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INTRODUCTION

One of the most important tasks of universal algebra is to study interconnections
between various special properties of varieties (equational classes) of algebras. We
have in mind such properties as residual smallness, amalgamation, distributivity and
permutability of congruences, regularity, the Schreier property, solvability of the
word problem etc, and their various weak and strong forms. To be able to form
a picture of the possible interconnections, one must have a suitable supply of exam-
ples. The system of “natural” varieties offers a large number of examples good in
many respects, but one would rather prefer a more uniform system, satisfying the
following requirements:

(1) there is a set M of constructive objects and a natural mapping of M onto the
system of varieties;

(2) for many interesting properties of varieties, the problem' of deciding for which
elements of M .the corresponding variety has the given property can be solved
algorithmically;

(3) for many interesting properties, the solution of the above formulated problem is
non-trivial.

The aim of this paper is to show that the system of finitely based EDZ-varieties
(defined in Section 3) is good from this point of view. We shall be concerned namely
with the following five properties of varieties: the amalgamation property; having
enough subdirectly irreducible algebras; being residually small; having enough
simple algebras; having few simple algebras. For each of them we shall describe all
finitely based EDZ-varieties of groupoids (or in some cases, of algebras of an
arbitrary type) with the property. The answers are fairly non-trivial except the case
of the residual smallness.

EDZ-varieties are interesting from other reasons, too. In [11] they proved to be
useful in the study of the lattice of all varieties of algebras of a given type; in Section
11 we show their usefulness from another view-point, in connection with the sub-
direct product of varieties.
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1. PRELIMINARIES

By a type we mean a set 4 of operation symbols. Every operation symbol F € 4
is associated with a non-negative integer ny, called the arity of F.

By an algebra of type 4 (or briefly A-algebra) we mean an ordered pair 4 =
= (M, ¢), where M is a non-empty set (called the underlying set of A) and ¢ is
a mapping, assigning to any F € 4 an ng-ary operation on M. The operation ¢(F)
will be denoted by F,. If there is no confusion possible, we identify A with its under-
lying set. For the basic concepts of universal algebra see [5].

Let X be a fixed infinite countable set of symbols, called the variables. Given
a type 4, the set of A-terms is defined as follows. 4-terms are formal expressions which
can be obtained by applying a finite number times the following three rules:

(1) every variable is a 4-term;

(2) if Fe 4 and ng = 0, then F is a A-term;

(3)if Fed, np =1 and t,,...,1,, are A-terms, then the inscription F(ty, ..., t,.)
is a A-term, too.

For every type 4 we define a 4-algebra W, in this way: its underlying set is the set
of all A-terms; if FEA and t,..,,1,. € Wy, put Fy (ty, ..., ) = F(ty, ..., t,).
The algebra W, is an absolutely free 4-algebra over X, i.e. X is its generating set and
every mapping of X into an arbitrary A-algebra A can be uniquely extended to
a homomorphism of W, into A.

Evidently there exists exactly one mapping 4 of W, into the set of positive integers
such that A(x) = 1 for every variable x and A(t) = 1 + A(t,) + ... + A(t,,) whenever
t = F(ty, ..., t,,). The number A(?) is called the length of the term 1.

There are many syntactical notions (such as the notion of subterm), the meaning
of which is clear without giving its formal definition. However, it is often of advantage
to have a precise inductive definition of such a notion at hand, since proofs of many
properties of terms turn out to be trivial if they are carried out by the induction on
the length of the terms.

The notion of a subterm of a A4-term ¢ is defined inductively in this way: if ¢ is
a variable, then ¢t is the only subterm of ¢; if t = F(tl, . t,,F), then u is a subterm
of t iff either u = t or u is a subterm of one of the terms ¢4, ..., t,,.

By a proper subterm of a term ¢ we mean a subterm u such that u =+ ¢.

We say that a variable x is contained in a term ¢ (or that x occurs in 1) if x is
a subterm of t.

By an identity we mean an ordered pair of A-terms. An identity {u, v) is denoted
by u = v. We say that a 4-algebra A satisfies an identity u = v if f(u) = f(v) for any
homomorphism f : W, — A. A class of 4-algebras is called a variety if it is the class
of all A-algebras satisfying a given set of identities. The lattice of varieties of 4-
algebras is antiisomorphic to the lattice of fully invariant congruences of W,, i.e.

congruences r such that {u, v) € r implies {f(u), f(v)) € r for any endomorphism f
of W,.
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2. FULL AND IRREDUCIBLE SETS OF A4-TERMS

Let 4 be a fixed type.

Given two A-terms u and v, we write u < v if there exists an endomorphism f
of W, such that f(u) is a subterm of v. Evidently, < is a quasiordering on W,. If
u < v and v < u, then we write u ~ v and call the terms u, v similar. Evidently,
u ~ v iff v = f(u) for an automorphism f of W,. If u < v and u, v are not similar,
we write u < v. If T < W,, u € T and there is no v € T with v < u, then u is called
a minimal element of T.

2.1. Proposition. There exists no infinite sequence t,, t,, t5, ... of A-terms such
that t;., < t; for all i. Consequently, if T < W, then for any u € T there exists
a minimal ve Twithv £ u.

Proofis easy. m

Aset T< Wyis called fullifue T,ve Wyand u < vimply ve T.

2.2. Proposition. The intersection and the union of any system of full subsets
of Wy is a full subset of W,. The system of all full sets of A-terms is thus a complete
distributive lattice with respect to N and U; the empty set is its smallest and the
set W, its greatest element.

Proofis evident. m

2.3. Proposition. Suppose that A either contains no nullary symbols or contains
at least one symbol of arity =2. Then the intersection of any pair of non-empty
full subsets of W, is non-empty, so that the system of non-empty full subsets is
a sublattice of the lattice of all full subsets of W,.

Proof. Let Ty and T, be two non-empty full subsets of W,; let t; € T; and ¢, € T,.
If Fe A and ny 2 2, then evidently F(ty, t5, 15, ..., 1,) € Ty 0 T,. If 4 contains only
unary symbols, then t, = F;(Fy(... (F,(x)))) for some Fy,...,F,e4 and xeX;
evidently Fy(F,(... (F(t))eTy N T,. m

For every subset M of W, denote by ®(M) the set of all u € W, such that v < u
for some v € M. Evidently, (M) is just the smallest full subset of W, containing M;
it is called the full set generated by M and M is called its generating subset.

A set J = W, is called irreducible if u,ve J and u < vimply u = v.

2.4. Proposition. Let T be a full subset of W,. Then T has at least one irreducible
generating subset. Moreover, every two irreducible generating subsets of T have
the same cardinality and are similar (i.e. there exists a one-to-one correspondence
between their elements such that the corresponding terms are similar).

Proof follows from 2.1. =
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3. EDZ-VARIETIES

For every set T of A-terms we denote by &, the variety of A-algebras satisfying
any identity u == v such that u, v € §(T). By an EDZ-variety of 4-algebras we mean
a variety K such that K = % for a set T of 4-terms.

An element a of a Ad-algebra A is called a zero element of 4 if F(by, ..., b,,) = a
whenever Fe 4, by,...,b,,€4 and ae{by,..., b, }. Evidently, if 4 contains at
least one at least binary symbol, then any 4-algebra has at most one zero element.
If A has exactly one zero element, then the zero element of 4 will be denoted by 0.

3.1. Proposition. Let T be a non-empty set of A-terms and let A be a A-algebra.
Then A€ Zr1 iff A has a zero element a such that f(f) = a for every te T and
every homomorphism f: W, — A.

Proofis easy. =

The zero element a from 3.1 is uniquely determined by A and T. It will be denoted
by 0, r or only by 0,,.

3.2. Proposition. Let T be a set of A-terms and let u, v be two A-terms. The identity
u = v is satisfied in & iff either u = v or u,v e &(T).

Proof. Define a binary relation r on W, as follows: {u, v) € r iff either u = v
or u, ve ®(T). It is easy to prove that r is a fully invariant congruence of W,. g

By 3.2 every EDZ-variety K of A-algebras can be expressed in the form K = %
where Tis a full set of 4-terms and, at the same time, it can be expressed in the form
K = %, where J is an irreducible set of 4-terms. Moreover, if 4 contains at least
one symbol of arity =1, then evidently the full set Tis uniquely determined and the
irreducible set J is (by 2.4) almost uniquely determined by K. It will be more con-
venient for our purposes to express EDZ-varieties in the form K = %, since we
shall be interested in finding algorithms deciding which finitely based EDZ-varieties
have a given special property and we have the following

3.3. Proposition. Let A be a finite type and let J be an irreducible set of A-terms.
The variety % is finitely based iff J is finite.

Proof. Let u; =y, ..., u, = v, be a finite base for the identities of Z,. Denote
by U the set of all the u; such that u; + v; and by V the set of all the v; such that
u; % v;. The union U U V contains a finite irreducible subset I such that U u V <
c 45(1). It is easy to see that if J has at least two elements, then the sets I, J are
similar and have the same cardinality, so that J is finite, too.
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Now let J = {1y, ..., t,} be finite. Let us fix pairwise distinct variables xy, x, X3, ...
not contained in t,. It is easy to see that the set composed of the identities ¢, = t,,
ty==13, .oy tyoy==1t, and t; == F(Xy, ..., X;_ 1, 11, X; 41, -+, X,,) (for any F € 4 and
ie{l,...,ng})is a finite base for the identities of & if either 4 contains an at
least binary symbol or t; contains no variables. In the remaining case it is enough
to add the identity #; == w where w is obtained from ¢; by substituting x; for the
variable contained in ¢,. =

We shall conclude this section by several remarks on the lattice of EDZ- va-
rieties.

3.4. Proposition. Suppose that A either contains no nullary symbols or contains at
least one symbol of arity =2. Then the system of all EDZ-varieties of A-algebras
is a complete distributive sublattice of the lattice of all varieties of A-algebras;
the mapping, assigning to any full subset T of W, the variety % r, is an antiiso-
morphism of the lattice of full subsets of W, onto the lattice of EDZ-varieties of
A4-algebras. '

Proofis easy. m

The smallest EDZ-variety of 4-algebras is the trivial variety @, of one-element
algebras. The greatest EDZ-variety of 4-algebras is the variety &/, of all 4-algebras.
For every type 4 put €, = & where T = W,\ X. Evidently, ¢, is an EDZ-variety
of A-algebras, ¢, + 0, and ¥, < K for every EDZ-variety K of A-algebras such
that K #+ 0. In the case of groupoids (i.e. 4 = {F} where ny = 2) %, is the variety
of groupoids with constant multiplication.

3.5. Proposition. Suppose that A is the same as in 3.4. Then the variety s 4 is
not generated by any finite system of its proper EDZ-subvarieties.

Proof follows from 2.3. m

Let us remark that (by [7]) there exist two proper varieties of groupoids generating
the variety of all groupoids.

3.6. Proposition. Let A contain either at least one at least binary symbol or at
least two unary symbols. Then there exists an infinite irreducible set of A-terms.
Consequently, there are uncountably many EDZ-varieties of A-algebras.

Proof. Let Fe 4 be at least binary and let x, y be two distinct variables. For
every non-negative integer n define a A-term u,, by uo = x and u,+; = F(u, , y, ...
..., y)- Put t, = F(u,, x, x, ..., x). The set {t,, 1,, t, ...} is evidently irreducible.

Now let F and G be two distinct unary symbols from 4. The set of all terms
F(G"(F(x))), where x is a fixed variable and n ranges over positive integers, is evidently
irreducible.

Every two distinct, at least two-element subsets of an irreducible set of A-terms
evidently define distinct EDZ-varieties. m

398



4. FREE ALGEBRAS IN EDZ-VARIETIES

Let a type 4 be given. For every non-empty subset T of W, we define a 4-algebra Wy
as follows: its underlying set is the set (Wy;\®(T)) u {0}; if Fed, ty,...,t,. €
e W,N®(T) and F(ty, ..., t,.) ¢ (T), then we put Fy, (ty,...,t,.) = F(ty, ..., t,,.);
if Fed, py,..., po. € Wy and if Fy (py, ..., p,.) is not yet defined, then we put
Fy (P15 -+ Pug) = 0.

4.1. Proposition. Let T be a non-empty subset of W, and let no variable belong
to T. Then Wr is just the % ~free algebra over X.

Proof follows from 3.2. =

We have thus described free algebras of infinite countable ranks in all EDZ-varieties
except 0, and /4. In o/, the free algebra is W, and in 0, free algebras of infinite
ranks do not exist.

4.2. Proposition. Let T be a non-empty subset of Wy and let Ae Z1. If B is an
arbitrary A-algebra such that 0, € B = A and Fy(by, ..., b,.) € {04, F ((by, ..., b,,)}
forall FeA and by, ..., b, € B, then Be &.

Proof. Let f be an arbitrary homomorphism of W, into B. Denote by g the
homomorphism of W, into 4 such that g(x) = f(x) for all x € X. It is easy to prove
by the induction on A(f) that if ¢ is a A-term, then f(t) € {0, g()}. Since A€ Z,
we have g(f) = 04 for all t€ T, so that f(f) = 0, for all te T. By 3.1, Be Z1. =

The combination of 4.1 and 4.2 yields a uniform method for constructing many
examples of algebras in &1, which will be needed in the following sections.

It follows from 4.2 that every EDZ-variety has the finite embeddability property.
By [4], the word problem is solvable for finitely presented algebras in any finitely
based EDZ-variety of algebras of a finite type.

5. THE AMALGAMATION PROPERTIES

A class K of A-algebras is said to have the amalgamation property (AP) if for any
triple A, B, C € K and any pair of injective homomorphisms f: 4 - B, g: 4 - C
there exists an algebra D € K and two injective homomorphisms f* : B — D, g’ : C —»
— Dsuchthat f' o f =g’ 0 g.

A class K of A-algebras is said to have the strong amalgamation property (SAP)
if for any triple 4, B, C e K and any pair of injective homomorphisms f : 4 — B,
g +A — C there exists an algebra D € K and two injective homomorphisms ' : B —
- D, g': C - D such that '« f = g’ o g and f'(B) n g'(C) = f'(f(4)).
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We shall give in 6.1 a complete answer to the problem which EDZ-varieties have
the amalgamation properties. Before that we incorporate two re-formulations for
both AP and SAP. The essential part of Theorem 5.2 is contained in [12]. A class of
algebras is called abstract if it is closed with respect to isomorphic images.

5.1. Proposition. An abstract class K of A-algebras has the AP iff the following
holds for any triple A, B, C€ K: if A is a subalgebra of both B and C and A =
= B N C, then there exists an algebra D € K and two injective homomorphisms
f:B— D, g:C— D coinciding on A.

An abstract class K of A-algebras has the SAP iff the following holds for any
triple A, B, Ce K: if A is a subalgebra of both B and C and A = Bn C, then
there exists an algebra D € K such that both B and C are subalgebras of D.

Proofis evident. m

Let an algebra H and its subset Y be given. By an H, Y-situation we shall mean
asix-tuplel, J, B, C,r,ssuchthat] = Y, J < Y,I n Jisnon-empty, Y =1 u J, Bis
the subalgebra of H generated by I, C is the subalgebra of H generated by J, r is
a congruence of B, s is a congruence of C and r, s coincide on B n C. By a solution
of an H, Y-situation I, J, B, C, r, s we mean a congruence of H which is an extension
of both r and s. By a strong solution of an H, Y-situation I, J, B, C, r, s we mean
a solution ¢ such that if be B, ce C and (b, ¢) € t, then there exists an ae Bn C
with <b, a) e rand <a, ¢y €s.

5.2. Theorem. The following assertions are equivalent for any variety K £ 0 :

(1) K has the AP;

(2) the class of all finitely generated K-algebras has the AP;

(3) if Yis a set and H is the K-free algebra over Y, then any H, Y-situation has
a solution;

(4) if Yis a finite set and H is the K-free algebra over Y, then any H, Y-situation
has a solution.

Moreover, the following assertions are equivalent:

(1) K has the SAP;

(2') the class of all finitely generated K-algebras has the SAP; '

(3') if Yis a set and H is the K-free algebra over Y, then any H, Y-situation has
a strong solution; ’

(4) if Y is a finite set and H is the K-free algebra over Y, then any H, Y-situation
has a strong solution.

Proof. (1) = (2) is evident. (2) =.(4): Let I, J, B, C,r, s be an H, Y-situation.
Put A = B n C. We shall show first that A is just the subalgebra of H generated
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by I n J. Since H is K-free over Y, there exist two endomorphisms ¢, ¥ of H such
that ¢ is identical on I, ¥ is identical on J, ¢ maps J\I into I n J and ¥ maps
I\ Jinto I n J. Evidently, ¢ is identical on B and ¥ is identical on C, so that . ¢
is identical on 4. On the other hand, ¥ - ¢ maps Y onto I n J, so that it maps H
onto the subalgebra generated by I n J. Hence it follows easily that, in fact, 4 is
just the subalgebra of H generated by I nJ. Put z = rn (4 x 4) = s 0 (4 x A4).
We denote by 7, the canonical homomorphism of B onto B/r. Since z is the kernel
of m, o id,, there exists an injective homomorphism f: Ajz — B[r with 7, 4 =
= fom,. Similarly there exists an injective homomorphism g : A/z —» C[s with
7,1 A = g om,. By the AP for finitely generated K-algebras there exists an algebra
DeK and two injective homomorphisms f’ : Bfr - D, g’ : C[s > D with f" o f =
=g’ og. As H is K-free, there exists a homomorphism h:H — D with h(x) =
= f'(n(x)) for all x e I and h(x) = g'(ny(x)) for all x € J. This definition is correct,
since x eI n J implies f'(m,(x)) = f'(f(n.(x))) = ¢'(9(n.(x))) = g'(ny(x)). Evidently
htB=f"omn, and h| C = g' . n,. Denote by ¢ the kernel of h. As f" and g’ are
injective, ¢ extends both r and s. It is easy to verify that if f'(B/r) n g'(C[s) =
= f'(f(4/z)), then the solution ¢ is strong.

“(4)=(3): Let I, J, B, C,r, s be an H, Y-situation. For every finite M < Y such
that M n I n J is non-empty denote by H,, the subalgebra of H generated by M
and put Iy =InM, Jy=JnM, By=BnHy, Cuy=CnHy, ry=rn
A (By X By), sy = s 0 (Cpy X Cy). The Hyy, M-situation Iy, Jy, By, Cop Tags Syt
has at least one solution by (4). Denote by t,, the intersection of all solutions of
this H,,, M-situation, so that t,, is a congruence of H,, extending both r,, and s,,.
If M; = M,, then ty, 0 (Hy,, x Hy,) is a congruence of H,,, extending both ry,
and sy, so that fy, S ty, " (Hy, X Hyy) S ty,. The union ¢ of the updirected
system of all t,, is a congruence of H. Let us prove that it extends r. Let a, b€ B.
There exists M with a, b € B,,. If (a, by € r,then<{a, by ery < t)y = t. If a, by e,
then there exists N with {a, b) € ty; this implies {a, b) € ty y, S0 that <a, b) e
€ ryom S 1. Analogously, ¢ extends s. It is easy to verify that if the solutions t,, are
strong, then ¢ is strong, too.

(3) = (1): Let 4, B, C be three algebras from K such that 4 is a subalgebra of
both Band Cand A = BN C. Put Y = Bu C and denote by H the K-free algebra
over Y, by B’ the subalgebra of H generated by B, and by C’ the subalgebra generated
by C. As H is K-free, there exist homomorphisms 4 : B — Band k : C’ = C such that
h 2 idgand k 2 idc. The H, Y-situation B, C, B, C’, Ker(h), Ker(k) has a solution r.
Putf ==, | Band g = =, | C. It is easy to see that f is an injective homomorphism
of Binto H|r, g is an injective homomorphism of C into H[r and f| A =g A =
= n, | A. Moreover, f(B) n g(C) = f(A) if the solution r is strong. m

For the importance of the amalgamation properties see e.g. [1], [3], [8] and [12]
It is proved in [10] that every variety of unary algebras has the SAP.
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6. EDZ-VARIETIES WITH THE AMALGAMATION PROPERTY

6.1. Theorem. Let A be an arbitrary type and let J be an irreducible set of A-
terms. The following assertions are equivalent:

(1) &, has the AP;
(2) Z, has the SAP;

(3) if te J and if x, y are two distinct variables occurring in t, then there exists
a symbol F € A and terms uy, ..., u,, such that F(uy, ..., u,,.) is a subterm of t
and x, y € {uq, ..., ,.}.

Proof. All the three conditions are evidently satisfied if J is empty. Now let J be
non-empty. :

(3) = (2): Let A4, B, C be three algebras from Z, such that 4 is a subalgebra
of both B and C and 4 = B n C. Define a 4d-algebra D as follows: its under-
lying set is the union B U C; if F€ 4 and py, ..., p,, € D, then Fy(py, ..., p,,) =
= FB(pla ERES) pnp) if pgy.oes Pne € B, FD(pl.’ cees Pnp) = FC(pl.s cees pnp) if pgy.ees Dur €
€ C and Fp(py, ..., pny) = 04 in all other cases. Evidently, B and C are subalgebras
of D and 0, = 0,. It remains to prove D € Z;. Suppose that this is not true, so that
f(t) # 04 for some t€ J and a homomorphism f : W, -> D. Since B, C € &, there
exist two variables x, y occurring in ¢ such that f(x) € B\ C and f(y) € C\ B. By (3)
there exists a symbol F and terms uy, ..., u,, such that F(u, ..., u,.) is a subterm of ¢
and x, y € {uy, ..., u,,.}. Since {f(uy), ..., f(u,,)} is a subset of neither B nor C, we
have f(F(uy, ..., u,)) = Fp(f(uy), ... f(u,s)) = 0,, a contradiction to f(¢) % 0,.

(2) = (1) is obvious. (1) = (3): Suppose that there exists a term te J and two
distinct variables x, y contained in ¢ such that ¢ has no subterm of the form
F(uy, ..., u,,) with x, y € {uy, ..., u,.}. Let S denote the set of subterms of ¢. Define
a A-algebra B as follows: B = (S\{x})u {0}; if Fe 4, uy,...,u,, € S\{x} and
F(uy, ..., u,.) €S, put Feuy, ..., u,,) = F(ug, ..., u,.); if F€A, py, ..., p,.€B
and Fy(py, ..., P,y is not yet defined, put Fy(py, ..., Png) = 0.

Let us prove B€ Z,. Suppose, on the contrary, that f(w) + 0 for some we J
and a homomorphism f : W, — B. Of course, f(z) # 0 for every variable z contained
in w. Hence there exists an endomorphism g of W, such that g(z) = f(z) for every
variable z contained in w. Let us prove by induction with respect to A(u) that if u
is a subterm of w, then either f(u) = g(u) or f(u) = 0. If u is a variable, this follows
from the definition of g. Letu = F(uy, ..., u,.). We have f(u) = Fp(f(u,), ..., f(tny))-
If one of the elements f(uy), ..., f(u,,) equals 0, then, of course, f(u) = 0. In the
opposite case f(u;) = g(uy), ..., f(un,) = g(u1n,) by the induction assumption. From
the construction of B it follows that if g(u) € S, then f(u) = Fy(f(uy), ..., f(tny)) =
= Fy(g(uy), ..., 9(tny)) = F(g(u1), ..., g(ttny)) = g(u), while if g(u)¢ S, then f(u)
= 0. The induction is thus completed. Since f(w) + 0, we get f(w) = g(w). Con-
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sequently g(w) is a subterm of ¢. Since J is irreducible, we get w = t. For g(t) to be
a subterm of ¢ we have only one possibility: g(z) = z for every variable z contained
in 1. Especially x = g(x) = f(x) € B, a contradiction.

Similarly as in the case of B, we may define 4-algebras C and A4 with the underlying
sets C = (S\{y}) u {0} and 4 = (S\{x, y}) U {0} and prove C € Z analogously.
Evidently, A is a subalgebra of both B, C and A = B n C. Suppose that there exists
an algebra D € &, and two monomorphisms f : B — D, g : C — D coinciding on A.
Put h = f U g, so that h is a mapping of B U C into D. There exists a homomorphism
b’ : W, — D such that h'(z) = h(z) for every variable z contained in ¢. Let us prove
by induction with respect to A(u) that if u is a subterm of ¢, then h'(u) = h(u).
If u is a variable, this follows from the definition of h'. Let u = F(uy, ..., u,.). By
the induction assumption h'(uy) = h(uy), ..., h'(u,,) = h(u,,). At least one of the
variables x, y does not belong to {uy, ..., u,.}, so that either {uy,...,u,} = B
or {uy,...,u,.} < C. In the first case h'(u) = Fp(h(uy), ..., h(u,.)) = Fp(f(uy), ...
eoos f(uny)) = f(Fp(uy, ..., un.)) = f(u) = h(u); in the other case h'(u) = h(u) simi-
larly. The induction is thus completed. Especially, h'(t) = h(t). However, D€ %,
implies h'(t) = 0, = f(0) + f(¢t) = h(t), a contradiction. This shows that %, has
not the AP. =

Let us mention a corollary of 6.1: there exists an infinite increasing sequence of
varieties of groupoids such that the varieties with odd indexes have the SAP and the
varieties with even indexes have not the AP.

7. EDZ-VARIETIES WITH ENOUGH SUBDIRECTLY IRREDUCIBLE ALGEBRAS

Let K be a class of 4-algebras. We say that K has enough subdirectly irreducible
algebras if every algebra from K can be embedded into a subdirectly irreducible
algebra from K and K does not consist only of one-element algebras.

7.1. Theorem. Let A be a type without nullary symbols; let J be an irreducible
set of A-terms. The following assertions are equivalent:

(1) Z, has enough subdirectly irreducible algebras;

(2) no variable belongs to J and there exists a pair F, i with the following proper-
ties: Fed; np =2; i€{l,....,ng}; if F(Xg5 .0, Xizg, Uy Xig 15 o0s X)) €J for
a term u and pairwise distinct variables Xy, ..., X;_y, Xj11, .- then at
least one of the variables Xy, ..., X;_1, Xj415 ++» Xpgp OCCUTs in u.

* Mnp>

Proof. We shall assume that no variable belongs to J and that 4 contains an at
least binary symbol, since in the other cases clearly neither (1) nor (2) is fulfilled.
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(1) = (2): Denote by I the set of all pairs {F, i) such that Fe 4, n; = 2 and
ie{l,..., ng}. Suppose that for any (F, i) el there exists a term ug; such that
F(X{, ooy Xio 15 Up iy Xig1s --os Xpp) € J fOr some pairwise distinct variables x, ...
woy Ximqs Xit1s -++s Xnp DOt OCCUITINg in up ;. For every (F, i) €I define a 4-algebra
Ag ; as follows: its underlying set is the disjoint union Uy ; U {0} where Uy ; denotes
the set of subterms of ug ; if GeA, vy, ..., Upg € Up; and G(vs, ..., 0,5) € Up ;,
put Gy, (v, ..vs Ung) = G(1, -5 Ung)s if GEA, pyy..ey Pug € Ap,i and Gy, (py, ...
cens p,,G) is not yet defined, put GAF”.(pI, ceo p,,a) = 0. By 4.2, Ap ;€ Z,. Denote by 4
the direct product of the family Ay (<F, i) € I); we have A € Z,. Forevery (F, iy €l
and v € Uy ; define an element hg ;, of 4 by hp ; (CF, i)) = vand he ;i (G, jY) =0
if G, j> =+ (F,i). Define a binary relation r on A by {p, g> er iff either p =
=q€Aorp=hp,,  and g = hg j.,, for some {F, i), {G,j>el. It is easy to
see that r is a congruence of A. Put B = (A[r) x (4/r), so that Be Z,. Let C e Z;
be an extension of B. We shall show that C is not subdirectly irreducible. Denote by a
the element of A/r satisfying a = n,(hp,,-,,,m) for all (F, i) €l. Define two binary
relations s, and s, on C in this way: {p, @) € s, iff either p = ge C or p,qe
€ {0, <a, 04,>}; <P, @) € s, iff either p = g € C or p, g € {0, <0y, a>}. Evidently,
s, and s, are non-trivial equivalences on C and s; N s, = idc. Hence it is sufficient
to prove that s, and s, are congruences of C. To this end it is enough to show that
if Fe4, py,..., p,, € C and either <{a, 0,;,> or {0, a> belongs to {p;, ..., Pu.}>
then F(py, ---» Pnp) = Oc. We shall assume p; = <a, 04, for some i€ {1, ..., ng},
since the case p; = {0 ,, a) is similar.

Let np = 1. We may write

Fc(<a, 04>) = Fp(<a, 04,>) = CF 4a), 04> =
= <FA/r(nr(hG,j,ua,j))’ 0A/r> = <7tr(FA(hG,j,uG,,))’ 0A/r> = <7Tr(0,4)a 0A/r> =0z.

Let np = 2. Then (F, i) el. There exist pairwise distinct variables x, ..., X;_q,
Xi415 -+0» Xpp MOt OCCUTTING in up ; SUCh that F(xy, ..., Xi— 1, Up i Xisgs ooy Xpe) € J.
There exists a homomorphism f : W, — C such that f(x,) = p, for ke {1,...,i —1,
i+ 1,...,ng}, f(x) = <n(hr,i ), 04y for all variables x occurring in up ; and f(z) =
= 0Op for all other variables. It is easy to prove by induction with respect to i(v) that
if vis a subterm of uy ;, then f(v) = (m,(hy,;,), 04, . Especially, f(ur, ;) = <a, 04,y =
=pi. Since CeZ; we get Oc = f(F(Xy, ..o, Xjmg, Upis Xit1s o> Xng) =
= FC(pb cee pnr)‘

(2) = (1): Let A € Z,. Define a A-algebra B as follows: its underlying set is the
set (4 x {1,2,3,...}) U {a} where « is an element not belonging to 4 x {1,2,3,...};
Gy(<ay, 1), ..., {lpgs 1)) = (G 4(ay, ..., ay,), 1) for all Ge 4 and ay, ..., a, € 4;
FB(pl’ cees pnp) = o if pi = <a’ m> EB\{<0A’ 1>’ (Z} and pP; = <a’ m +]> for all
Je{l,oi—1, i+ 1,..,n5}; Gp(qy, . s dug) = <0, 1) in all other cases. Evi-
dently, B is an algebra with zero element Og = <0, 1) and the mapping a > <a, 1)
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is an embedding of A into B. Define a binary relation r on B: {p, ¢) € r iff either
p=qeBor p,qe{0pa}. It is easy to see that r is a non-trivial congruence of B
and that r is contained in any non-trivial congruence of B. In order to prove that &,
has enough subdirectly irreducible algebras it remains to show that B € 2. Suppose,
on the contrary, that f(t) # Oy for some te J and a homomorphism f : W, — B.
Since 4 € Z,, there exists a variable x contained in t such that f(x)¢ 4 x {1}.
Evidently f(x) = {a, m) for some a€ A and some m = 2 and there exist terms
Uy, ..., Uy, such that x € {u,. ..., u,.} and such that F(uy, ..., u, ) is a subterm of .
Evidently f(F(uy, ..., u,.)) = o and t = F(uy, ..., u,,)-

Suppose u; = x. Then f(u;) = <a, m + j) for all j + i. Since <a, m + j) does
not belong to the range of any fundamental operation of B, u; is a variable. All the
variables are pairwise distinct, since {a, m), {a, m + 1),...,<{a, m + np) are
pairwise distinct. We get a contradiction to (2).

Hence u; = x for some j # i, so that f(u;) = <a, m — j) % (04, 1) and f(u,) =
=d{a,m—j+ky for all ke{l,...,i —1,i+1,..,np}. This implies that
Uyy .oy U g, Uiy, ---s Uy, are pairwise distinct variables. By (2) some of them, say u,
must be contained in u;. There exist terms vy, ..., v,. such that u, € {vy, ..., 0.}
and F(vy, ...,v,.) is a subterm of u; Evidently f(F(vy, ..., v,,)) = o Since
Gy(d1, -+ 4n;) = Op Whenever a€{qy, ..., 4,.}, we get f(t) = 0p. =

8. RESIDUALLY SMALL EDZ-VARIETIES

A class K of A-algebras is called residually small if it has a representative subset
of subdirectly irreducible algebras, i.e. if there exists a cardinal number » such that
Card (4) < x for any subdirectly irreducible algebra A € K. For various equivalent
definitions and the importance of residually small varieties see [2] and [14]. In the
case of EDZ-varieties we have, unfortunately,

8.1. Theorem. Let A be an arbitrary type and let J be an irreducible set of
A-terms. The following assertions are equivalent:

(1) 2, is residually small;
(2) if no variable belongs to J, then for any F € A with ny = 2 there exist pairwise
 distinct variables x, ..., X,,. such that F(x,, ..., x,.) € J.

Proof. (2) = (1) is easy. (1) = (2): Suppose that no variable belongs to J and that
there exists a symbol Fe 4 such that ny = 2 and F(xy,...,x,.)¢J whenever
Xy, ... X, are pairwise distinct variables. Let M be an arbitrary set. Define a 4-
-algebra 4 as follows: A = (M x {1,2,3,...}) U {0,a}; F4(<a,i),<a,i+ 1),..
...;{a,i + ng — 1)) = a; in all other cases G,(p;, ..., Pny) = 0. It is easy to prove
that A is subdirectly irreducible and A € &,. Since M was arbitrary, %, is not
residually small. =
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9. EDZ-VARIETIES WITH ENOUGH SIMPLE ALGEBRAS

An algebra is called simple if it has not more than two congruences. We say that
a class K of 4-algebras. has enough simple algebras if every algebra from K can be
embedded into a simple algebra from K and K does not consist only of one-element
algebras.

The aim of this section is to characterize finitely based EDZ-varieties with enough
simple algebras. However, in the case of EDZ-varieties of algebras of an arbitrary
type the situation seems to be complicated and so we find the characterization only
for types consisting of a single operation symbol. The symbol will be at least binary,
since evidently no variety of unary algebras has enough simple algebras.

Throughout this section F is a fixed at least binary operation symbol and n denotes
its arity.

Let A be an algebra of the type {F}. An element a € 4 is called irreducible if it
cannot be expressed in the form a = F ,(ay, ..., a,) where ay, ..., a, € A.

Let 4 be an {F}-algebra with a zero clement 0,. Let a€ 4 and let ey, ..., ¢, be
pairwise distinct elements not belonging to A. Then we define an {F}-algebra
E = E(4;a; ey, ..., e,) as follows: its underlying set is the union 4 U {egs .. e}s
A is a subalgebra of E; Fy(ey, ..., e,) = a; if ps, ..., p,€ E and Fg(py, ..., p,) is not
yet defined, put Fg(ps, ..., p,) = 0,. Evidently, 0, is the zero element of E.

9.1. Lemma. Let J be a non-empty irreducible set of {F}-terms. The variety Z,
has enough algebras without irreducible elements iff E(4;a; ey, ..., e,) € % for
any Ae %, any a€ A and any pairwise distinct elements ey, ..., e, not belonging to A.

Proof. Suppose that Z; has enough algebras without irreducible elements but
E(A; a;ey, ..., e,) ¢ Z,;. There exists an extension Be Z; of A and elements by, ...
...; b,e B with @ = Fy(by, ..., b,). On the other hand, f(t) + 0, for some te J
and a homomorphism f: Wz, — E(4; a; ey, ..., e,). Since W, is absolutely free,
there exists a unique homomorphism g : Wz, - B with the following properties:
if x is a variable and f(x) € 4, then g(x) = f(x); if x is a variable and f(x) = e;
(where ie {1, ..., n}), then g(x) = b;. Let us prove by induction with respect to A(u)
that if u is a subterm of ¢t and u = F(ul, e u,,) for some terms uy, ..., u,, then
g(u) = f(u)€ A. 1t follows from f(u) + 0, that either f(u;) =ey,...,f(u,) = e,
or f(uy), ..., f(u,) € A. In the first case all the terms u,, ..., u, are variables, since
no e; is in the range of the fundamental operation of E(4; a; ey, ..., e,); we get
g(u) = Fg(g(uy), ..., g(u,)) = Fp(by, ..., b,) = a = f(u).In the second case g(u;) =
= f(u;) € A for all i, since this follows from the definition of g if u; is a variable,
while if u; is not a variable, we may use the induction assumption; hence g(u) =
= Fy(g(uy), ..., 9(u,)) = Fo(f(uy), ..., f(u,)) = f(u). The induction is thus finished.
Especially g(t) = f() # 0,, a contradiction to Be Z,.

The proof of the converse implication is the standard method using the technique
of updirected unions. m
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9.2. Lemma. Let J be a finite non-empty irreducible set of {F}-terms. The fol-
lowing assertions are equivalent:

(1) Z; has enough simple algebras;
(2) Z; has enough subdirectly irreducible algebras and enough algebras without
irreducible elements.

Proof. (1) = (2) is evident: every simple algebra with at least three elements is
subdirectly irreducible and has no irreducible elements.

(2) = (1): By 7.1 there exists a number i € {1, ..., n} such that if F(xy, ..., x;_, u,
Xit1s--- X,) € J for a certain term u and pairwise distinct variables xy, ..., X;_y,
Xis1s ---» Xp, then at least one of the variables x, ..., X;_;, X;4+1, ..., X, OCCurs in u.
Since J is finite, there exists a positive integer m such that if ¢ € J, then the number
of subterms of ¢ is smaller than m.

[ Let A€ &; and let a, b be two elements from A4 \ {OA}. By 9.1 there exist pairwise
distinct elements e; 1, ..., €1 -+ €m,15 - --» €m» SUCh that the algebras

B, = E(A; b; €1,15 -4 el,n) s
B, = E(Bl; €1,i>€2,15 -+ ez,n) s

Bm = E(Bm—].; em—-l,i; em,l’ eeey em,n)

belong to & ;. Define an {F}-a]gebra B as follows: its underlying set is the set B,, U
U {0y ey 0o qy Ry eens a,,} where oy, ..., 0;_1, Q41 -.., &, are pairwise distinct
elements not belonging to B,; B, is a subalgebra of B; Fy(ay, ..., 0—y, @, sy, - ..
cees ) = €yi3 if Py, ..., pa€ B and Fy(py, ..., p,) is not yet defined, put Fg(py, ...
oo D) = 04
Let us prove B € Z,. Suppose, on the contrary, that f(t) & 0, for some ¢t € J and
a homomorphism f : W, — B. Since B, € &, there exists a variable x occurring
in ¢ such that f(x) ¢ B,,. From this and from ¢ # x it follows that there exist terms
uy, ..., u, such that x € {u, ..., u,} and F(uy, ..., u,) is a subterm of . By f(t) + 0,
and by the definition of B we get f(u;) = a and f(u;) = «; for all j = i. Since the
elements a; are not in the range of the operation Fy, the terms u; (j # i) are variables.
The elements o; are pairwise distinct; consequently, the variables u; are pairwise
distinct, too. This shows that there exists a term u such that f(u) = a and F(x,, ...
ey Xi—1> U, Xi41, - - X,) is @ subterm of ¢ for a sequence of pairwise distinct variables
Xgyeees Ximgs Xig1, .-, X, satisfying f(x;) = a; (j # i). Let us fix a minimal term u
with these properties. (Minimal in the sense that no its proper subterm has these
properties.) No variable from {xy, ..., X;_y, X;4y, ..., X,} occurs in u, since in the
opposite case we could repeat the construction of the terms uy,...,u, and get
a contradiction with the minimality of u. Put v, = F(xl, ooy Xjmgs Uy Xjgqs nes x,,).
By the property of the number i, v, is a proper subterm of . Evidently f(v,) = e,, ;.
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Denote by M the set of all je{0,1,...,m — 1} such that f(v;) = e,_;,; for
a proper subterm v; of t. We have just proved 0 € M. Since the number of subterms
of t is smaller than m, there exists a number j € M such that j + 1 ¢ M. Let us fix
such a number j and the corresponding proper subterm v; with f(v;) = e,_; ..
There exist terms wy, ..., w, such that v; € {wy, ..., w,} and F(w, ..., w,) is a subterm
of t. We have f(wy)=en_j ... /(W) = €p—j,, because f(v;) =e,_;; and
v;€{w, ..., w,} imply that this is the only possibility for Fg(f(w,), ..., f(w,)) * 04
Consequently, the terms wy, ..., w;_;, Wi4q, ..., W, are pairwise distinct variables
and f(F(Wy, ..., W,)) = em—(j+1y,i- Since j + 1¢ M, we get t = F(wy, ..., w,). By
the property of i, there exists a number ke {1,...,i — 1, i + 1,..., n} such that
the variable w, occurs in w;. We have wy, + w; (as e, x ¥ e,_; ;) and so there exist
terms zy, ..., z, such that w, € {zy, ..., z,} and F(z,, ..., z,) is a subterm of w;. Again,
this is possible only if f(z;) = €u—j,15 - f(24) = €m—jn s0 that f(F(zy, ..., z,)) =
= €y_(j+1),- However, F(zy, ..., z,) is a proper subterm of ¢. This contradiction
toj+ 1¢ M proves Be &,.

Now let C be an arbitrary extension of B. If r is a congruence of C and if {a, c)er
for some ¢ € B different from a, then {b, 0> € r. Indeed, we have

<FC(al’ ce g, 4, ai+17 ey d"), FC(ab eeey Kiqs c, Xjg1snes ot,,))Er,

ie. {ep: 04> €r; hence

<FC(em,1’ .oty em’,,), FC(em,I, LRRE] em,i—ls OA’ em,i+]’ ey em,n)) Er )

ie. e,y 0€r, etc; finally <e ;0> €er, sothat

<Fc(31,1, cees el.,n)’ FC(eI,h ceneic 0 ins ey el,n)> Er,

ie. <b,0, er.

We have proved that for any A € 2, and any a, b e A\ {0,} there exists an exten-
sion B e Z; of A such that if r is a congruence of an arbitrary extension C of B and
{a,cyer for some ce B\ {a}, then (b,0,> €r. The standard argument on up-
directed unions implies that &, has enough simple algebras. =

By an admissible n + 1-tuple we mean an n + l-tuple ¢, Y;,..., ¥, with the
following two properties:

(A1) t is an {F}-term and Y, ..., Y, are non-empty, pairwise disjoint sets of vari-

ables occurring in t;

(A2) if F(uy, ..., u,)is a subterm of t and {uy, ..., u,} N (¥; U ... U Y,) is non-empty,
thenu; € Yy, ...,u,€Y,. ) _

Lett, Yy, ..., Y, be an admissible n + 1-tuple and let z be a variable not occur-
ring in t. Then for every subterm u of t we define a term ¥y, (u) by the induction
on A(u) in this way: if u is a variable, then ¥y, v, () = u; if u = F(xq, ..., x,)
and x, €Y, ..., x,€Y, then ¥y .y .(u)=2z if u=F(u..,u,) and
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{ugs oy y) n(Yy U... U Y,) is empty, then ¥y . (u) = F(¥y,  y.:(40) .-
oos ¥y,.v, (u,). Hence ¥y, (u) can be obtained from u by substituting z
for any subterm F(xl, e x,,) such that x €Y, .., x,€Y,.

9.3. Lemma. Let J be a non-empty irreducible set of {F}-terms such that no
variable belongs to J. The following assertions are equivalent:

(1) 2, has enough algebras without irreducible elements;

(@) ifteJ and if 1, Yy, ..., Y, is an admissible n + 1-tuple, then v < ¥y, v, .(t)
for some ve J and a variable z not occurring in t. )

Proof. (1)=(2): Let t,Y;,..., ¥, be an admissible n + I-tuple and let z be
a variable not occurring in t. Denote by A4 the subalgebra of W, generated by the
set YU {z} where Y is the set of variables occurring in t. By (1) there exists an
extension Be &, of A and elements by, ..., b,e B with z = Fg(by, ..., b,). There
exists a homomorphism f : Wiz — B such that if x € Y; (where i€ {1, ..., n}), then
f(x) = b; and if xe (YU {z})N(Y; U...UY,), then f(x) = x. Since Be Z,, we
have f(f) = 0. Let us prove the following assertion by induction with respect to
Mu): if u is a subterm of  and u is not a variable, then f(¥y, . y..(4)) = f(u).
Let u = F(uy,...,u,). If us€Y,,...,u,eY,, then f(¥y, .y..4)=f(z)=z=
= Fy(by, ..., b,) = f(u). In all other cases {uy,...,u,} N (Y U...UY,) is empty
and lI’Y,,...,Y,.,z(u) = F(Tn ..... Y,.,z(ul)’ e 'PY,,...,Y,.,z(un))- We havef(‘l’yl ,,,,, Y,.,z(ui)) =
= f(u;)forallie {1, ..., n}, since this follows from the definition of f if u; is a variable
and if u; is not a variable, we may use the induction assumption. Hence
f(¥y,...v.:() = Fe(f(uy), ..., f(u,)) = f(u). Tt can be proved analogously that
if u is a subterm of ¢, Wy, .y, .(4) € A and u is not a variable, then f(¥y, v, .(u)) =

(u).
Since f(Py,...v.1) =f(t) =0 % ¥y, _y..(t), we get Py, . y. 1) ¢4, so that
¥y, ...v.:(t) ¢ W;. This means that ¥y . (1) belongs to the full set generated
by J. As J is irreducible, there exists a term ve J with v £ Py y. .(0).

(2) = (1): Let A€ Z,, ac A and let ey, ..., e, be pairwise distinct elements not
belonging to 4. By 9.1 it is enough to prove that the algebra E = E(A; aeyq,..., e,,)
belongs to Z,. Suppose, on the contrary, that f() % 0, for some ¢ € J and a homo-
morphism f : Wy, — E. Forevery i € {1, ..., n} denote by ¥; the set of all variables x
contained in ¢ such that f(x) = e;. Evidently, Y, ..., Y, are pairwise disjoint sets of
variables occurring in t. Since 4 € &, at least one of these sets is non-empty. Now,
to prove that t, Yy, ..., Y, is an admissible n + 1-tuple, it is enough to prove (A2).
Let F(uy, ..., u,,) be a subterm of ¢ and let u;e Y; U ... U Y, for some i. We have
f(u;) ¢ A. Moreover, f(t) + 0, implies Fg(f(u,), ..., f(u,)) * 0, This is possible
only if f(u,) = ey, ..., f(u,) = e,. Since the elements e, ..., ¢, are not in the range
of Fg, the terms u,, ..., u, are variables and so u, € Y;,...,u, € Y,.
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Let z be a variable not occurring in . By (2) there exists a term v € J such that
v £ ¥y, ..y..(t). There exists a homomorphism g : Wip, — A such that g(z) = a
and g(x) = f(x) for all variables x ¢ Y; U ... U ¥, U {z}. Let us prove by induction
with respect to A(u) that if u is a subterm of ¢t and u is not a variable, then
9(¥y,.. v,(u) = f(u). Let u = F(uy,...,u,). If u; €Yy, ..., u, €Y, then

9(Py, ... v,:(w) = 9(z) = a = Filey, ..., e,) = Fg(f(uy), o f(uy)) = f(u).

In all other cases {uy,...,u,} N (Y; U... U Y,) is empty. If u; is a variable, then
9(¥y, ... v.-(u:) = g(u;) = f(u;); if u; is not a variable, the same holds by the
induction assumption. We get

g(qul,...,y,.,z(u)) = FA(Q(TY, ..... Yn,z(ul.)’ e g(W‘Y,,...,Y,.,z(un))) =
= F(f(ur)s . S (un)) = f(u) .

Especially g(¥y, .. y,.(1) = f(t). However, g(v) = 0, implies g(¥y,, .y, ) =
=04 so that (1) =0,. =

9.4. Theorem. Let F be an operation symbol of an arity n = 2; let J be a finite
irreducible set of {F}-terms. The variety %; has enough simple algebras iff it
satisfies the following three conditions:

(1) no variable belongs to J;

(2) there exists a number i€ {1, ..., n} such that if F(xy, ..., X;—1, U, Xi41, ..., Xy) €
€ J for a term u and pairwise distinct variables Xi, ..., X;_1, Xijt1s --er Xps
then at least one of the variables Xy, ..., X;_1, Xi4 1, -+, Xy OCCUFS iN U}

(3) ifteJand if 1, Yy, ..., Y, is an admissible n + 1-tuple, then v < ¥y, v (1)
for a term v e J and a variable z not occurring in t.

Proof. If J is non-empty, it follows from 7.1, 9.2 and 9.3. If J is empty, then
(1), (2) and (3) are satisfied and, as is well-known (see e.g. [6]) and easy, there are
enough simple {F}-algebras. m

Let us mention a corollary of Theorems 7.1 and 9.4: there exists an infinite in-
creasing sequence of varieties of groupoids such that the varieties with odd indexes
have enough simple groupoids while the varieties with even indexes have not enough
subdirectly irreducible groupoids.

The following two problems are left open. Are 9.2 and 9.4 true for infinite ir-
reducible sets J? Is it possible to extend Theorem 9.4 in any way from the case of the
type {F } to the case of an arbitrary type?

10. EDZ-VARIETIES WITH FEW SIMPLE ALGEBRAS

A class K of A-algebras is said to have few simple algebras if it has a representative
subset of simple algebras, i.e. if there exists a cardinal x such that Card (4) < x
for any simple algebra A e K.

410



10.1. Theorem. Let F be an operation symbol of an arity n = 2 and let J be
a fintie irreducible set of {F}-terms. The following assertions are equivalent:

(1) Z; has few simple algebras;
(2) every simple algebra from &, has at most two elements;
(3) every algebra A € &, without irreducible elements has only one element;

(4) there exists a term t€ J such that every variable has at most one occurrence in t.

Proof. (3) = (2) = (1) are easy. (4) = (3): Suppose that an algebra A € &, has
no irreducible elements. It is easy to show by induction with respect to A(u) that if u
is an {F}-term such that every variable has at most one occurrence in u, then for
any a€ A there exists a homomorphism f: Wy, » 4 with a = f(u). Especially,
for any a € A there exists a homomorphism f : Wi, — 4 witha =f(r ), so thata = 0,
for any a € A.

It remains to prove (1) = (4). Suppose that for every t € J there exists a variable
occurring at least twice in . Since J is finite, there exists a positive integer m such that
M) < m for all te J. Denote by J,, the set of all {F}-terms ¢ such that A(t) < m
and a certain variable occurs at least twice in t. Hence J < J,,. Denote by I an
irreducible subset of J,, such that for every te J,, there exists t' €] with ¢’ < ¢.
It is easy to verify that I has the properties (1), (2) and (3) of 9.4. Consequently,
%/ has enough simple algebras. Since &, = %,, we get a contradiction with (1). m

The variety &, where t = (xx) y, is (by 7.1 and 10.1) an example of a variety
of groupoids which has enough subdirectly irreducible groupoids but in which every
simple groupoid is trivial.

11. THE SUBDIRECT PRODUCT OF VARIETIES

Let K be a variety of A-algebras and let K, ..., K, be its subvarieties. We say that K
is the subdirect product of K, ..., K,, if any algebra from K is isomorphic to a sub-
direct product of some algebras 4; € K, ..., 4, € K,,. In this case evidently K is just
the join K; Vv ... v K, of the varieties K, ..., K, in the lattice of varieties of
A-algebras.

For example, it is proved in [9] that if K is a variety such that the congruence
lattice of any algebra from K is distributive, and if K, ..., K, are subvarieties of K
such that K.= K; v ... v K, then K is the subdirect product of Kj, ..., K,. Let
us remark that a quite elementary proof of this theorem can be given. On the other
hand, it is easy to see that if K is a variety and the join of any pair K,, K, of sub-
varieties of K is the subdirect product of K;, K,, then the lattice of subvarieties of K
is distributive.

The following theorem is proved in [13] in the special case of % ; being the smallest
non-trivial EDZ-variety.
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11.1. Theorem. Let T be a full set of A-terms. Let L be a variety of A-algebras.
Suppose that there exists a variable x and a term u e T such that the identity
X ==y is satisfied in L. Then the join Lv % is the subdirect product of L and % ;.

Proof. We may suppose that u contains at least one variable, as in the opposite
case L = 0, and everything is evident. Denote by ¢ the term obtained from u by
substituting the variable x for any variable. Evidently, x = ¢ is satisfied in L, te T
and t contains exactly one variable x.

Let Ae L v Z;. Define two equivalences r and s on the set 4 as follows: {a, b) e r
iff #(a) = #(b); <a, by es iff either a = b or a = #(a) and b = 1(b).

We shall prove that r is a congruence of 4. Let F € 4 be a symbol of an arity n = 1
andlet {ay, by) €r, ..., <a,, b,y € r. The identity t(F(xy, ..., x,)) == F(t(xy), ..., t(x,))
is satisfied both in Land %1, so that it is satisfied in 4. We get

H(F(ay, ..., a,)) = Fy(t(ay), ..., t(a,)) = F4(t(b,), ..., t(b,)) =
= HFy(by,.... b)),

so that (F(ay, ..., a,), F4(by, ..., b)) ET. v

We shall prove A/r e L. If an identity v == w holds in L, then #(v) = #(w) holds
in both Land Z'r, so that it holds in 4. This implies that v = w holds in 4/r.

We shall prove that s is a congruence of 4. Put I = {a €A; t(a) = a}. Let Fe 4
be a symbol of an arity n = 1 and let ay, ..., a, € A. It is sufficient to prove that if
there exists an ie{l,...,n} with a;€l, then Fu(ay, ..., a,)€l. The identity
H(F(xy, ...y X)) == F(Xy, ..., X;—q, #(X;), Xi41, .- X,) holds in both L and Z;, so
that it holds in A. We conclude

H(F (ay, ..., a,)) = Fay, ..., (a;), ..., a,) = Flay, ..., a,).

We shall prove Afs € Z 1. If an identity v = w holdsin Z;and v # w, thenv, we T,
so that both v = #(v) and w == #(w) hold in both Land Z. Consequently, they hold
in A. This implies that v == w holds in A/s.

Evidently r n's = id,, so that A is isomorphic to a subdirect product of the
algebras Afre Land A[se Zr. =

Given an EDZ-variety %, we may ask which varieties L have the property that
L v Z is the subdirect product of Land & ;. One example of such varieties is given
in 11.1. Another example: every variety comparable with %, evidently has this
property, too. We expect that there are not many other examples, since we have the
following negative result and several similar negative propositions could be found.

11.2. Proposition. Let T be a full set of A-terms and let L be a variety of A-
algebras. Suppose that there exist three A-terms a, b, ¢ with the following properties:
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(1) a¢ T, beT; ceT;
(2) the identity a = c holds in Lbut the identity a == b does not;
(3) if u, v are distinct elements of the set

U={a}u{teT, b=t holdsin L},

then u is not a subterm of v.
Then the join L v %1 is not the subdirect product of Land % ;.

Proof. Denote by o (resp. B) the set of all identities holding in L (resp. in & ).
As is well-known, « (resp. f) is just the smallest congruence of W, such that the
corresponding quotient belongs to L(resp. to Z). Denote by r the congruence of W,
generated by (« n ) U {<a, b)}. Evidently Wyfre L v Z.

Suppose that L v %7 is the subdirect product of Land . Then r = (r v «) N
n(rv ﬁ). As {a, ¢) evidently belongs to the right hand side, we get {a,c)er.
As is well-known, this implies that there exist pairs {u; v;) € (x N f) U {<a, b,
{b,ad} (i = 1,...,n) and non-constant unary derived operations hy, ..., h, of W,
such that

a= hl(ul)’ hl.(vl) = hz(“z)a hz(”z) = hs(“S)’
cor By i(Vamy) = hy(u,), hy(v,) =c.

Let us prove h;(v;) € U by induction with respect to i = 1,...,n. Letie {1, ..., n}
and suppose h;(v;))e U forallje{1,...,i — 1}. '

We have hy(u;)€U. Indeed, if i = 1, then hyu;) =aeU and if i 2 2, then
hy(u;) = h;_(v;-,) € U by the induction assumption.

As Cugvye(an p)u{<a, b),<{b,ad}, we have either <{u;v;yeanf or
u;, v; € U. In the first case (hy(u;), hi(v;)) € & N B, so that h(v;) € U. Suppose u;, v; €
€U. As u; is a subterm of h,(u;), we have hy(u;) = u; by the property of U. This
implies that h; is the identical mapping, since any non-constant unary derived opera-
tion of W, with a fixed point is identical. Especially, hy(v;) = v;e U.

We have proved hy(v;) e U for any i € {1, ..., n}. Especially, ¢ = h,(v,) € U. This is
evidently a contradiction. =m

References

[1] P. D. Bacsich and D. R. Hughes: Syntactic characterisations of amalgamation, convexity
and related properties. J. of Symbolic Logic 39 (1974), 433—451.

[2] B. Banaschewski and E. Nelson: Equational compactness in equational classes of algebras.
Algebra Universalis 2 (1972), 152—165.

[3] P. C. Eklof: Algebraic closure operators and strong amalgamation bases. Algebra Universalis
4 (1974), 89—98.

[4] T. Evans: Some connections between residual finiteness, finite embeddability and the word
problem. J. London Math. Soc. I (1969), 399—403.

413



[5]1 G. Grdtzer: Universal algebra. Van Nostrand, Princeton, New Jersey 1968.
[6] J. Jezek: An embedding of groupoids and monomorphisms into simple groupoids. Com-
mentationes Math. Univ. Carolinae 11 (1970), 91—98.
[7) J. JeZek: The existence of upper semicomplements in lattices of primitive classes. Com-
mentationes Math. Univ. Carolinae 12 (1971), 519—532.
[8] B. Jonsson: Extensions of relational structures. The theory of models, Proc. of the 1963
International Symposium at Berkeley, North-Holland, Amsterdam, 1965, 146—157.
[9] B. Jonsson: Algebras whose congruence lattices are distributive. Math. Scand. 21 (1967),
110—121.
[10] H.Lakser: Injective completeness of varieties of unary algebras: a remark on a paper of Higgs.
Algebra Universalis 3 (1973), 129—130.
[11] R. McKenzie: Definability in lattices of equational theories .Annals of math. logic 3 (1971),
197—237.
[12] Don Pigozzi: Amalgamation, congruence-extension, and interpolation properties in algebras.
Algebra Universalis 7 (1971), 269—349.
[13] J. Plonka: On the subdirect product of some equational classes of algebras. Math. Nachr.
63 (1974), 303—305.
[14] W. Taylor: Residually small varieties. Algebra Universalis 2 (1972), 33—53.

Author’s address: 186 00 Praha 8 - Karlin, Sokolovskd 83, CSSR (Matematicko-fyzikalni
fakulta UK).

414



		webmaster@dml.cz
	2020-07-03T00:59:21+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




