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HOMOMORPHISMS OF DIRECT PRODUCTS OF ALGEBRAS

IvAN CHAJDA, Pferov

(Received March 24, 1976)

The aim of this paper is an investigation of homomorphisms of algebras, which
are direct products of the so-called algebras without zero-divisors.

Let A be a non-void set and F a set of operations on A. Then (A, F) denotes the
algebra with the support A and the set of fundamental operations F. Two algebras
(A, F), (B, G) are said to be of the same type if there exists a bijection & of F onto G
such that ar §(w) = ar o for each w € F, where ar  denotes the arity of . For the
sake of brevity, by an operation of the algebra (4, F) we mean an algebraic operation
on (A, F). If there is no danger of misunderstanding, an algebra and its support will
be denoted by the same symbol. If the algebras (4, F), (B, G) are of the same type,
the corresponding operations from 4 and B will be denoted by the same symbols.
Hence, for (4, F), (B, G) we put F = G if and only if (4, F), (B, G) are of the same
type. If h is a maping of a set 4 into B and k is a mapping of the set B into C, the
superposition of h, k is denoted by h.k, i.e. h.k(a) = k(h(a)) for each ae A.
Let A; be algebras of the same type for ie T = {1, ..., n}. The direct product of
algebras A; (i€ T) is the algebra A of the same type as 4;, whose support is the
Cartesian product of supports of 4; (for i € T) and the operations on A are performed
componentwise. The algebra A; is called the i-th factor or component of 4. By
pr; A the projection of A onto the i-th factor 4; is denoted. The direct product of
algebras A; will be denoted by [] 4;0r [] 4.

ieT i=1

Definition 1. Let (4, F) be an algebra and ./ the set of all algebraic operations
on (A, F). Let o = {@®} U Q, where @ is a binary operation on (A4, F). If there
exists 0 € 4 such that »

(i) a@®@0=0@®a=aforeachac 4,
the element O is called a zero of the algebra (A, F). An operation w € & is called
regular on (A, F), if arw = n = 2 and for each ay, ..., a, € A we have

(ii) ay, ..., a,0 = 0if and only if a; = 0 for at least one i € {1, ..., n}.
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Definition 2. Let (4, F) be an algebra with card 4 > 2 and let &/ be the set of all
algebraic operations on (4, F). The algebra (4, F) is said to be without zero-divisors,
if o ={®} v Qand

(a) there exists a zero of (4, F),
(b) at least one w € Q is regular on (4, F).

Remark 1. From (i) it follows that each (A, F) has at most one zero. Further,
if 0 is the zero of (4, F), ay, ...,a,e Aanda; = O0fori=1,..,k — 1,k +1,...,n,
then

(.(a,®a)®...)®a,=a,.

It can be easily proved that for these ay, ..., a, each “sum” (in the sense of @) of
them is equal to a,. Without any danger of misunderstanding, the zero of (A, F) will
be denoted by 0 for every algebra (4, F ) without zero-divisors.

Definition 3. Let T+ 0 and A, be algebras of the same type for 7 € T. The algebras
A, are called r-similar if they are without zero-divisors and have the same set of
regular operations.

k
Notation. Let 4, ..., A, be r-similar algebras and A = [] 4;. By 0, we denote
i=1

an element of A such that pr; 0, = 0 for each i = 1, ..., k. Let je{1,...,k} and
a;e A;. Denote by a; the element of A such that pr;a; = a;, pr;a; = 0 for i + j,
ie. a; = (0, 0,450, ..., 0). By ¢; denote the so called canonical insertion of A;
into A, i.e. ¢, (a;) = a; for each a;e A;. Further, denote A; = {p,(a;), a;€ 4;}.
Clearly, 4; is a subalgebra of A and ¢; is an isomorphism of A; onto A;. If @ & T' <
c T={1,..., k}, denote

[[4;={aeA, pria=0forieT— T}.
ieT’

Evidently, [] A4, is a subalgebra of 4 isomorphic to [] 4; and for T" = {i,} it is

ieT’ ieT’
equal to 4;. For T' = T we have || 4; =[] 4.
ieT ieT
k

Lemma 1. Let Ay, ..., A, be r-similar algebras and A = [] A;. Then

(a) 0, isa zero of A. =t

(b) If w is regular on A;, arw = n, by, ...,b,e€ A and for each ie{l, ..., k}
there exists j € {1, ...,n} such that pr;b; = 0, then by, ..., by» = 0.

(¢) If w is regular on A, arw =n, i,je{l,...k}, i +j and a;e A;, a;€ A;,
then a;, ..., a;w = 0,

(d) Let k = 2. Then A is not without zero-divisors.

(¢) Let ae A, prya = a;. Then a =a, @ ... ® G, and the expression on the
right hand side does not depend on any bracketing.
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(f) Let ae A, pr;a = a; and let h a homomorphism of A into B. Then h(a) =
= h(a,) @ ... ® h(a,) and this expression does not depend on any bracketing.

The proof is clear.

Definition 4. Let (4, F) be an algebra without zero-divisors and let o be a regular
operation on (A, F). A unary operation o of (A, F) is called corresponding with @
on (4, F), if

(iii) for each ay, ..., a,€ A (where n = ar w) there exists i € {1, ..., n} such that
dis ..., A0 = a;0.

Lemma 2. Let (A, F) be an algebra without zero-divisors and let « be a unary
operation corresponding with a regular operation w on (A, F). Then

ax =0 ifandonlyif a=0 foreach aecA.

Proof. If a € 4, then, by (iii), a ... aw = aa. For a = 0 it follows 0 = 0... 0w =
= Oo, for a &= 0 we have 0 * a ... aw = aa, because w is regular on (A, F)

Definition 5. An algebra (4, F) without zero-divisors is called a U-algebra, if
there exists a corresponding operation o for at least one w regular on (4, F). An
algebra (4, F) is called a strong U-algebra, if it is a U-algebra and « = id, for at
least one a corresponding to w regular on (A, F).

Definition 6. Let A, be U-algebras for v € T & 0. The algebras A, are called p-
similar, if A, are r-similar and, moreover, if 7', t* € T and « is corresponding with @
regular on A4,., then o is also corresponding with @ on A,..

Definition 7. Let A4;, B; be algebras of the same type for i = 1,...,k and 4 =
k k

=[] 4:, B =[] B:. Let h; be a mapping of A; into B;. The mapping h of A into B
i i=1

i=1

defined by
pr; (h(a)) = h{pr; a)

for each ae A and each i = 1, ..., k is called the direct product of mappings h;
k

and is denoted by h = [] h,.

i=1
This definition is taken from [1]. There it is also proved that the direct product
of homomorphisms of similar algebras is also a homomorphism of the algebra,
which is the direct product of original algebras. Some sufficient conditions for the
converse of this statement will be formulated in this paper.
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Theorem 1. Let A;, B; be r-similar algebras for i = 1,...,m, j=1,...,n and

m n
let h be a surjective homomorphism of A = [14; onto B = 11 B;. Then for each

=1 Jj=1
Jje{l,....n} there exists just one i€ {1, ..., m} such that B; = h(4,).
Proof. I. Existence. Denote T = {1, ..., m}.

1° Choose j € {1, ..., n} fixed. Let be B, b + 0. As h is surjective, there exists
a€A, a+ 0, with h(a) = b. Denote T, = {ie T, pr;a + 0}. As a + 0,, we have
T, + 0. Let T, = {iy, ..., ii}. If prya = a;, then by Lemma 1,a = a; @ ... ® a,.
Choose te{l,...,n} arbitrarily. Suppose the existence of i, i e T, i, * i
with pr, (h(a;)) # 0, pr, (h(@;)) + 0. If @ is regular on A,, then by Lemma 1 it is

05 = h(0,) = h(a,a; ... a,0) = h(a,) h(@,) ... h(a,) o,
he 0 = pr, 05 = pr, (W(@,)) pr, (h(@,)) ... pr, (h(@;)) @ * 0,
a contradiction. Hence for each te{l,..., n} there exists at most one i€ T,, with
pr, (h(@;)) # 0. As h(a) = b # 0p, such i e T, exists for t = j.

2° If h(a,) ¢ B; for some i’ € T,, then prj- (h(@;)) + 0 for some j e {1,..., n},
j' = j. By 1°, pr;. (h(a;)) = O for each i€ T,, i + i, thus

0 = pr;. b = pr;. (h(a)) = pr;- (h(@;)) @ ... @ pr;. (h(@;)) = pr; (h(@;)) + 0,

a contradiction. Thus h(a;) € B; for each i e T,. By 1°, there exists just one i€ T,
with pr; (h(a;)) + 0, i.e. h(a;) # 0. Then

b=h(a)=ha,)®...® ha,) = ha,).
As b % 0g, also a; + 0,.

3° From 1° and 2° it follows that for each b € B;, b = 0p, there exists just one
ieTand a;e A4; with h(a;) = b. Prove that this index i is the same for all b € B,,
b % 05. Let by, b, eB;, b, + 0g & b,. Then there exist iy, i, e T and a; € 4;,,
a;, € A;, with h(a,) = by, h(a;) = b,. Clearly a;, =+ 0, # a,. Let » be regular
on A; and i, = i,, then Lemma 1 yields 05 = h(0,) = h(a,a,, ... a,0) = b;b, ...
... byw # Op, which is a contradiction. Thus i; = i,.

Hence the index i e T is the same for all be B;, b = 05. If b = Op, put a = 0,
Then h(0,) = 05 and 0, € A;. Thus h(4;) 2 B;. As j was chosen arbitrarily, this
remains true for each je {1, ..., n}.

II. Uniqueness. Suppose that B; = h(4;,), B; < h(A,,) for some je{l,...,n},
iy & i3, iy, 1, € T. Choose b; € B;, b; + 0 (card B; > 1 by Definition 2). Then there
exist a, € 4;, a,e A;, with h(a,) = b; = h(a,). Clearly a, + 0, # a,. If o is
regular on A;, then

0p = h(0,) = h(a,a, ... a,0) = h(a,) h(as) ... h(a,) o = bj...b;w + 0Op,

also a contradiction.
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Corollary. Let A;, B; be r-similar algebras for i =1,...,m, j=1,...,n and let

HA be isomorphic to HB Then m = n and there exists a permutation © of
Jj=1
{1 ., n} such that A; is isomorphic to By, for each i € {1, ..., n}.

Proof. Let h be an isomorphism of A = [] 4; onto B = [] B;. Then h™' is an
i=1 j=1
isomorphism of B onto 4 and, by Theorem 1, there exists just one A; for each B;
with h(A4;) 2 B; and just one B;. for each A; with h~*(B;)) 2 A;. Thus

B;, = h(h~*(B;)) 2 h(4;) = B;.

As B; 0 B; = {0g} for j' % j, we have j' = j and h(4;) = B;. Put =(i) = j for
h(A4;) = Bj, thus = is a bijection of {1, ..., m} onto {l, ..., n} and A; is isomorphic
to B;. From this we obtain the assertion.

Theorem 2. Let A;, B; be p-similar U- algebras fori=1,...,m, j=1,
and let h a surjective homomorphism of A = HA onto B = H B;. Then for each

je{l,...,n} =S there exists just one i;e{l,...,m} =T such that h(4;) =
and the mapping j — i; is an injection OfS into T

Proof. By Theorem 1, for each j € S there exists just one i; € T with B; < h(4;,).
Thus j — i; is a mapping of S into T.

I. First we prove the injectivity of the mapping j — i;. Let there exist j, j, €S,
ji * ja, i€ T with B;, < h(4,), B;, = h(4;). As each B; has at least two elements,
there exist b, € B}, b2 €B,,, b, # 0y + b,. Choose ay, a, € 4; with h(a,) = b,
h(az) = b,. Clearly a; #+ 0, =% a,. If w is regular on A4; and o is corresponding
with w, then by Lemma 2

Op = byb, ... byo = h(a,) h(ay) ... h(a,) w = h(aa, ... a,w) =
= h(ax) = b + 0, where se{l,2},

a contradiction. Hence, j — i; is an injection of S into T.

II. It remains to prove h(A;) = B;. Let B + h(A;;). By Theorem 1 we have
B; = h(4; ) thus there exists ceh(A,J) Bj, ¢ # 0g such that pry.c=c¢; ¥ 0
for some j' €S, j' + j. Denote by ¢, € B;, an element fulfilling pr;. ¢; = c;. As
ceh(A;,), there exists d € 4;, with h(d) = c. Further, ¢, € B, thus by Theorem 1
there exists d, € A;,, with h(d,) = ¢,. As j — i; is an injection, we have i; % i;.. Let
w be regular on 4;. By Lemma 1 we obtain dd; ... d;o = 0,. However,

pr; (h(dd, ... dyw)) = pr;. (c&y ... ¢;@) = ¢1¢; ... ;0 0
because ¢; + 0, a contradiction. Thus Ej = h(Z;j).

159



Corollary. Let A, B; be p-similar U-algebras for i=1,...,m, j=1,...,n.

m n
If h is a surjective homomorphism of ] A; onto H Bj, then m =z n.
i=1 i=1

Notation. Let 44, ..., A, be algebras of the same type and = a permutation of the
n n
index set {1,...,n}. Clearly []A4; is isomorphic to [] A, Denote by /, the
j=1 j=1

isomorphism of these algebras given by the rule
(@gs e @) = (Aa(rys -+ o Anmy) -

Definition 7. Let A4;, B; be algebras of the same type for j = 1,...,n and let h

be a homomorphism of A = [ 4;into B = [| B;. We call h directly decomposable,
j=1 i=1

if there exist a permutation 7 of the index set {1, ..., n} and a homomorphism h;

of A;into B, for each j = 1, ..., n such that h. ¢, = [] h;.
i=1

Theorem 3. Let A, B; be p-similar U-algebras for j = 1, ..., n and h a surjective

[1B;. Then h is directly decomposable.

homomorphism of A = || A; onto B =
j=1 i=1

Proof. By Theorem 2, there exists an injection 7 of {1, ceos n} into itself with
h(A,;) = B; for each je{l,...,n}. As {1,...,n} is finite, = is a permutation.
Then h.¢(A;) = By; for each je{l,...n}. Denote h;=¢;.h.i,.pr;
where ¢; is a canonical insertion. Then h; is a homomorphism of A; onto B; and

pr; (h. if(a)) = hj(pr; a) for each a€ A, thus h.:, = [[ h; which completes the
j=1
proof.
Lemma 3. Every at least two-element chain with the least or the greatest element
(considered asa Iattice) is a strong U-algebra.

Proof. Let A be an at least two-element chain with the least element 0. Put
a®b=avb=max(ab), o binary and abw = a A b = min(a, b). Then
clearly 0 is a zero of A, @ fulfils (i), w fulfils (ii), (iii) for « = id, thus (4, F)is a strong
U-algebra for F = {@®, w}. For a chain with the greatest element, the proof is dual.

Corollary. Let A;, B; be at least two element chains and for each j =1,...,n
at least one of the following conditions let be true:

(a) Each A, B; has the greatest element.
(b) Each A;, B; has the least element.

Then each surjective homomorphism of the lattice A = H A; onto B = H B; is
directly decomposable. j=1 j=1
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Lemma 4. Let G be a linearly ordered additive group with card G = 2. Denote
ax = sup (a, —a), abw = inf (ax, bx). Then o, w are operations on the support
of G and every Q-group G' with G as the additive group and {a, o} = Q is a U-
algebra. Moreover, the group zero is a zero of this U-algebra G', w is regular
on G’ and o is corresponding with .

The proof is clear.

Let G be an /-group. Denote by v, A the lattice operations on G. A homo-
morphism & of G is called an /-homomorphism, if

h(a v b) = h(a) v h(b), h(a A b) = h(a) A h(b)

for each a, b eG.

Lemma 5. Let A;, B; be linearly ordered groups for j=1,...,n, A= HA

ji=1
B = H B;. Let A; or B} be Q-groups with A; or B; as additive groups, respectwely,
=1

and Q = {a, w} for the operations «,  introduced in Lemma 4. Let A’ = HA
Jj=
B' = ]_[B' Then each /-homomorphism h of the {-group A into B is a homo—
Jj=
morphlsm of the Q-group A’ into B'.

Proof. Let a, be A, h(a) = c. Denote a = (ay, ..., a,), ¢ = (cy, ..., ¢,), where
prja = a; prjc = c;. Then

h(ax) = h((ayc, ..., a,a)) = h((max (a,, —ay), ..., max (a,,—a,))) =
=h(av —a)=h(a) v —h(a) = (cy, ..., c,) v (—¢q, ..., —¢,) =
= (max (¢;, —¢,), ..., max (c,, —¢,)) = ca = h(a) .
From this we obtain
h(abw) = h(ax A ba) = h(a) o A h(b) « = h(a) h(b)
thus each /-homomorphism of 4 into B is a homomorphism of A’ into B'.
Corollary. Let A;, B; be at least two-element linearly ordered groups for j =
=1,..,nand let A = f[ A;, B= ]1[ B; be £-groups with the induced orderings.
Then each surjective /—hJo:n;omorphisj;zlofA onto B is directly decomposable.

The proof follows directly from Theorem 3, Lemmas 4 and 5.

Theorem 4. Let A;, B be r-similar algebras for j € {1 m} =Tke {1 n} =
= S and let h be a surjective homomorphism of A = HA onto B = H B,. Then
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there exist a partition {Sa, o 61} of S and an injection o. — j, of I into T such that:

(1) If T* = {j,, a €I}, A* = || A}, then h(A) = h(A*).
jeT*

(2) There exist a permutation © of S and a surjective homomorphism f, of A;,
onto [] By for each a €l such that h|A*. ;, = []f,.

keSx ael
Proof. By Theorem 1, for each k € S there exists just one j; € T with h(4;,) 2 B,.
Denote by T* the set of all these j, (without repetitions) and choose a new indexing

T* = {j, a€l} such that I is linearly ordered and j,. < j, for « < «”. Thus the
map a — j, is an injection of I into T.

1° First we prove the following implication:

if I'={ky,....k,} =S and h(4,)= B, foreach serl,

then h([[4,)=T]B:-

sel’ sel

If be[]B,, then b =b, ®...® b,,. Suppose h(A,) = B,, then there exists
sel’

a, e A, with h(a,) = b, for each b,e B, Puta = a,,, @ ... @ a,,,, then ae [] 4,,

sel’
and, by Lemma 1(f), we have h(a) = h(a,,) ® ... ® h(a,, ) = b, ® ... ® b, = b.
The implication is proved.

2° By 1° for I' = S we obtain:

w(4*) = W(TT4) = W(TT4,) = T[B. = 18, = 5.

JjeT* keS keS keS

However, A* < A implies h(A*) < h(A) = B, thus the first assertion of the theorem
is proved.

3° For ael fixed, denote S, = {keS, B, < h(4;)}. By Theorem 1, S,’s are
mutually disjoint and S = U S,, thus {S,, eI} forms a partition of S. By 1° we
obtain ael

[IB. < h(A4;) foreach xel.

keSy

Let ael and [] B, # h(A;). Then there exists ceh(A4;) — [[ B, ¢ # Op, i.e.

keS« keSa

pri- ¢ = ¢; + 0for some k'€ S — S,. Denote by ¢, an element of B,. with pr,. ¢, =
= ¢;. As ce h(4},), there exists d € A;, with h(d) = cand o’ €I, &’ + a with k'€ S,..

As o - j, is a bijection, it is j, * j,. However, h(A4;_) 2 || B, thus there exists
keSeqr
dy€ 4, , with h(d,) = ¢,. If w is regular on 4;, then

dd,...djw=0,.
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However,
pri (h(dd, ... d,w)) = pr,. (c¢y ... ¢0) = cj¢y ... c;0 0,

a contradiction with h(0,) = Op.

Accordingly, we have || B, = h(A4;,) for each a e I.

keSy

4° Tt is evident that we must only find a suitable permutation guaranteeing the
direct decomposability of h‘A* Let us introduce the following mapping @ of S
into itself. Denote S, = {k,,, ..., ky,} for each ael and put n(k,) < n(k,,) for
a<o ora=a,s <t As S,’s are mutually disjoint, this can be satisfied and =
is a permutation of S. Denote

fa=(pj¢'hiA*‘pa7

where p, is a projection of“r[?k onto [] By. Then f, is a homomorphism of 4;,
keSe keS«

onto [] B, and clearly hlA* i =1/e

keSq ael

Corollary 1. Let A;, B; be r-similar algebras forj=1,...,n and let h be a sur-

n

jective homomorphism of H A; onto H B; such that h(A ) is without zero-divisors
j_

for each je{l, ..., n}. Then h is directly decomposable
Proof. In the notation of Theorem 4, put S = T = {1, ..., n}. As h(4;) = || B,
keSS,

is without zero-divisors, then, by Lemma 1, card S, = 1 foreacha €. Thuscard I =
=card S = n and « — j, is a bijection. Then A* = A Put S, = {s,}, then f, is
a homomorphism of 4; onto B, . By Theorem 4, h. wa i.e. h is directly
decomposable. el -

Corollary 2. Let A;, B; be non-zero rings without zero-divisors for j =1,...,n
n n
and let h be a surjective homomorphism of the ring [] A; onto || B; such that
=1 i=1
(Aj nker h) is a prime ideal of A; for each j =1,...,n. Then h is directly. de-
composable.

Proof. Let @ be a congruence relation on A4 induced by h. Denote 0;=0 | A;.
As (A; n ker h) is a prime ideal of A, 4;/O; is a factor-ring without zero-divisors
isomorphic to h(A4;). By Corollary 1 we obtain the assertion.

Corollary 3. Let A;, B; be simple nngs Jor j=1,...,n. Then each surjective
homomorphism of the ring H Aj onto H B; is directly decomposable.
ji=1 Jj=1

This follows directly from Corollary 2, because a simple ring has imgroper ideals
only and these are prime.
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Definition 8. Let A;, B; be algebras without zero-divisors for i = 1,...,m, j =
=1 ...,nand h a homomorphism of A = [ 4;into B = [[ B;. We say that 4, B, h
i=1 ji=1
satisfy (P), if at least one of the two following conditions is valid:

(1) h(0,) = 0.
(2) 4, B; are p-similar strong U-algebras.

Theorem 5. Let A;, B; be r-similar algebras for i =1,...,m,j=1,...,n, let h

m n

be a homomorphism of A =[] A; into B = || B; and let A, B, h satisfy (P). Let
} 11

i=1 Jj=
je{l,..,on}. If
pr; (h(4)) # pr; (h(0,)) ,
then there exists just one i € {1, ..., m} such that
pr; (h(4)) = pr; (h(4)) .
Proof. I. Existence. Put T = {1, ..., m}. Let je {l,...,n} and
pr; (h(4)) * pr; (h(04)) -
1° First we prove that for each b e h(A) there exist ie T and a; € A; with
pr; (h(a,)) = pr; b. Let b e h(A). If pr; b = pr; (h(0,)), put @, = 0, because 0, € 4;

for each ieT. Suppose pr;b = b; + pr; (h(0,)). Then there exists ae A with
h(a) = b and a + 0,. Put a; = pr; a.

(a) Letpr; (h(a;)) = pr; (h(0,))for each ie T. As h(0,)is a zero of h(A), by Lemma 1
we obtain a contradiction:
pr; (h(a)) = pr; (h(@, @ ... @ a,)) = pr; (h(a,) ® ... @ pr; (h(a,)) =
= pr; (1(0,)) ® ... @ pr; (h(0,)) = pr; (h(0,)) -
(b) Let iy, i, € T, iy + i, and pr; (h(a;,)) + pr; (h(0,)) * pr; (h(@,)). If (1) of (P)
is true and o is regular on A4;, then
0 = pr; 05 = pr; (h(0,)) = pr; (h(a;a,, ... a,w)) =
= pr; (h(@,,)) pr; (h(a,,) ... pr; (h(a;) @ * 0,
because by (1) of (P) it is pr; (h(0,)) = pr; (05) = 0. If (2) of (P) is true and w is
regular on A; with the corresponding operation « = id, then
pr; (h(0,)) = pr; (h(a,a;, ... a,)) =
= pr; (h(@;,)) pr; (h(ay,)) ... pr; (h(a,)) © =
= pr; (h(a@;)) * pr; (h(04)),
where s e {1, 2}.
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The contradiction is obtained for both possibilities of (P).

(c) By (a) and (b), there exists just one iy € T such that pr; (h(d,)) * pr; (~(04))-
As pr; (h(0,)) is a zero of pr; (h(A)), we obtain

b = pr; b = pr; (h(a)) = pr; (h(@,) @ ... & h(@,)) = pr; (h(ds)) -

2° Now we prove that this index i, € T is the same for all b € h(4) and a fixed
je{l,...,n} such that pr;b = pr; (h(0,)). Let by, b, € h(A), pr; by = b} *
+ pr; (h(0,)) & b5 = pr; b,. By 1° there exist iy, i, €T and a; € 4;, d;,€4;,
such that by = pr; (h(a;,)), by, = pr; (h(a,,)). Suppose iy * i,.

If (1) of (P) is valid and o is regular on A;, then, by Lemma 1, we have

0 = pr; (h(0,)) = pr; (h(@;a,, ... a,w)) = bibs ... b0 + 0.
If (2) of (P) is valid and  is regular on A; with the corresponding « = id, then
pr; (h(0,)) = pr; (h(a,a,, ... a;,w)) = bib, ... byw = b, * pr; (h(0,))
where s € {1, 2}. We have again a contradiction in both cases.

3° By 1° and 2°, there exists iy e T for j e {1, e n} fixed such that for each b €
€ h(A), pr; b + pr; (h(0,)), there exists a,, € A;, with pr; (h(@;,)) = pr; b. ff pr; b =
= pr; (h(0,)), then also 0,€ A;,. Hence pr;(h(4;)) 2 pr;(h(4)). The converse
inclusion is evident, thus pr; (h(4;,)) = pr; (h(4)).

II. Uniqueness. Suppose pr;(h(4;,)) = pr; (h(4)) = pr; (h(4;,)), pr;(h(A4)) *
+ pr; (h(0,)) for some iy, i, € T, iy & i andje {1, ..., n}. Choose b € h(A) such that
prjb = b; + pr;(h(04)). Then there exist a; € 4;, a;,€A;, with pr;(h(@;)) =
= b; = pr; (h(a,)).

For (1) of (P) and w regular on A4; we have

0 = pr; 03 = pr; (h(0,) = pr; (h(@;a,, ... 3,w)) = b;b;...b;o £ 0.

For (2) of (P) and w regular on 4; with the corresponding o = id it is

pr; (h(04)) = pr; (h(a;,a;, ... a,0)) = bb;... b;w = b; % pr; (h(0,)).

From these contradictions we obtain i; = i, and the uniqueness is proved.

Definition 9. Let (4, F) be an algebra with the set o/ = {@®} U Q of algebraic
operations and let 0 be a zero of (4, F). The algebra (4, F) is called normal, if for
each weF, arw =n = 1, each ie{l,...,n} and arbitrary a,,...,a;_1,a;;q, ...
..., a,€ Aitholds

ay...a;-0a;,{...a,0=0.

Definition 10. Let (4, F) be a normal algebra and B = 4. We cal! B an ideal
of (4, F), if
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(I) a,beB=>a @ beB;

(II) we F, arw = n, a; € B for at least one i€ {l,...,n} imply a, ... a,w € B.
If
() we @, ar = n, w is regular on (4, F) and a, ... a,we Bfor a,,...,a,€ A
imply a; € B for at least one j € {1, ..., n},

the ideal B of (4, F) is called prime.

It is clear that the set of all ideals of a normal algebra (4, F) forms a complete
lattice with respect to the set inclusion as the lattice order. Further, {0} is the least
and A the greatest element in this lattice.

If h is a homomorphism of A into an algebra B with a zero 0, denote ker h =
= {a € A, h(a) = 0}.

Theorem 6. Let (A, F) be a normal algebra without zero-divisors and let h be
a homomorphism of (A, F) into (B, F). Then the following conditions are equi-
valent:

(a) ker h is a prime ideal of (A, F).
(b) If w is regular on (A, F), then w is regular on (h(A), F).

Proof. 1°. Let(a) be true and let w be regular on (4, F), ar ® = n. Suppose that &
is not regular on (h(A), F). Then there exist h(a,), ..., h(a,) € h(A), h(a;) + h(0)
for each i = 1, ..., n such that h(a,) ... h(a,) @ = h(0), because h(0) is clearly a zero
of (h(A), F). As h is a homomorphism, we have h(0) = h(a,)... h(a,) ® =
= h(a, ... a,w), thus a, ... a,weker h. As ker h is a prime ideal, a; € ker h for
some j € {1, ..., n}, thus h(a;) = h(0), which is a contradiction. Thus w is regular
also on (h(A), F).

2°. Let (b) be true and let ker h be no prime ideal of (4, F). It is clear that ker h
is an ideal of (A, F). If this ideal is not prime, there exists an o regular on (4, F)
and by (b) also on (h(4), F) and elements ay, ..., a, € A such that a, ... a,w € ker h
and a; ¢ ker h for some i€ {1, ..., n}. Thus

h(0) = h(a, ... a,w) = h(a,) ... h(a,) o,
but  is regular on (h(A4), F) and h(0) is its zero, thus h(a;) = h(0)for at least one
Jje{1,...,n}. Hence a; € ker h, which is a contradiction.
Coroliary. Let Aj, B; be normal r-similar algebras for j = 1,...,n and h a sur-
Jjective homomorphism of A = ﬁ A; onto B = f[Bj. If (Zj A ker h) is a prime
ideal of A; for eachj =1, ..., nj,=t1hen his direct;; iiecomposable.

Proof follows directly from Theorem 6 and Corollary 1 of Theorem 4.
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Notation. Let A, B be algebras of the same type. Denote by Hom (4, B) the set
of all homomorphisms of 4 into B. If 4, B are r-similar, then Hom (4, B) + 0,
because the mapping ¢ : 4 — {0} is a homomorphism of 4 into B. This mapping ¢

is called the zero-homomorphism. Let Ay, ..., A, be r-similar, A =[] 4; and
i=1
a,,...,a,€A. We introduce the following notation:
k
0-21“’ =(..(a,®a)@a)®...)Da.
i=

By Lemma 1, if a € 4, then a = o). a;, where a; = pr; a.

Definition 11. Algebras A, ..., 4,, are called super similar, if they are r-similar
and f(0) = 0 for each fe Hom (4;, 4;) and each i, je{1,..., m}.

Clearly rings or Q-groups without zero-divisors are super similar contrary to chains
with the least element.

Deﬁnition 12. Let A,, B; be super similar algebras for i = 1,...,n, j=1,...,m
and 4 = H A, B = H B;. Let F = ||f;|| be a matrix of the type n/m with elements
fij€ Hom (A,, B)). The mappmgfof A into B defined by

pr; (f(a)) = to,-j(pr,.a) foreach j=1,...m
i=1
and each a € 4 is said to be represented by the matrix F.
Theorem 7. Let A;, B; be super similar algebras for i=1,...,n, j=1,..,m
and h a homomorphism of A = [| A; into B =[] B;. If there exists a matrix F
i=1 j=1

representing h, then all elements in the j-th column of F except at most one are
zero-homomorphisms for each j = 1, ..., m.

Proof. Let h be represented by a matrix F and for some je {1, ..., m} let there
exist two fy;, fi-; for k = k' which are not zero-homomorphisms. Then there exist
a, € Ay, a, € A, with fi(a,) * 0, fi.(a,-) + 0. Hence

pr; (h(ak)) = ‘;glfij(prl‘ 5k) = fkj(ak) s

because pr; @, = 0 for i + k and f;;(0) = 0. Analogously, pr; (h(d,)) = fi-j(ar)-
If w is an n-ary regular operation on A4;, then

0+ fkj(ak)fk’j(ak’) ---fk'j(ak') w = pr; (h(a—,ﬁk: sz,w)) =
= pr;(h(0,)) = pr; 05 = 0,

which is a contradiction.
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Theorem 8. Let A;, B; be super similar algebras for i =1,...,n,j=1,...,m
and let F = | f;;| be a matrix of the type n|m with f,; € Hom (A;, B;). Let all ele-
ments except at most one in the j-th column be zero-homomorphisms for each
j=1,...,m. Then the mapping f of A =[] A; into B = []| B; represented by F

i=1 j=1

is a homomorphism fulfilling f(OA) = 0p.

Proof. Let je {1, v m} and let all elements in the j-th golulnll be zero-homo-
morphisms. Then

11y (@) = pr; (/@) = -3, ofa) = -0 = 0

for each a € 4, thus f . pr; is a zero-homomorphism.

Let je{1,..., m} and f;; be the one non-zero-homomorphism in the j-th column.
Then

J-pr; (a) = Ppr; (f(a)) = ‘é‘,lfij(pri a) = fkj(prk a) s

because fi; = ¢ for i+ k, thus also f.pr; is a homomorphism fulfilling
f.prj(0,) =0.

Since f . pr; is a homomorphism fulfilling f . pr; (0,) = 0 for each je {1, ..., m},
fis also a homomorphism of 4 into Band f(0,) = 0p.

Theorem 9. Let A;, B; be super similar algebras for i=1,...n,j=1,.
and let h be a homomorphism of A = H A; into B = H B;. Then there exists just
one matrix F = | f;;| of the type m|n w:thf, € Hom (A,, B;) representing h.

Proof. As A;, B; are super similar, clearly f(0,) = Op for an arbitrary homo-
morphism of A into B. Put S = {1,...,m}, " = {jeS, pr; (h(4)) + 0}.

1°. Let j € S’. By Theorem 5, there exist just one i € {1, ..., n} with pr; (h(4)) =
= pr; (h(4;,)). Denote f;; = ¢;, . h.pr; where @, is the canonical insertion.
For i"e{l,...,n}, i’ & iy we put f,,; = o € Hom (4 B)). If a;, = pr;a for ae A
then, by Theorem 5,

pr; (h(a)) = pr; (h(@s,)) = pr; (h(ga(as))

and
pr; (h(a)) = @i, . h . pria,) = fiai,) = Oi;lfij(pri a),

because f'.j(pri a) = (,(prl. a) =0 for i % iyp. These fij form the j-th column of the
matrix F.
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2°.Let jeS — S, put f,; = ¢ € Hom (4;, B;) for each i =1,...,n. Thus
pr; (h(a)) = 0 = gzn:f,-j(pr,- a) for each a € A. Also these f;; form the j-th column
of F for this j. o

3°. The matrix F thus obtained is of the type n/m, fi; € Hom (4;, B;) and
pr; (h(a)) = ?ilfij(pri a) for each j € S and each a € A. Hence h is represented by F

which completes the proof.

Corollary. Let A,, B; be super similar algebras for i =1,..,n, j=1,. 1,
A= A,, B = nB If p;; = card Hom (4;, B;) is a natural number for each

i=

1, ,h, —1 ..,m, then there exist precisely s = H(l +Z(p,, 1))
j=1 i=1

homomorphisms of A into B.

Proof. By Theorems 7, 8, 9 the number is equal to the number of matrices F =
= ||fi;| of the type n/m with f;; € Hom (4;, B;), which have at most one non-zero-
homomorphism in each column. If p;; = card Hom (4;, B;), then the j-th column

can be constructed in 1 + Z (p,, 1) dlﬁ"erent ways for each j e {1 " n}. How-
i=1
ever, F has just m columns, thus s = H (1+ Z (pij — 1))

Theorem 10. Let A;, B; be super similar algebras for i = 1,...,n and let h be
n n
a surjective homomorphism of A =[] A; onto B = || B,. If the matrix H repre-
i=1 i=1
senting h has just one non-zero-homomorphism in each row, then h is directly
decomposable.

Proof. Clearly H is a square matrix of the type n/n. Denote it by H = |/h;;].
By Theorem 9, such a matrix H representing h exists. If H has just one non-zero-
homomorphism in each row, by Theorem 7 it has just one non-zero-homomorphism
also in each column, because H is square. Accordingly, there exists just one je
e{l,...,n} for each i€ {1, ..., n} such that h;j(A;) = B;. Thus h(4;) = B, and by
Corollary 1 of Theorem 4, h is directly decomposable.

Definition 13. Let A;, B;, C, be supersimilar algebrasfori =1,...,n,j =1,..., m,
k=1,...,p. Let F = ||f;]l, G = |lg;| be matrices of the types nfm, m|p, respec-
tively, and f;; € Hom (4;, B;), g;, € Hom (B, C;). The matrix product of F,G

m

is the matrix H = [[h;] of the type n/p such that h,(pr;a) = -3 f;; . gu(pr; a) for
=
each a € A. Symbolically, H = F . G.
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Theorem 11. Let A;, B;. C, be super similar alqebrasfori =1,...,n j =1, 1,

k=1,...,p and let f be a homomorph:sm of A = HA into B = HB and g

a homomorphism of B into C = H C.Iffis represented by Fandg by G then the
Jj=

mapping h = f.g of A into C is represented by the matrix H = F . G.

Proof. By Theorem 9, there exist F, G of the types n/m, m[p representing f, g,
respectively. Put H = F. G. Then H is of the type n/p. Denote it by H = ||h;].
By Theorem 7, in each column of F and G there is at most one non-zero-homo-
morphism. Let j € {1, ..., m}. Choose i; € {1, ..., n} as follows: if there exists a non-
zero-homomorphism f in the j-th column of F, put i; = i’, in the other case put

= 1. Analogously we ChOOSCJk from {1, ..., m} for each ke {], ..., p}. Then

m m

halpria) = qu gjk(pr a) ngk( l](pr a)) =
= gjkj(fijk(Pri a)) = fije - 9ulPTi a).

Hence h; € Hom (4;, C,). Let h be represented by H. Then

pri(h(a)) = 3§1hm(PFi a) = T:i 95ulfijpri a)) = 95l fi3(Pr iy @) -
Also

pri (f - 9(a)) = pre (9(f(a))) = g5ulprs (f(a) = g,ufi P11, @) 5
thus h =f.g.
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