put

A° = ¢ Y ({(a, by) :a€ A}), B° = ¢ '({(ap. b): beB}).
Then we shall write L = A° ® B°. Clearly A° n B® = {x,}.

We need the following result:

2.6. Theorem. (Cf. [7], Thm. 3) Let G be a lattice ordered group, A° = G,
B® = G, A° n B® = {0}. Assume that (G) = A° x B°. Then A° and B° are I-sub-
groups of G and G = A° ® B°.

2.7. By using 2.6 we obtain an alternative proof of 2.3:

Let G, and G, be lattice ordered groups and suppose that I(G,) is isomorphic
with I(G,). Then there is an isomorphism ¥ of I(G,) onto I(G,) such that ¥(0) = 0.
Let P be a.polar in G,. Put Q = P°,

A=y YP), B=y Q).

According to 2.5, A and B are polars in G; and B = A°. Assume that G, is strongly
projectable. Hence G, = A @ B. This yields

(*) (G)=A®B.
The relation (*) and the isomorphism  implies that
(G)=P®Q
is valid. Since P n Q = {0}, from 2.6 we infer that G, = P & Q holds. Therefore G,

is strongly projectable.

3. THE LATTICE H

In this section we assume that G is a strongly projectable lattice ordered group.
The general idea of the method to be used for constructing the orthogonal hull of G
is analogous to that used in [8] for complete lattice ordered groups.

We denote by H, the system of all disjoint subsets of G. For hy = {x;},.; € H,
and h, = {y;};c; € H; we put h; < h, if for each i €I the relation

(3)‘ X; = Vjel(xi A }"j)
is valid. Obviously h; < h, for each h; e H,.

3.1. Lemma. (H,, £) is a quasiordered set.
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Proof. We have to verify that the relation < on H, is transitive. Let h, h, be as
above and let hi; = {z,},cx € H,. Suppose that hi; < h, and h, < hy is valid. Hence
for each i € I we have

Xi = VjelXi A y;) = Vies(xi A Viex(yj A 7)) =
= Vje.leeK(xi A Yi N Zk)-
From this and from the obvious inequality
Xi ANYiANZp S X A X

we infer that
X; = VkeK(xi A zi)

holds for each i € I. Thus h; < hj.

For hy, h,e H we put hy = h, if hy £ h, and h, < h,. Let H be the cor-
responding set of equivalence classes in H; then (H; <) is a partially ordered set.
The equivalence class containing {x;},; € H, will be denoted by S,.,{x,}. Letx, y € H,

X = Siel{xi} > ¥y = jeJ{yj} .
3.2. Lemma. Suppose that for each iel there exists j(i)e J with x; < Viciy-
Then x < y.

Proof. Let i el. Since x; = x; A ¥, the relation (3) obviously holds.

Now let us denote

X ={x;:iel}’, Y ={y;:jeJ},

X =(X). Y = (Y,
Xij = xi[yj] s Yii = yj[xi] >
x; = x(Y'), vi = y{X),
x; = x{Y), vi = yi(X)

for each i eI and each j € J.

An element 0 < e of a lattice ordered group G is said to be a weak unit in G if
0 <en gforeach0 < geG. Foreach 0 < e€G, e is a weak unit in [e]. If e is
a weak unit in G, then [e] = G. If e is a weak unit in G and A is a direct factor in G,
then e(A) is a weak unit in A.

3.3. Lemma. [x;;] = [y;;] for each iel and each je J.

Proof. If x;; = 0, then x; A y; = 0, hence y;; = 0, and conversely. Let x;; > 0.
Then x; > 0 and x; is a weak unit in [x;]. We have x;; € [x;] n [y;] and

Xij = xi[yj] = (Xi[xi]) [}’j] = xi([xi] o[yl )’
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hence x;; is a weak unit in [x;] n [y;]. Thus [xi;] = [x:] n [y;]- Analogously we
obtain [y;;] = [x;] n [»;] and hence [x;;] = [y

3.4. Lemma. For each i €I we have
(4) x? = VjesXij -
Proof. Let i € I. For each j e I the relation [y;] € Yis valid and hence we obtain
xi; = x[y;] x{(Y) = X3 .

Let 1€ G such that + < x} and x;; <t for each jeJ. Put z = —1 + x{. Thus
z=20.
Suppose that z[y;] > 0 for some j € J. Hence

xiyil=xy<x;+zly]st+z= xX; £ x;

and x;; + z[y;]e[y;]. This is a contradiction. Thus z[y;] = 0 for each je J.
Therefore z € Y'. At the same time, from 0 < z < x{ € Y we get ze Y. Thus z =
and hence (4) is valid.

3.5. Corollary. For each i €I and each j e J we have
) X = (Vjerxiy) v Xis
(5’) y; = (VEelyji) v oy

It is easy to verify that the sets

{xij’ X;} iel jeJ » {yji’ )’}}iel.jej

belong to H,, hence xo = Sy jes{xi;, Xi} and yo = Sicy jes{y;s ¥j} belong to H.

3.6. Lemma. x = x4, and y = y,.

Proof. For each i eI and each j e J we have x;; £ x; and x; £ x;. Hence from
3.2 we obtain x, < x. From 3.5 and from the definition of the relation < in H
it follows immediately that x < x,. Hence x = x,. Analogously we can verify that

¥ =y, Is valid.

3.7. Lemma. x < y if and only if x; = 0 and x;; £ y;; for each i€l and each
jeld.

Proof. Letx < yandletiel, je J. From (3) we obtain x; € Y (since Yis a closed
I-subgroup of G) and thus x; = x(Y’) = 0. For each ke J, x;; A y, = 0. If ke J
and s e Isuch thats # iorj # k, then x;; A y,; = 0. Thus from 3.6 we get x;; < y;:.
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Conversely, assume that x; = 0 and x;; < y;; for each i €I and each j € J. Then
from 3.2 and 3.6 we infer that x < y.

The system {x;; A y;;}ier jes Obviously belongs to H,. Denote
z= Siel,js]{xij A y}'i} .
3.8. Lemma. x A y = z.

Proof. According to 3.2 and 3.6 we have z < xand z < y. Let ue H, u < x,

u <y, u= S{u). Let ke K. From the definition of the partial order < on H
we obtain

(6) U = Vl(uk A tx)
with 7, running over the set {x;}, X;} i1 jes> and
(7) e = Vol A )

with s,, running over the set {y;;, ¥} ier.jeu-

Since each t, belongs to X, (6) implies that u, € X and hence u, A y; = 0 for
each j e J. Analogously, from (7) it follows that u, A x; = 0 for each i €l. Thus
(6) and (7) can be reduced to

U, = Viet,jeJ(uk A xij) s

U = Viel,jsJ(uk A in) .
Hence

U = Uy A up = (Viel,jeJ(uk A xij)) A (Vilel,jEJ(uk A y.il,il)) =
= Viel,jel(uk A Xip A yji) .
Therefore u < zandsoz = x A y.

Let us consider the system {x;; v y;;, x}, y;}. This system is disjoint and thus

v = Siel,je]{xii vV Vi X J’;}
belongs to H.

3.9. Lemma. v = x v .

Proof. 3.2 and 3.6 imply x < vand y < v. Let u = Siex{ux} € H and assume that
x < u, ¥ £ u. Hence from 3.6 we obtain

(®) xij = Viex(Xi; A ) .
) Xi = Viex(¥i A ),
(10) Vii = Viex(ysi A ) 5
(11) Y = Viex(yj A ).
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The relations (8) and (10) imply
(12) Xij V Vi = Vier((Xi; v 51) A )

From (9), (11) and (12) we obtain v < u. Hence v = x v y.

We have verified that H is a lattice. If x = S;,{x;} € H and I = {i} is a one-
element set, then x can be identified with x; and hence we can consider G* as a subset
of H; then G* is obviously a sublattice of H and 0 is the least element of H.

4. THE SEMIGROUP OPERATION IN H

Let {x;};r and {y;};c; be elements of H,. If for each i el there is j(i) e J with
x; < yj then we shall write {x;};;r < {y;};s- Let x5, x}, y;; and y} be as in §3.
The set

(13) {xi; + Vio Xi Vi}ier,jes

is disjoint in G* and hence it belongs to H,. We define a binary operation + on H,
by putting
{x:}ier + {yj}jel = {xij + Vio Xb Vitiet,jes -

The element Sy jes{X;; + y;i» X, y;} Will be denoted also by S({x;}icr + {¥;}es)-

4.1. Lemma. Let {x;}ir, {X{}ierr {Vi}jes € Hy. Assume that {x{}iex < {xi}ia
and Si{x;} = Swx{xi}. Then

(14) S({xi}iel + {yj}je-’) = S({x:}keK + {.Vj}je.l) N
(14) {xk hex + (itier < {Xihier + {93} jes -

Proof. Without loss of generality we can assume that the sets I, J and K are
mutually disjoint. Let us consider the elements

x = Skex{xf} s v =Sy}
According to 3.6 we can write
X = Sker.jer{Xip X'} »
. y = SjerkexViw Vi} >

” : ’
where the symbols x,f,-, xt', Vix and Vi have analogous meanings as x;;, x;, y;i and
y; in 3.6. Hence

(15) {x:}kex + {yj}je.l = {xltl + Viks xlt” y.,]’ .

492



Now let us compare the elements of (13) and (15). Let j € J. k € K. There exists
i(k) el with x: é x,-(k). Hence

(16) x:j = x,f[yj] = xi(k)[yj] = Xik),j *
Moreover,
[x:] = [xiw] >
thus
(17) Yjk = J’j[x:] = .Vj[xi(k)] = Vit -

From (16) and (17) we obtain

(18) X + Vie = Xiw,s + Viico -

Let X’ and Y’ have the same meaning as in § 3. Then

(19) x:’ = x:(Y’) é x,'(k)(Y') = x;(k) .
From S, {x;} = Six{x}} we obtain X' = {x;}%; = {x}}i5. hence
(20) i =Y.

The relations (18), (19) and (20) imply that (14") is valid.
Now let i eI and j € J. Denote

K;={keK:ik)=1i}.

We have

(21) X = Vier(*: A X¢) -

If i + i(k), then x; A x; = 0. Thus it follows from (21) that K; % 0 and
(22) X; = Viek X -

Hence

(23) Xij = x[y j] = (VkeKix:) [.Vj] = VkeK.-(x: [Yj]) = VkeKix:j .

Next we shall verify that the relation

(24) Yii = VkeKiy Jjk
is valid. l

For each k € K; we have (cf. (17))
(25) Vik £ Yji -

Let teG, yy <t = yj; for each k€ K;. Denote —t + y;; = q. Then 0 £ g < y;;,
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hence g € [y;;] = [x;;] (cf. Lemma 3.3). Since [x;;] < [x,], we get g € [x;]. Assume
that g > 0. Then x; A g > O, thus (22) yields that x; A q = g, > 0forsome k e K;.
Therefore q, € [x¢] and y; + g, € [x¢]; since [x;] < [x,], we have

vie = yilxe1 = y[xd 0 [x]) = (v,[x:]) [x] =
=yulxel =t + @) [xi]1 2 (i + @) [%¢] = yje + 91> Vi
which is impossible. Thus (24) is valid.
From (23) and (24) we obtain
Xij + Vi = ViexXng) + Vier Vi) = Viekikrex (X5 + Vi) -
If k # k', then x;; A y;;- = 0 and hence

X F Vi = % ¥ ue S (5 + ) v (3 Vi) s
therefore

(26) Xij + Vi = VierdX; + i) -

Further, we have according to (22)

(27) x; = x(Y') = (ViexX?) () = Vier (55(Y)) = Viex e -
From (26), (27) and (20) it follows that

(28) SierjerlXij + Vio Xip Y1} Z Sk (X + yjo X Vi) -
By (14') and (28), the relation (14) is valid.

4.2. Lemma. Let {X;} icp, (X7 bmerts 17} jes € Hy. Assume that Siet{Xi} = Smen{Xn }-
Then

S({x}ier + {¥}ser) = S{xm merr + {¥s}se0) -

Proof. Without loss of generality we may assume that I n M = 0. Let us construct
elements x,, and x,,; analogously as we did for x;; and yj;; in §2. According to
Lemma 3.7 we have [x;,] = [x,;] for each i €I and each m € M; moreover, if we

pUt {xim}iel,msM = {x;f}kel(’ then
Siel{xi} = Sick{Xi} = Smem{xn} > {x:}keK < {xi}iel , {x;:} < {x;}meM .
Now the assertion of the lemma follows immediately from 4.1.

Analogously we obtain:

4.3. Lemma. Let {x;}icr, {V;}jer, (Vi Juex € H. Assume that Sjc{y;} = Skex{ye }-
Then

S({xi}ier + {y}ser) = S({xi}ier + {¥7}se) -
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Now we define a binary operation + on H as follows. Let x, y € H. There are
Xitien {(vi}jeH;, with x = S {x;}, vy = S;{y;}. Put x +y = S{x}ier +
+ {;}jes)- From 4.2 and 43 it follows that the operation + in H is correctly defined.

44. Lemma. Let x,y,z€ H, x < y. Then x + z <y +zand z + x £z + y.

Proof. Let z = Syk{z}. From 3.6 and 3.7 it follows that there are {x;}..
{y;}jere Hy with x = Sig{x;}, v = Sjc{y;}, {xi}ir < {9}, Hence we have

{xi}iel + {Zk}keK < {yj}jel + {zk}kek'
Therefore x + z < y + z. Analogously we can verify that z + x < z + y.

4.5. Remark. From the definition of the operation + in H it follows that

(i) if x, ye G*, then x + y in G coincides with x + y in H;
(i) if x, yeH, then x £ x + y and y < x + y;
(iii) if x, ye H and x + y = 0, then x = y = 0.

The assertions (ii) and (iii) are obvious. Let us verify that (i) is valid. Let x, y e G*.
Then by 3.6 we have

S{x} = s{x[y]. xD1’} . S{y} = S{y[x]. y[xT%}
From the definition of the operation + in H we obtain
(*) S{x} + S{y} = S{x[v] + y[x], xDyD° yIxT}
Since x[y], x[y]° £ x and y[x], y[x]° < y, we get
S{x} + S(} < S{x + v} .
Further we have
(x+»)([x1n D) = x([x1n YD) + W[x]n [V]) =
= (x[x]) [v] + (/[vD [x] = x[y] + y[x]
and by similar arguments,
(x+ ) ([0 ) =xDy1 . (x + ») ([xF 0 [v]) = y[xP.
(x+ ([Pl =0.
From G = [x] ® [x]° = [y] @ [»]’ it follows that
G=(xInD) e (x1nDP) e (=’ D) & ([x) n [y])).
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Thus
x+y=(x+)[xnb])vE+y)Inbl) v

Vvix+ ) ([P oD v+ )P DDP) =
= (x[y] + y[x]) v <DT) v ([xD).

Hence according to (+) we have S{x + y} < S{x} + S{y} and therefore S{x + y} =
= S{x} + S{y}.

4.6. Lemma. Let x, ye H, x = Sig{x.}, y = S;es{y;}. Suppose that I =1, U I,,
J=J,uJ,withl, nI, =0 = J, 0 J, and that there is a one-to-one mapping ¢
of I, onto J, such that the following conditions are fulfilled:

(i) if iely, jed, j+ (i), then x; A y; = 0;
(il) if iel,, jeJ, then x; A y; = 0.

Then x + y = Si,en,izszz.jzelz{xi, + Vo) Xiy .ij}-

Proof. From (i) and (ii) it follows that the system {x; + Yo,y X, ¥j,} (i1 €145
i, €l,. j, € J,) is disjoint, hence there is u € H with

u= Sileh,i;elz,jzelz{xil + Yotin» Xip y,iz}'

Leti,el,. Ifje J,j + ¢(i,), then x;; = 0 and y;;, = 0. Suppose that j = ¢(i,).
Then x;,; + y;;, = Xi, + Vo)
Let i, €I,. Then x;,; = 0 and y;;, = 0 for each j € J. Moreover, if Yand Y’ are
as in § 3, then x,(Y) = 0, hence
xliz = xiz(Y,) = Xip

and analogously y;, = y;,. Hence according to 3.7 we have x + y < u.

Letiel,, j = ¢(i). From y; e Y it follows that [y,]° 2 Y’, hence x; = x(Y’') <
< x[y;]° £ x;. Because x; A y;, = 0 for each j, e J with j; # j, we infer that
x:[¥;]® A ym = 0 for each m e J, thus x,[y;]° € Y’ and so

Cx{(Y) = x[y; ).
Hence

xi = x [yl + xly, P = x; + x;
and analogously

y;=VYity.
Therefore

Xp 4y =X+ X4yt yp=(xg 4 )+ xi+ oy =
= (xij + J’ji) VoXp vy
Thus u < x + y and by combining both inequalities, u = x + y.
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4.7. Lemma. Let x,y,z€e H, x + y = x + z. Then y = z.
Proof. As above, we can write
X = SieI,jsJ{xij’ x:} » ¥y = Siel,je]{yjh }’}} s
(29) X+y= Siel,jeJ{xij + Y X5 Vi)

Let z = S;.x{z}. According to 4.5 (ii) we have z < x 4+ y. From 3.3 we obtain
[x:;; + y;i] = [xi;] = [y;:]- Hence from 3.6 we infer

z = Siel,jeJ,keK{zk[xij]a zi[xi] Zk[)’ﬂ} .
Denote x;[z[x;;]] = Xijw xi[z[x;]] = x}. Since
xij[zk[x'i]] =0= xij[zk[Y_li]] s
xli[zk[xij]] =0= x:'[zk[)’ﬂ] >
we have according to 3.6
X = SieI,jsJ.keK{xijk’ x;k} .
Under the analogous notation, the relation
y = SieI,jsJ,keK{yjiks J’,"k}
is valid. Thus according to Lemma 4.6,
(29') x+y= Siel,je],keK{xijk + Vi X y}k} >
(30) x+z= SieI,jeJ,kEK{xijk + Zk[xij]’ xi + z[xi], Zk[y,li]} .

Let iel, jeJ, keK. Put x5 + z[x;] =1t X5 + yju=1. Since x + y =
=x 4+ z and

tAXE=tAYE=0, ' A+ zlx]) =1 A =0,
we infer from (29') and (30) that
Xijg + Vi = Xipe + z[xi;1,

thus yju = z[x;;]. Similarly we get

Il

X = xp + zlxi], vie=zlyil.
Hence y =

n

4.7. Lemma. Let X, y,ze H, x + y =z + y. Then x = z.

The proof is analogous to that of 4.7.
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4.8. Lemma. The operation + on H is associative.
Proof. Let x, y, z € H. Under the same notation as above we can write
X = SierjerlXipy Xi} sV = Sier,jerlVin Vi) 5
z = Siex{zi} -
We can assume that the sets I, J and K are mutually disjoint. Denote
M = {xij’ x;’ Yib y}}‘l?el,je.l > M = (M')‘5 >
7 ={z)ex, Z=(2).
Further we put
Xijk = xij[zk] s Xie = xi[ze] Yjie = in[zk] s Vi = Y}[ZA] >
xy=xy2), xj=x(Z), vu= yi(Z), yi= vAZ').
Zyij = Zk[xij] = Zk[)’jﬂ >z =zl xi], iy = Zk[-"}] >
z(M').

Then we have (cf. 3.6)

Il

’
CZk

r’ r "

X = Siel,je.l,kel({xijks Xij> Xiks xi} >
! " "

y = Sisl,je.l,ksK{yjik, Yjis Viks yj} s
!

z = Siel.jel,kex{zkij» Ziis Zkjs Zk} .

From this and from Lemma 4.6 it follows that

(x + Y) +z= SieI,jsJ,keK{xijk + Viki + Ziij
Xi; 4 Vie Xu + Zko Vik + Zep X5 Vs Zi)
and the same results is obtained for x + (y 4+ 2). Hence (x + y) +z=x +
+ (v + 2).
4.9. Lemma. Let x = S;{x;} € H. Then x = V jr; holds in H.

Proof. From 3.2 it follows that x; < x for each iel. Let y = S,;,{y;} € H,
x; < y for each i eI. Hence x; = Ves(X; A y;) is valid for each i €1, thus x £ y.
Therefore, x = V ;o1x;.
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5. THE LATTICE ORDERED GROUP G’

Let G and H be as above.
From 4.4, 4.5 (iii), 4.7, 4.7, 4.8 and Thm. 3, Chap. XIV, [3] we obtain:

5.1. Lemma. There exists a lattice ordered group G’ such that (G')*; +, <) =
= (H; +, =).

5.2. Remark. Since G* is a subsemigroup and a sublattice of H, G is an l-sub-
group of G'.

5.3. Lemma. G’ is orthogonally complete.

Proof. Let {x*};x be a disjoint subset of G’. Each x* belongs to H, hence it can
be expressed as
Xt = Sielk{xki}

and without loss of generality we can assume that the sets I, (k € K) are mutually
disjoint. Then {x,;} (k€ K, i €I,) is a disjoint subset of G and hence there exists

y = SksK,ieIk{xki}

in H. According to 3.2, x* < y for each k € K and by the definition of the relation <
in H we have obviously y < z whenever z is an elemnent of H such that xk <Lz
for each k € K. Hence y = V,xx* holds in G .

5.4. Lemma. G’ is an orthogonal hull of G.

Proof. From 4.9, 5.1 and 5.2 it follows that G is a dense l-subgroup of G’. Since G’
is orthogonally complete, it suffices to verify that G’ = A whenever A is an ortho-
gonally complete I-subgroup of G’ such that G = A.

Let A be an I-subgroup of G'. Suppose that A4 is orthogonally complete and G & A.
Then A is a dense I-subgroup of G'. Let 0 < x € G'. By 5.1 we have x € H and thus
according to 4.9 there exists a disjoint subset {x;};; of G such that x = VrX;
holds in G’. Since A is orthogonally complete, there is y € 4 such that y = VX;
is valid in A. From this and from Lemma 2.3 in [5] it follows that y = VrX; is
valid in G’ as well. Thus x = y and therefore (G')* = H < A. Hence A = G'. This
completes the proof.

5.5. Lemma. G’ is strongly projectable.

Proof. Since G’ is orthogonally complete, each polar of G’ is principal. Let [x]
be a principal polar of G’. Without loss of generality we can suppose that x = 0.
Let 0 < yeG'. There are {xX;}ir (V;}jes € Hy with x = Sig{x;}, y = S;us{y;}-
Under the above notation x = Sicrjes{Xij, Xi}, ¥ = Sicrjes{yjs» i} There is t€ G’
with t = S;; ;e {y;i}. Clearly te[x] and t < y. Let ze[x], 0 < z < y. We can
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use the same notation for x, y, z as in the proof of Lemma 4.8. From z € [x] we
obtain

’
z,,j=zk=0.

Next from z < y we infer that z,; = 0. Thus

z= Siel.js],kel({zkii} .
Because z < y, we get

zij < vju foreach iel, jeJ, kekK.

From 3.6 it follows that
t= Sisl,js],keK{yjiks J’;’i} .
Then by 3.2 we have

z t

IIA
IIA

y.
Hence
=max{ue[x]:0=Zu =<y}

Therefore G is strongly projectable.

5.6. Lemma. Let G, and G, be lattice ordered groups such that the lattice.
(GY; ) is isomorphic with the lattice (G3; <). Then the lattices I(G,) and 1(G,)
are isomorphic.

Proof. Let ¢ be an isomorphism of the lattice (GJ; <) onto the lattice (G5 ; <).
Then clearly ¢(0) = 0. For each g € G, we put

W(g) = o(g%) — ol97)-
If g € Gy, then ¥(g) = ¢(g). Since g* A g~ = 0, we have

?(gT) A plgT)=0
and hence we obtain

W(9)" =o(g®), (H9)” = —olg7)-

Now it is not difficult to verify that y is onto and isotone. Hence  is an isomorphism
of I(G,) onto I(G,).

5.7. Theorem. Let G, and G, be lattice ordered groups such that the lattices
I(G,) and I(G,) are isomorphic. Assume that G is strongly projectable. Then

(i) each element of o(G;) is a join of a disjoint subset of G; (i = 1, 2);

(i) the lattices I(o(G,)) and I(0(G,)) are isomorphic.

Proof. According to Thm. 2.3, G, is strongly projectable. Thus we can construct
lattices H(G;) for G; (i = 1, 2) analogously as we constructed the lattice H for the
lattice ordered group G in §3. According to the assumption there exists an iso-
morphism of I(G,) onto I(G,) and hence there exists an isomorphism ¢ of the lattice
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(G{; £) onto the lattice (G5 ; ). Since in the construction of H(G;) merely the lattice
properties of (G,+ ; <) are used, we infer that the isomorphism ¢, can be extended
to an isomorphism ¢ of the lattice H(G,) onto the lattice H(G,). Let G; be the
orthogonal hull of G; (i = 1, 2); according to 5.1 and 5.4 we can assume that (G})* =
= H(G;). From this and from 5.6 it follows that there exists an isomorphism of (G)
onto I(G%). Thus (ii) is valid. The assertion (i) is a consequence of 5.1 and 4.9.

5.8. Remarks. (a) The assertion (i) need not hold if G; fails to be strongly projec-
table (cf. Example 6.3 below). (b) If G,, G, are lattice ordered groups such that G,
is strongly projectable and the lattice I(G,) is isomorphic with I(G,), then G, need
not be isomorphic with G, (Cf. Example 6.4 below.)

A lattice ordered group G is said to be representable if there exists a system {4}
of linearly ordered groups A; and an isomorphism ¢ of G into the direct product
[ Lict4; such that for each i e I and each a' € 4; there exists g € G with (¢(g) (i) = a'.
It is well-known (cf. Six [13]) that a lattice ordered group is representable if and
only if each of its polars is a normal subgroup. From this it follows that each strongly
projectable lattice ordered group is representable. Under the above notation, the
isomorphism

¢:G— I—[ieIAi

is called a representation of G.

5.9. Proposition. Let G; and G, be lattice ordered groups such that the lattices
I(G,) and I(G,) are isomorphic. Assume that G, is strongly projectable. Then (a) the
lattice ordered group G, is representable, and (b) there exist representations ¢y : Gy —
— [lict4; and @, : G, > [[isB; such that, for each i €1, the lattices I(4;) and I(B;)
are isomorphic.

We need some auxiliary notation and results.

Let G + {0} be a strongly projectable lattice ordered group and let 2(G) be the
set of all polars of G. The set 2(G) is partially ordered by inclusion. Then 2(G) is
a Boolean algebra and for each 4 € 2, A% is the complement of A in #(G) (cf.
Sik [12]).

Let Ae?(G). We have G = A ® A4°. For gy, g,€ G we put g, = g,(R(4)) if
g1(A%) = g,(A%). Then R(A) is a congruence relation on the lattice ordered group G.
Clearly g, = g,(R(A)) if and only if g, A g, = g; Vv g2(R(4)).

For the notion of projectivity of intervals in a lattice cf. [3].

Under the above notation we have:

5.10. Lemma. Let g,,9,€ G, g, < g,. Then the following conditions are equi-
valent:

(a) 91 = g2(R(4))-
(b) There are elements t€G, X\, x,,y,,y,€A4 with 91 S1S gy X, £ %y
Y1 =y, such that [g,, t] is projective to [x,, x,] and [t, g, is projective to [y, y,].
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Proof. If (b) is valid then the regularity of the relation R(A4) with respect to the
lattice operations v and A implies that (a) holds. Conversely, suppose that (a) is
valid. Put

t=(g9, vO0)Ag,,
xi=(9; A 0)(4), yi=(9:v0(4) (i=12).

Then [g;, t] is transposed to [g; A 0, g, A 0], and [g; A 0, g, A 0] is transposed
to [x,, x,]; hence [g,, t] is projective with [x,, x,]. Similarly, [1, g,] is projective
with [y, y,].

5.11. Lemma. Let G, and G, be lattice ordered groups and suppose that G, is
strongly projectable. Let  be an isomorphism of 1(G,) onto I(G,) with y(0) = 0.
Let A€?(G,), g1,9,€G,. Then g, = g,(R(4)) if and only if Y(g:) = ¥(g,)
(R(Y(A)))-

This is an immediate consequence of 2.3 and 5.10 (recall that Y(A)e 2(G,)
by 2.5).

Let G, and G, be as in 5.11. Let {M,} (i € I) be the system of all maximal ideals of
the Boolean algebra #(G,). For M, = {A,} (ke K;) denote W(M;) = {{(A4)}
(k€ K;). Then it follows from Lemma 2.5 that {y(M,)} (i €I) is the system of all
maximal ideals of 2(G,).

Let i € I. We define a binary relation R} on G, by putting

R} = VR(4) (AeM)).
Analogously we put
R} = VR(Y(A4)) (AeM)).
R? and R} are congruence relations on G, or G,, respectively. From 5.11 it follows:
5.12. Lemma. Let g, g, €G,, iel. Then g, = g,(R}) if and only if Y(g,) =
= Y(g,) (R?). Hence the lattices I(G,|R}) and I(G,|R?) are isomorphic.

Consider the mappings

@ :G; — HieI(GI/Rl}) , @y :Gy > HieI(GZ/R%)

(249)) (i) = 9(R})

foreach g € G, (j € {1, 2}) and each i € I, where g(R/) s the class of the congruence R}
on G’ containing the element g.
The following result is a consequence of Hilfssatz 1 and Satz 1 of [13].

defined by

5.13. Proposition. Each lattice ordered group G;[R} (je{1,2}, iel) is linearly
ordered. ¢, and @, is a representation of G, or G,, respectively.
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If we denote GI/R,! = A4, Gz/Ri2 = B,, then 5.9 follows from 5.12 and 5.13.

The following problem remains open: Does the assertion of 5.9 remain valid if
the assumption of strong projectability of G, is replaced by the weaker assumption
of representability of both G, and G,?

6. EXAMPLES

A non-archimedean orthogonally complete lattice ordered group need not be
projectable.

6.1. Example. Let 4 be the additive lattice ordered group of all integers with the
natural linear order and let B # {0} be an orthogonally complete lattice ordered
group. Put G = 4A- B (the symbol o denotes the operation of the lexicographic
product, cf. [6]). Then G is orthogonally complete, but it fails to be projectable.

Let G, and G, be lattice ordered groups and suppose that ¥ is an isomorphism
of I(G,) onto I(G,) such that y(0) = 0. Then for x € G, the relation ¥(|x|) = |¥(x)|
need not hold.

6.2. Example. Let R be the set of all reals with the usual linear order and consider
the cartesian product A = R x R with the partial order that is defined component-
wise. If the operation + on R has the usual meaning and if we define + on 4 com-
ponent-wise, then G, = (A, <, +) is a lattice ordered group.

For each te R we put ¢(f) = ¢ if t =2 0 and ¢(t) = 2t if t < 0. Now we define
a binary operation +, on R by putting

I+t = (P(tl) + ‘P(tz)

for each ¢, t, € R. Further, let +, on A be defined component-wise. Then G, =
= (4; £, +,) is a lattice ordered group and the identical mapping ¥ is an iso-
morphism of I(G,) onto /(G,), ¥(0) = 0. For x € A we denote by |x|, and |x|, the
corresponding absolute value in G, or in G,, respectively. If x = (1, —1), then
W<l = i = (1) # (1,2) = [<) = W)

Let G be a lattice ordered group, 0 < x € o(G). The element x need not be
a join of a disjoint subset of G.

6.3. Example. Let G, be the set of all real functions defined on R where R is as
in 6.2. The operation + on G, has the usual meaning and for f,, f, € G, we put
f1 £ f, if £,(¢) < fo(t) for each te R. Then G, is a lattice ordered group. Let G,
be the set of all f € G, with finite support; G, is an I-subgroup of G,. Let 4 be as in
6.1; put

Go=4.G;, G=A4.G,.
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The lattice ordered group G is a dense I-subgroup of G, and G, is orthogonally
complete.

The elements of G, can be written as pairs (a, g) with ae A and g € G,. Let B
be an I-subgroup of G; with G S B such that B is orthogonally complete. Then B
is a dense l-subgroup of G,. By a method analogous to that used in the proof of 5.5
we can verify that each element (0, g) with 0 < g € G, belongs to B. Hence B = G,
and this shows that G, is the orthogonal hull of G. There exists g € G; such that
gy > 0, g4 ¢ G,. Then the element (1, g) belongs to G, and it cannot be expressed
as a join of a disjoint system of elements of G.

If G, and G, are strongly projectable lattice ordered groups such that I(G,) is
isomorphic with /(G,), then G, need not be isomorphic with G,.

6.4. Example. Let 4 be as in 6.1 and let R, be the set of all rationals with the
natural linear order and the usual operation +. Let I be a nonempty set. Put

G, = HieIAi , Gy = HieIBi s

where A; = R, and B; = A o R, for each i el. The lattice I(4;) is isomorphic with
I(B;), hence I(G,) is isomorphic with I(G,). Both G, and G, are orthogonally complete
and G, fails to be isomorphic with G,.
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