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1. INTRODUCTION

The present paper deals with the existence of solution of a certain 2 x 2 nolinear
system of conservation laws on the quadrant x > 0, t > 0, satisfying initial conditions
for t = 0, x > 0 and a boundary condition for x = 0, > 0. As an example of this
problem can be taken equations describing the flow of a gas caused by the action
of a piston. It is shown that such a mixed problem has a global generalized solution
provided the given initial and boundary functions have small variation (see Theorem
2.4). This solution is obtained by means of a difference scheme with a random choice
of mesh points. The scheme is similar to that used first by J. GLiMM [1] in the case
of the Cauchy problem for systems of conservation laws. As well as in this case the
proof of convergence of the scheme is based on a detailed investigation of certain
functionals representing the norm and variation of approximate solutions (Section
7). However, there are important modifications since we have to take into account
the influence of waves reflected on the boundary (Remark 7.3).

2. FORMULATION OF THE PROBLEM

We shall consider the following 2 x 2 system of conservation laws:

ou 0
2.1 — 4+ — f(u,v) =0,
@) 2 o)

ov 0
— + —g(u)=0.
ot 0x
*) This paper contains the results of the author’s CSc-thesis prepared during his stay at Faculty
of Mathematics and Physics, Charles University, Prague.
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Let F = (f, g) e C®(Q;) for a domain Q; = R?; vectors from Qp will be denoted
by U = (u,v), Uy = (ug, v5), U = (@, 7),... We suppose that the system (2.1) is
strictly hyperbolic in the sense that

(2.2) f(U)<0, g u)<0 forall UeQy

Il

{subscripts denote derivatives). Then for each U € @, the Jacobi matrix dF(U) of F
has two real distinct eigenvalues 4,(U) < 4,(U). We shall suppose

(23) L(U) <0 < 4,(U);

(this is the case e.g. for f = f(v)). The corresponding right eigenvectors of dF can
be written in the form r") = (1, a;), r® = (-1, a,), where a; = g,/2,. We shall
suppose that (2.1) is genuinely nonlinear in the sense of P. D. Lax [2], i.e.

(2.4) rO(U) grad 2(U) >0, UeQp, i=12.
Let us denote
R? ={(x,t)eR* t > T} for TeR, Q={(x,1)eR}; x> 0}.

We shall consider the following problem (#): Given functions U,(x), u(t), find
a function U(x, 1) satisfying the equations (2.1) on @, the initial conditions

(2:5) U(x,0) = Uy(x), x>0,
and the boundary condition
(2.6) u(0, 1) = uy(t), t>0.

Remark 2.1. The role of u and v is symmetric in the sense that instead of (2.6) we
can introduce an analogous boundary condition

(2.6%) v(0,1) = uy(r), t>0.

The possibility of introducing one boundary condition follows from general
considerations about correctness of boundary conditions for hyperbolic systems by
which the number of boundary conditions should be equal to the number of charac-
teristics starting on the boundary. Since we suppose (2.3), this number is one.

The form of the boundary condition is then closely related to the Riemann in-
variants — the functions w = w(u, v), z = z(u, v) with the property r'" grad w =
= r® grad z = 0 (see [2], [4]). The classical solution of (2.1) is equivalent to the
solution of the system

2.7) Zo+ Az =0, w,+ Aw,=0.

Since z is constant along the first characteristics by (2.7) and since 4, < 0, the values
z(0, 1) are determined by the given initial values z(x, 0). On the other hand w is
constant along the second characteristics and since 1, > 0, we can prescribe the
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values of w for x = 0. From these facts we can deduce the symmetry of u and v:
for a given u(0, t) or v(0, t) it suffices to find respectively v(0, t) or u(0, t)) such that
z(u(0, 1), v(0, 1)) = z(0, t); then we can determine the correct boundary condition
for w : w(0, 1) = w(u(0, 1), v(0, 1)). .

Remark 2.2. If F has the special form
F(u,v) = (ko™ —u), k>0, y>1,

then (2.1) is the system of gas dynamics describing the one-dimensional isentropic
flow of an ideal polytropic gas in Lagrange’s coordinates (see e.g. [4]; u means the
velocity and v the specific volume) and F satisfies (2.2)—(2.4) on Q; = {(u, v); v > 0}.
In this case the mixed problem (#) has the following physical interpretation: the
piston moves by a given speed u, into the gas with the initial state u,, v, and we seek
for the resulting flow of the gas. The condition (2.6) would mean that we know the
specific volume on the piston, i.e. the pressure on the piston, because p = kv™". =

Since, as well as in the case of the Cauchy problem, the nonlinear character of
equations (2.1) gives rise to discontinuities of the solution even for smooth Uy, uy,
we shall turn to the generalized solution:

Definition 2.3. Let U, € [Ly ;,.<0, 0)]?, u; € L; ;,.<0, o0) and let
(2.8) c;
(29) c,

Il

{p e CP(R?); sup ¢ is compact},
{y e C5; supp ¥ = {(x, 1) e R?; x > 0}}.

A generalized solution of the problem (%) is any function U € [Ly 1,.(Q)]*such
that F(U) € [Ly 1,(2)]* and

(2.10) J [Yu + ¢, f(U)] dx dt + J‘mlﬁ(x, 0) up(x)dx =0, Y eCiy,
o 0

(2.11) J [ow + ¢, g(u)] dx dt + wa(x, 0) vo(x) dx +

0

+Jm<p(0, t) g(u,(1))dt =0, ¢@eCZ. L

It is evident that the classical C"-solution of (2) is also a generalized solution.
On the other hand if U is a generalized solution of (#) such that U e C(, a standard
argument yields that (2.1), (2.5) hold and, further, g(uy(t)) = g(u(0, 1)), t > 0. But
then (2.6) immediately follows from (2.2) and so U is a classical solution, too.

In what follows we shall use the following notation:
N

for a vector V = (V;, ..., Vy) € R, let || = ¥ |Vi] be its norm;
i=1

for a function h, let ||k be its L, -norm.
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The aim of this paper is to prove the following global existence theorem:

Theorem 2.4. Let F = (f, g) satisfy (2.2)——(2.4). Then for each Ue Qg there
exist constants d > 0, ¢ > 0 such that if Uy €[L,<0, o)]%, uy € L <0, ) satisfy

)

(2.12) max [|Uy — U

uy — ii|, VarU,, Varu,] < d,
{0,x) {0,x)

then there exists a generalized solution U €[L,(Q)]* of the problem (2). This
solution satisfies the inequalities

@13) U~ O] £ o|Uo - O] + Ju; — a] + Var Uy + Varu,):
€0,) {0,00)

(2.14) VarU(+, 1) £ (|Uo — O| + |luy — @] + Var U, + Varuy)
<0,) <0,m) <0,x)
foreach t=0;

(2.15) f :|U(x, t;) — U(x, ;)] dx <

< iy = 1] (U = O] + o = ] + Yar Uy + Var )

foreach t, =20, t,=0.

3. AUXILIARY RESULTS

Our construction of approximate solutions is based on simple and shock waves
which are particular solutions of the so called initial Riemann problem:

U + FU),=0 for xeR, >0,
U(x,0)= U, for x<0, U(x,0)=Ug for x>0,

where Uy, Uy are given constant vectors from Q.. We shall refer to this problem
briefly as to IRP(U , Upg).

The i-th simple rarefaction wave (centered at the origin), i = 1,2, is such
a continuous solution of JRP(U,, Uy) that the i-th Riemann invariant is constant
in Rg. The i-th shock wave, i = 1,2, is any piece-wise constant solution of
IRP(UL, Uy) with a discontinuity at a half-line x = o, ¢t > 0, satisfying the jump
conditions

W(Ug) <06 <2(Uy), 4i-4(Ur) <0 < 4i11(Ug).

(The solutions are of course taken in the generalized sense.) Both rarefaction and
shock wave shall be called briefly waves. The waves are functions of x/t (the so called
automodel functions); the i-th rarefaction waves are constant outside the sector
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{(x, 1) e R; 2(Uy) < x[t < 2{(UR)} (for a more detailed study of the waves see [2],
[3], [4]) The following “wave parametrization™ theorem is known (see [3]):

Theorem 3.1. For each U, € Qp there exist curves V(Uy, u), V{(Uq, u), i = 1,2,
defined and once continuously differentiable for u near to u,, V{(U,, up) =
= Vi(Uy, uq) = vy, such that Uy and (u, V{Ug, u)) (U, and (u, V{(U,, u))) can
be connected from the left to the right (from the right to the left, respectively)
by an i-th wave; if we define a parameter o by the relation

su—uy for i=1,
\uo—u for =2,

(3.1) o

Il

then for « 2 0 (respectively, « < 0) this wave is a rarefaction one, otherwise it is
a shock.

By means of the curves ¥; and the parameter « from (3.1) we shall characterize all
waves connecting some vectors from the left to the right; so the i-th wave a is a rare-
faction cne iff @ = 0 and a shock iff o < 0.

Since 4y < 2,, the first wave o connecting U, and U,, and the second wave «,
connecting Uy, abd Uy can be fitted together to form a solution of IRP(Uy, Up).
We shall say that such a solution is represented by the wave a = (o, «,) and write
@ : Uy > Upg; the first (second) wave o can be taken as the “vector-wave” « = (2, 0)

(& = (0, ).

Theorem 3.2. For each Uge Qp there exist constants d3(Ug) > 0, dy(Uy) > 0
such that for U; € Qp, IU,» — Uol < dy(Uy), i = 1,2, there exists a unique solution
of IRP(U,, U,) represented by the wave & with [s| < d,(Uy).

For the proof see [2], [4].

Definition 3.3. Let
(32) ot =max(0,0), o~ = min(0,a).

For a sequence (finite or not) of waves &', &%, ... we define
2
(33) D(e', & ...) = Z|s§| |s§| +"zl ;{[(8;‘)_1 ls,il + |(£,ﬁ)+] ‘(e,’c)_l} . "
i<j k=1 1%+j

Remark 3.4. In the terminology of approaching waves (see [1]) we can write
D(g', ...) as follows:
D(e'. e%,...) = Y-{|ei| |&J]; & and & approach} ;

so D “measures” the influence of possible interactions between the waves &. (Two
waves «, f approach (each other) iff they can interact in a finite time.) .
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In [1] J. Guimm has proved an important theorem concerning “‘composing”
of Riemann problems. We give here its slight generalization suitable for our purposes:

Theorem 3.5. Let Uge Qp be fixed and let U;e Qp, |U; — Uy| < dy(Uy), i =
=1,2,3,4¢e:U U, &' :U;_; U, i=273,4 Then

(3.4) g =0 +o +of + D e’ a*)0(1), i=12,

where the function O(1) is uniform in the sense that there exists a constant K{(U,) >
> 0 such that

(3‘5) IO(I)‘ = Kl(UO) for all o o, a* considered .

“Wave” solutions U of IRP(U, Uy) are in general defined a.e. in Rj; if we put
U(x,0) = U, for x £0, U(x,0) = Uy for x >0 and U(x, 1) = U(x,t — 0) =
= lim U(x, s) on a possible line of discontinuity, U is defined everywhere in RZ.

s—=t—0
For two different points a, b€ R? we denote by {a — b} the segment with the
endpoints a, b.

Definition 3.6. Let {a' — a?} = R}, a' = (al, al), i = 1,2, and let the wave a
represent the solution U of IRP(Uy, Uy) for some U, Up. Then the wave a n
n {a' — a?} is defined as follows:

If al,la; < a2/a} and if & coincides with an i-th wave a, i € {1, 2}, then

for « <0, set an{a' —a?} =0 if U(a')=U(a’) and an{a' — a*} =«

otherwise;

for a 2 0 there exists a rarefaction wave B:U(a')—U(a®), 0 < B < a; set

anf{a' —a*} =

Further
2 _ 1 1o 2 2
o {al _ az} =N {a a } for a,;/a; > a;/a; s
-0 for ayla; = ajla} ;
anf{a' —a*} = (¢ n{a" = a*}, o, 0 {a' — a?}).

For a,be{t =0} set « n{a — b} = «a n {G@ — b}, where 4, b are such points
that U(a) = U(a), U(b) = U(b).

For ¢/ ={a° —a'} u{a' —a*}, a’eR;, i =0,1,2, such that a. '[a]”' <
<allal,i=1,2setant =an{a® — a*}. -

The total variation Var ¢ of a function ¢ over the interval {(x, y) = R is defined
(x>
as usual, moreover,

Var ¢ = sup Var ¢,

{x,m) y>x (x,p>
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For ¢ defined on R?, {a — b} = R?, let the variation of ¢ along the segment
{a — b} be

Var ¢ = Var ¢*
{a—b} {0,1)
where

0*(¢) = o(a, + &b, — a,), a, + &b, — a,)), £€0,1).

Lemma 3.7. Let Uy e Q. Then there exist constants c¢(Ug) > 0, i = 1,2,
ds(Uo)e(O, d3(U0)> with the following properties: for all U;€ Qp such that
]U,- - UOI < dy(Uy), i = 1,2, and for the solution U of IRP(U,, U,) given by
the wave & : Uy — U, it holds
(3:6) [U(x, 1) = U] < |e]fei(Ug), (x,1)eRG, i=1,2;

(3.7) a(Ug) U, = U,| = ls| < ¢;(Up) |Uy = Uyl

If moreover |U; — U0| < dg(Uy), i = 1,2, then
(9) U, ) - U]

IIA

dy(Uo) forall (x.t)eRj
and for each segment {a — b} = R we have

(3.9) ¢;(Ug) Var U £ [e v {a — b}| £ ¢y(U,) Var U .
ta—b} {a—b}

We omit the proof since it is not difficult and follows from the definitions and the
automodel character of U.

4. MIXED RIEMANN PROBLEM

We can pose a problem analogous to the initial-value Riemann problem: to find
a solution U of the system (2.1) on Q satisfying the initial condition U(x, 0) = U,
x > 0, and the boundary condition u(0, t) = uy, t > 0, where U,, u, are given
constants. In what follows we shall refer to such a problem as to a mixed Riemann
problem or briefly MRP(uy, U,).

Theorem 4.1. Let U e Qp. Then there exists a constant ¢*(U) > 0 such that if
Uy e Qp, uy e R satisfy [UO - UI < dy(0), |u1. - ﬁl < d5(0) then there exists
a solution U of MRP(uy, U,) given by the second wave ¢ and satisfying the ine-
quality

(4.1) |v(0, 1) — vo| < o*(0) ,a] , t>0.

Proof. Let U; = (uy, V5(Uy, uy)). There exists a solution U* of IRP(U,, U,)
given by the second wave ¢ = u, — u,; for U* we have"

w0, 8) = uy, t>0; U*x,0)=U,, x>0.
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Hence it is sufficient to put U = U*[Q. (Geometrically the solution of MRP(uy, Uy)
is represented by the intersection U of the curve V,(U,, *) with the line u = ug.)
Since v(0, 1) = v, for all 1 > 0, we have

[0(0, 1) — vo| = |Va(Uq, uy) — Va(Uo, uo)|

and consequently it suffices to put

*(0) = sup {‘% (U, )
ou

s U= 0] 2dy(0), |a—a] < d3((7)}. =

In what follows we shall consider only solutions of MRP of the type constructed
in the proof of Theorem 4.1. This agreement makes our considerations unambiguous
although no uniqueness is established.

Remark 4.2. Since all results from Sections 3,4 are invariant with respect to transla-
tion of the origin, we can apply them to the problem
U+ FU),=0 on Rf, Tz=0;
Ux,T)=U, for x<X, U(x,T)=Ug for x>X, XeR.

We shall call such a problem IRP(U,, Ug) with the center (X, T); analogously
for MRP and waves arising from these problems. u

5. DIFFERENCE SCHEME AND APPROXIMATE SOLUTIONS

In what follows we shall confine ourselves to certain local character of initial and
boundary functions in the sense that for certain fixed U € @, and sufficiently small
constant ds, > 0 we suppose

(5.1) max [|Uy — U

|, |uy — @], Var Uy, Varu,] < ds, .
{0,0c) 0,%)

Let us start from the restriction

(5.2) dso < dg(0)

and denote d; = dy(U), dg = dg(U), ¢* = ¢*(U). Further let
pF:

Ao

It

sup {|L(U)]; [U = U] = (1 + ¢*)ds},
sup (@0 ) U~ O d o] = o = 1.2},

Il

where

(U, a) = (u+ oy — oy Vy((u + oy, Vi(Usu + o)), u + oy — 1)) -
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We fix a constant g, > 0 such that
(5.3) go > 2 max [Ag, Zg]
and from now on we shall suppose that r > 0, s > 0 satisfy

,
(5-4) - =
N
so that s = s(r) is a function of r.
Let N = {1,2,...} be the set of all natural numbers, N = {0} U N.
Now we define

Y

il

{(m, n)eN?; m + n is even}
and for (m, n)e Ylet 4,,, = A,.,(r) = @ be the horizontal line-segment

Apn = {(x,ns); max[0,(m — 1) r] S x < (m+ 1)r}.
Finally, let

A =A(r)= ] Awir).

(m,n)eY

An infinite vector a = {a,,,,,,} € A will represent a random choice of mesh points in our
difference scheme.

Given r > 0 and a € A(r), the approximate solution U, , of the mixed problem (%)
is constructed as follows:

1° Let
(5.5) Ug.(x) = Ug(mr) for xe(max[0,(m — 1)r], (m +1)ry, meN even;
u, ft) = uy(ns) for tel(n—1)s (n+1)s), neN odd;
and further
(5.6) U, ox,0) = Uy (x) for x>0.
Then (5.1) implies

(5.7)

for n = 0, meN even.

Ur,a(am,n) - UI g d3

2° Suppose that for n e N the approximate solution U, , is defined for t < ns,
x = 0 and that (5.7) holds for all m € N, m + n even. Let us denote

(5.8) my = my(n) = min {meN; (m,n)eY}.

By (5.7) and Theorem 3.2, for each m = mq + 2, (m, n) € Y there exists a solution
U™" of IRP(U, (ay—3 1), Uy (@, ) With the center ((m — 1) r, ns) given by the wave

sm,n : Ur,a(am—Z,n) = Ur,a(am,n)
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with the same center. We define

(5:9) U, x,t) = U™(x, 1) for te(ns, (n+1)s),
\
xe(max[g, (m — 2)r], mr), m=mg + 2.

Further, by Theorem 4.1 there exists a solution U™ of MRP(uy (ns), U, (dy,.n))
with the center (0, ns) given by the second wave g™, Then we define

(5.10) U, (x,1) = U™"(x,1) for xe <0, max [g, mor]> ,
tens,(n + 1)s).
Relations (5.9), (5.10) define U, , on the strip
(5.11) m, = {(x,1)eQ; tens,(n + 1) s)} .
3° At the mesh points on the line t = (n + 1) s we define
(5.12) Ur@mpss) = U f@yner, (0 +1)s = 0), (mn+1)ey,

where a,, , denotes the x-coordinate of the point a

m,n*

4° On the line t = (n + 1) s we set
(5.13) U, u(x,(n 4+ 1)s) = U, (apns,) for xe(max[0,(m —1)r], (m + 1)r).

5° Relations (5.9)—(5.13) define U, , on IT, and we can repeat our construction
from the item 2° provided (5.7) holds for n + 1 and all m such that m + n + 1 is
even.

If (5.7) holds for all (m, n) € Y then the approximate solution U, , is defined on
the whole quadrant @; this will be proved for sufficiently small ds, in the following
sections. The initial restriction (5.2) implies that U, , is defined at least for ¢ < 2s.

Lemma 5.1. The waves g™", (m, n) e Y do not intersect each other in the strip o,
and consequently, U, , is an exact solution of the system (2.1) in the strip II,.

Proof of Lemma follows immediately from conditions (5.3), (5.4) and from the
basic properties of rarefaction and shock waves. [ ]
6. J-CURVES

By an f-curve we mean, roughly speaking, an infinite piece-wise linear curve
starting on the line x = 0 and connecting the mesh points a,,  pm+1,5 # = n = L.
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Definition 6.1. Let b, = (0,(n + 4)s), neN. For a given neN let the first
segment of an f-curve f starting at its origin b, be one of the following segments:
{by = Amomym}> {bn = Aumoms 1y 1} (Mo(n) is defined by (5.8)). If we have defined
a part J* of # and

m = max {171; Az n € J*} , then the next segment of £ is
{am,n - am+1,n+1} or {am,n - am+1,n—1} .

The mesh points a,, ,€ #, b, € # are called vertices of .#, the set of all vertices is
denoted by V().

We shall confine our consideration to #-curves lying in the strip IT, U I, for
some n € N and denote by [#] the set of all such curves.

Finally, the first #-curve 0 € [#] is defined as

0

I

{bo — ago} v{ago —ayJuiay, —ayelvu..., 0cl. -

Each S-curve . € [#] divides the domain {(x, )€ R?; x > 0} into two com-
ponents; we denote Q(#) the one of them for which () = {(x,1); x > 0, t < 0}.

Definition 6.2. Let £, # € [#] be two J-curves. We say that & < ¢ iff Q(#) <
< Q(#) (i-e. # lies toward the larger time then .#). =

Lemma 6.3. 1° The set [.#] is partially ordered by the relation <.

2° The curve 0 is the least element of [ ], i.e. O < # for all g €[F], # + 0.
3° The set [F] satisfies the condition of minimality, i.e. each nonempty subset

B < [#] has a minimal element — such a curve Sy € B that for 5 € B it is not
I < Ip.

Proof of the first two items of Lemma follows immediately from the definitions.
As to the item 3°, one of minimal elements of B can be constructed by induction as
follows: Let

I

ng =min{neN; b,e #eB}, n; =min{neN; {b,, —a,,} < FeB};
‘= {b"o - amo('lx),m} .

Evidently #; = .# for some .# € B. Having constructed segments ¢; = {a
— A} ¥) i =1,2, .., k, we put

mi—1,n;—1 —

k
My =min{neN; a, ,,,€5€B, Ul S},
i=1
liv1 = {amkv"k - amk+1v"k+l} .
*) Here formally Ay~ o = b

no*
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Evidently, the J-curve £z = U /; belongs to B. If ., were not a minimal element
i=1
k*

of B, then there would exist #* € B and k* € N such that #* < Sgand U /; = F¥,
i=1

lisy1 & F*. But this would contradict to the definition of n., . n

Definition 6.4. Let #, ¢ € [#] be two J-curves. We say that # is the successor
of  iff one of the following possibilities holds:

(6.1) VIONV(E) =dpps V(I)NV(F) =ap,-r, (mn)eY;
(6.2) VA)NV(E) =0,  V(FH)\V(F) =a,, or
V(ANV(F) = ag,, V(F)\V(F) =0, neven;
(6.3) V(L)NV(F) = byeyr V(F)NV(F) =b,, neN. -

7. FUNCTIONALS Fy, F,

We shall introduce real functions F; : [f] — <0, o), i = 1, 2, which, in a sense,
represent apirori estimates of the variation and the norm of the approximate solution.
Since in this section we shall deal only with fixed r, a we shall write briefly U(x, )
instead of U, ,(x, 1).

Definition 7.1. Let the approximate solution U be defined along the curve £ € [#].
We define the waves ™" N .Z, (m, n) € Y as follows:

1° For m21let /*=J0[{ap-2,— AGuotnt1} Y{Gm-tms1 — Auat]*)- If
{* % 0, we put &"" N £ = g™" N ¢* (see Definition 3.6).

2° Form=1land/¢* =0let/, =S n{b,—a,,}. I/ +0 wepute'"n S =
=g'"nl =g

3° For m = 0 and n even the curve .# can ‘“‘come back” into the wave " and can
intersect this wave even three times. Therefore we define £°" N £ as a set of

one or two waves taking into account only the segments of .# intersecting £°"
in the direction of increasing x:

3a° If {b,, dgu Ay ns1> G20y < V(F) and a3 4y < r[2 then
" g =" 0 {ay g — azal}.
36° If {by, @1 pis> Az sz} < V(F) and do,n ¢ F then
2" = {0 {b, - ag )}

*) Here formally a_; , = b,.

80



3C0 If {bn+1’ al,n+1’ aZ,n} < V(j) or {bn—ly aO,n’ Ayn+1s aZ."} < V(j) and lf
a) .41 < r/2 then

"N I =" {ay .0y — a2al) -
3d° If {b,, ag  ay u-1} = V(F), @) nsy = r[2 or if {b,. o ay u-y} = V(F) or if
{by, ay pirs 0y, < V(F), agn¢F or if {b,, g, di ns1> 2,042} < V(F) then
&g = {2

4° In all other cases except 1°—3° we take ¢™" N £ as an empty (nonexisting)
wave (e.g. if €™" is not defined or if £ N 1, = 0). n
For J e [#] we denote by ¢(#) the set of all nonempty waves &™" N .# inter-
secting the curve .#. We arrange the countable set ¢(.#) into a sequence {a'} 2, = &(#)
in such a way that i > j iff «' intersects .# after (toward the larger x than) /.

Definition 7.2. Let U be defined along . € [#], ¢(f) = {@'}72,. o = (af, o).
We define the following functionals:

(1) L(F) Ei§114i| ;

(72)  007) =Dt )+ B {J) ] + ()| (o] + 1))

(7.3) F(f) = L(#) + 14K, 0(¥) ;

where D has been introduced in Definition 3.3 and K; = K,(U) > 0 is the constant
from Theorem 3.5. n

Remark 7.3. As follows from the proof of Lemma 7.4, the functional L represents
the variation of the approximate solution U. However, suitable estimates cannot
be proved directly for L, which is why certain “correction” 14K, Q is added to L.

The functional Q can be interpreted as the influence of the interactions of waves
from the approximate solution: D represents the waves which can interact directly
(see Remark 3.4) while the other terms on the right-hand side of (7.2) represent the
influence of waves reflecting on the boundary x = 0 (i.e. on the head of the piston
in the physical interpretation of Remark 2.2). Since 4; < 0, the waves of the first
family intersect the line x = O at a finite time T > 0; for ¢ > T the solution of the
mixed problem has the character of a wave of the second family of the opposite
kind — i.e., a rarefaction wave if the initial wave is a shock and a shock wave if the
initial wave is a rarefaction one (see e.g. [4] for the equations of gas dynamics).
To the interaction of reflected waves, we can then apply again Remark 3.4. =

Lemma 7.4. Let U be defined along S € [#]. Then
(1.4) Fi(#) < [1 + 28K, L(#)] L(#).
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If, moreover, ¥ < II, for some n e N and

(7.5) |U(b) - UI < dg forall beV(s),

then

(7.6) Var U(+, 1) < iFl(f), ns<t=(n+1)s.
{0,0) cq

Finally,

(7.7) Fi(0) = cu[(g’ar)Uo + |[Uo = O] + u, — @[T,

where

(7.8) i1 =2+ ¢y) (1 + 84K1(2 + cz) dso) -

(c; = ¢(0), i = 1,2, are the constants from Lemma 3.7.)

Proof. Evidently D(«', &%, ...) < Z |at| |o/| = [L(#)]* and analogously for the

other terms in (7.2). Therefore Q(ﬂ) < 2[L(J’)]2 and we immediately obtain (7.4).
Further, if # < II,, n e N, then

(7.9) L)z Y |e™] .
Using Lemma 3.7 we get for te<ns, (n + 1)s)

(7.10) [em

> ¢ Var u(-,1).
{(max[0,(m—2)r],mr)

Since L(#) < F(#), (7.9) and (7.10) imply (7.6). Finally
1(0) 5 2] + 3 i)
and since | 2| = [uo(0) — u,(s)|, U(+, 0) = U, ,, we obtain by means of Lemma 3.7
| 1O S @+ e[ Yor Uy, + [uo©) ~ )]
and (7.7) follows by direct computation. (Let us observe that the inequality in (7.9)

can hold iff n is even and &°" n # = {¢”"}, so in all other cases we have moreover
L(#) £ ¢, Var U(+, 1).) =
<0,)

Definition 7.5. Let U be defined along £ € [#£]. For @y, ., €7 let &(a, .05 )
be the set of all waves « N ¢ where a € &(.#) and / = # is a segment of the form
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{1+ = @uu} or {b,. — a,,}. m < my. For b,e s let &b,; #) = 0. Further
let be V(#). We put

(7.11) Lb; o)=Y o,

weli)

(7.12) Fy(b; ) = ¢o|U(b) — U] + L(b; #) + 14K, Q(#),

where

(7.13) ¢o = min [cg, (1 4 ¢*)7']

Finally let

(7.14) F,(#) = sup F,(b; #). m
beV (1)

Lemma 7.6. Let U be defined along J € [#]. Then
(7.15) [u(p) — U] = 1 Fy(#)
Co

for each b € V(F). Moreover, if (7.5) holds then (7.15) is true for all b€ #. Finally

(7.16) Fy(0) £ co(|Uo = T + |Ju, — il +<\gar)U0),
where
(7.17) Cia = Co + 244 .

Proof. Inequality (7.15) for be V(#) follows directly from the definition of F,.
Let (x,7)e.# and suppose (x,t)e/, where ¢ = {a,_,, — a,,} or £ =
= {b, — a,,} [n — n’| £ 1. Let e.g. (for the sake of definiteness) n’ = n + 1 and
put @ = ¢"" n /. Then

[U(x, 1) — U(a,,,',,)[ < VvarU < L |a|
‘ c

1

by Lemma 3.7 and therefore

(7.18) |U(x, 1) — 0] = 1 le| + |U(a,..) — O]
C1
Evidentely & € &(d,,»; #) *) so that (7.18) implies
eo|U(x, 1) = U] £ L(apn; #) + co|U(an,) — O] < Fy(a,,.; #)

*) For m =0, a ¢ &(am,,; #) may occur, but in this case %" € &(a,, ,; #), ¢°"| = |a| and
so it suffices to replace a by £%".
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and consequently (7.15) holds for b = (x, t). Finally, since ds, < dg we can apply
the preceding estimates to the curve 0, in particular for b = a,; we have
co|U(a,, () — U| £ Fy(a,+1,0; 0) and therefore

Fy(0) < ¢co sup |U(as0) — O] + 2 F4(0)
because L(b; 0) = L(0). Then (7.16) is obtained by means of Lemma 7.4. u

Lemma 7.7. Let ¢ € [J] be a successor of S €[#] of the type (6.1). Let U be
defined along S so that (1.5) holds and let further

(7.19) Fy(#) £ e3(#) dso, ¢(#) >0,
(7.20) dso < min [dg, (c3(#) 14K,)7'] .
Then U is defined also along ¢ and

(7.21) F(#)SF(F), i=12.

Proof. The curves £, ¢ differ in the diamond A with the vertices a,, ,, @y, n- 2,
Q- tm—1s Ami1n—1- From (7.5) it follows that there exists a solution of
IRP(U(@p—1 1), U(dys 1 n—1)) and so U is defined along 7.

While the upper part # \.# of A is intersected by one wave ¢"*!"~! the lower
part #\ # of A can be intersected by two or three waves. However, the proofs are
similar in both cases. Let us consider the case m = 2, a} ,_; < r/[2, i.e. the case of
three waves. Denote &(#) = {a'}, &(#) = {f'} and y = *" "> n {a; ,-1 — az,-2},
d="""2n{ay,-2 — Ayn-1) B=&""" &= 2" 2, D = D(y, &, 6).

Comparing &(,#) and &(.#) we see that = B> and
(722) L) =LA+ [B] = || = [e] = ]9]

(7.23) 0(#) = O(#) = D+ |B2| (|Bs| = [es] = [0:]) +
+|(B2) 7 (8] = [ra] = [ea] = [62]) +
+ B2 ()] = )] = |e2) 7] = [(82)7]) +

+ (607 = )] = ) DT +

+ (67 = I = 160D Z )] +

+ (18] = ol = [ea] = o) 3 82 +

+ (67 = 62)7] = [ ] = 1@ DT 85 +
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8] = 1691 = 162)"] = [ D Z 8] +
#60°] "] - 0 D8 +

BT 607 - 160 DE R+ ) +
+ (=) ] 0] = [(e) 7| []8:] + |(52)7[]) =

EQ(J)—D+qI+q2+...+q“.
By Theorem 3.5 we obtain §; = y; + ¢; + 6; + D O(1), i = 1, 2, and consequently
(7.25) 4;= B = |vi| = |ei] — |6 = DKy, i=1,2.
Further if (8;)” # 0 then

@ = 16971 = 007] = @] = 1607 [= =g = [6)7] = - =
= -y —¢&—90—-DO(1) - I(Vi)—l - =
< |07 + |7 + [6)7] + plo()] = || = -
and therefore
(7.26) g, < DK,, i=12,

since evidently ¢; < 0 for (8;)” = 0. Analogously (it is y; = 0)
(.27 B)°] - le)*| ~ 1(:)°] = DK,
Inequalities (7.25)—(7.26) imply

g; < DK L(#), j=12,..,10,
and since g;; < 0, we get
(7.28) 0(f) £ 0(#) + (10K, L(#) — 1) D.
Then we obtain from (7.25), (7.28)
(7.29) 4y + 4, + 14K1 O(F) = [2 + 140K, L(#) — 14] KD + 14K, O(f).
In virtue of (7.19), (7.20)
(7.30) 2+ 140K, L(#) — 14 £2+ 10 - 14 <0,
and therefore ’
(7.31) 18] — |7l — el — 18] + 14K, 0(#) = 14K, 0(~).
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Similarly Q(#) < Q(#) + D[10K; c5(#) ds, — 1] < Q(#) + D[(10/14) — 1] and
so
(7.32) o(#) = 9(4)-
Now (7.21) for i = 1 immediately follows from (7.22) and (7.31).
Taking account of (7.31), (7.32) one can easily show that
(7.33) Fy(b; #) £ Fy(b; #) for beV(F)n V(7).

3,n—1 3on—1

— 2 —
If we denote ¢' =&" ' n{a,,_{ —a,,}, o>’ =¢ n{a,, — as,_}, then

L(ay 5 F) = L(as,-13#) + |0'| = | = |e] - |9].
|U(a2’,,) - Ul = [U(as,n—l) - Ul + |‘p2!/cl :

Since |@'| + |¢?| = |B|, we obtain by means of (7.31)

(7'34) Fz(az,,,; f) = C9|U(as,n—1.) - UI + L(as,n—lj f) +
+ |8 = Il = le| = [o] + 14K, () < Fafaz 15 #)
Now (7.21) for i = 2 follows from (7.33), (7.34). "

Lemma 7.8. Let ¢ €[] be a successor of # € [F] of the type (6.2) and let U
be defined along #. Then U is defined also along # and (7.21) holds.

Proof. Since V(#) = V() or V(#) = V(F) v {agn}, F = {byey — ayn_1} U
U[f nF], Uis defined along #. Comparing &(.#), &(#) we see that g(f) =
= f)u{e®" n{ag, — ay 1)} for V(L)\V(F) =0, a),.1 <r[2, otherwise
&(,#) = &(#). Hence the rest of the proof is easy. =

Lemma 7.9. Let ¢ €[] be a successor of J e [.F] of the type (6.3) for n even
and let U be defined along # such that

(7.35) |U(ay uee) — O] S ds .
Then U is defined also along ¢ and (7.21) holds.

Proof. We have f\j = {bn+1 - al,n+1}’ f\j = {bn - al_,n+1}a h even.
Since by Theorem 4.1 there exists a solution of MRP(u,((n + 1)s), U(ay n+1)),
U is defined along ,#. Denote &(f) = {«'}2,, &(#) = {B'}, and

— <a2 = 82’" N {bn - al,n+1} lf a‘l,n+1 > r/2 >
Y= .
0 otherwise .
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Evidently «' = %" n {b, — a; 44}, B* =¢&'"*'. Comparing &(#), &(#) we sec
that

(136 L) = L)+ B - ] - b
(037 0W) = 00) = D) + )| - )|~ 0 13 +
+ 016 ] = 162" =l S 18t] + 1611 -
~ [ 5 2084 + 6871 -
— o [ E 6|+ 8 =

= Q(F) — D(a',7) + gy + g, + 43 + qa -

Since a) ,4 < r/2 implies @' = ' and y = 0, we can confine ourselves to the case
ay ,+1 > r[2. By the definition of U, u;, we have u(b,,+1) = u(b,,) = u,((n + 1) S).
Hence

a = "(bn) - “(ao,n) . B= u(b,,) - “(al,n+1)
and further

Y1 = “('"’ (n+ 1/2) 5) - “(ao,n) , V2 = “(", (” +1/2) S) - “(al,n+1)-

Therefore B3 = a;, — y; + 7, and

039 (B = max(, —8) = [ + [60°] + [T,
(7.39) (8] = max 0. 89 = [(@)*] + ()] + 0]
(740) 91 1o + .

Now (7.38), (7.39) imply q; + g, <0, g, + g5 < 0 and hence

(7.41) 0(#) £ 0(¥).

Since L(#) < L(#) by (7.36) and (7.40), (7.41) yields Fi(#) = F(#). Further
L(b; #) = L(b; #) + |B'| — |#'] = |s| for beV(#)O V(#) and therefore using
(7.40), (7.41) we see that

(7.42) F,(b; #) < Fy(b; #)

for be V(#)n V(#). Since L(b,.q; #) = L(ay ,+15 F) = |a'] = [y], we obtain
from (4.1)

(7.43) Fobyass ) < co]U(as ps1) = O] + co(l + ) [B'] +

+ L(ag i #) = |ot] = | + 14K1 QF)-
But ¢o(1 + c*) < 1 and so (7.40), (7.41), (7.43) imply (7:42) for b = b, ;. Hence
F,(#) £ F,(#) and the proof is complete. =
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Lemma 7.10. Let # € [#] be a successor of €[] of the type (6.3) for n odd
and let U be defined along # such that

(7.44) |U(aons1) — U] < ds
and (7.19), (7.20) hold. Then U is defined also along ¢ and
(7.45) F#) S F(F) + 2ui((n + 2)s) — uy(ns)|, i=1,2.

Proof. Since #NJ = {b,s; — G941}, FNF ={b, — ag s}, n odd and
since (7.44) holds, Theorem 4.1 implies that U is defined at b, ; and hence along #.
Let y = &' " n {b, — ag,}, &(F) = {«'}, () = {B'} sevidently £°"*! = B'. Then

(7.46) B2 =172 + u(byiy) — u(b,) .

Further, L(#) = L(#) + |"| — |»| and
0(#) = 0(#) + S8 = D 185+ (8| = [6) ) I +
+6°] = 102D 1) 10

From (7.46) it follows
(7.47) B3] = 7] = [u(buss) = u(bi)]
|(82)*] = [2)*] + [u(bus 1) — u(by)

Then
(7.48) L(#) £ L(F) + |u(basy) — u(by)|,
0(#) = Q(#) + |u(buss) — u(b,)| L(#),
and using (7.19), (7.20) we obtain
(7.49) Fi(#) < F((#) + [1 + 14K, L(#)] u(b,+s) — u(b,)| <
< Fy(#) + 2u(basy) — u(b,)| .

Since u(b,) = u(ns), u(by+1) = u((n + 2)s), (7.49) implies (7.45) for i = 1.
It b e V(£) A V(#)then L(b; #) < L(b; #) + |B'| — |y| < L(b; #) + |u(bys ) —
— u(b,)| and by means of (7.48), (7.19), (7.20) we get

(7.50) Fy(b; #) = Fa(b; #) + 2Ju(b,ss) — u(b,) -

Using (4.1) we see that [U(ba+1) — O| < |U(agmer) = O] + (1 + ¢¥) |B'| and since
L(bys1; £) = L(ag ne1;#) — |y|, the inequality

Fi(bysss £) S €0|U(@onr1) = O] + eo(1 + c*) [B'] = o] +
+ L(ao,n+1; f) + 14K, Q(j)

88



holds. Then (7.47), (7.48), (7.19) and (7.20) imply (7.50) for b = b,,, and hence
(7.45) holds for i = 2, too. =

8. ESTIMATES FOR THE APPROXIMATE SOLUTIONS

Let us define

(8.1) ¢y =2+ ¢,) (1 + 84K (2 + ¢)dg), Ty = co + 284, ;
Gii 4+ 2 Ty +2

8.2 Cia =max | — = 12~

(82) y [

The constants dg, ¢q, C1y, €12, €14 do not depend on ds, but only on the function
F = (f, g) and the fixed vector U € Q. Since ds, < dj it is evident (compare (7.8),
(7.17)) that

(8.3) €11 £ Ciy, Cip S €y

Theorem 8.1. Let (5.1) hold with

(8.4) dso < min [ds,—ﬂs— , ‘1_‘] =ds, .

dey” S6K(2 + ¢py)

Then for each ae A, r > 0 the approximate solution U, , is defined on the whole
set @ and for te (ns,(n + 1)s), neN, x 2 0 it satisfies

(8.5)

U, (x,1) = 0] <

< e (JUo — O + JJug — ] + Var U, + Var u;) < ds,
0,0c) {0,(n+1)s)
(8.6) Var U, (-, 1) £
{0,0)
< e (U0 = O + |Ju, —d| + Var Uy, + Var u;)<dy.
) {0,(n+1)s)

Proof. For # e[#] starting at b,, neN we put n(#) = n. Further we fix
a€eA, r > 0and denote U = U, ,.

Let [#]° be the set of all F-curves # € [.#] wit the properties
(8.7) U is defined along ¢ ;

(8.8) Fy(#) £ eu(|Uo = O + JJuy —af +
n(¥%) .
+ Var Uy + 2 |uy (is) — uy (i = 1)5)]),
{0,) i=1
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(8.9) Fy(f) € ea(|Uo — O + [luy — @] +
+<\O/’a;‘)U0 + 2:;)|uly,.(is) —uy ((i = 1)s)]).

Now it is sufficient to show
(8.10) [#1° =[r].
Indeed, each (x, t) € @ lies in a strip I7,, n € N and there exists an f-curve ¢ < II,.

Since ,# € [#]° by (8.10), (8.7) implies that U is defined on IT,, in particular at (x, ).
Further n(,#) = n and

n(f)
(8.11) Y luois) — ug {(i — 1)s)| £ Var u; < dso.

i=1 €0, (n+1)s)
Taking into account (8.11), (8.9) and (7.15) we see that |U(b) — U| < dg for b e V(#).
Therefore we can apply Lemma 7.6 to the point b = (x, f) and with the help of
(8.9), (8.11) we immediately obtain (8.5). Further Var U(-, t) £ F;(,#)/c; by Lemma
7.4 which yields (8.6) by means of (8.8), (8.11).

Thus it remains to prove (8.10). Since the set [#] is partially ordered and satisfies

the condition of minimality (see Lemma 6.3), it is sufficient to prove the following
implication:

(8.12) If #e[s] and if # e [#]° for each S € [#] such that # < ¢, then
Jels].
Indeed, (8.12) implies (8.10) by the principle of Noether induction.

In particular (8.12) requires 0 € [.#]° But this is an immediate consequence of
Lemmas 7.4, 7.6 and (8.3). Further let ¢ € [.#], # % 0. Then there exists . € [ ]
such that # is a successor of .#. Consequently .# < ¢ and therefore .# € [/]°
by the induction assumption. Then again |U(b) — U| < dg for be V(#) and
Fi(F) < 4(Cyq + 2)dso by (8.8), (8.11). (5.1). Hence if we put c3(#) = 4(¢;, + 2),
the assumptions of Lemmas 7.7—7.10 are satisfied and consequently (8.7) holds.
Further, if n(,#) = n(#), then (8.8), (8.9) follow from (7.21), Lemma 7.7 or 7.8.
For n(#) = n(#) + 1, n(#) even (7.21) holds by Lemma 7.9 and since uy (n(#) s) =
= uy (n(#)s) in this case, (7.21) again implies (8.8), (8.9). Finally if n(#) =
= n(#) + 1, n(#) odd, we deduce (8.8), (8.9) from (7.45), Lemma 7.10, and from the
definition of u, ,. Since obviously 0 < n(#) — n(#) < 1, the proof is complete. =

Theorem 8.2. Let (5.1) hold with

. |d d '
8.13 dsog Smin| 2L, 5L | =4
#19) * [801.4 41 + C14)J >

(dsy being introduced in (8.4)) and let
(8.14) c16 = (1 + 17¢q4) €144, -
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Then for allt; 20,1, 20, r 2 0, ae A it holds

(8.15) j:

S ety = 15| + 45)(|Uo — U] + |Juy — @] + Var Uy + Varu,).
<0,) (0,)

U,,a(x, t) — U,_,,(x, ’z)' dx =

Proof. Fix ry > 0, a° € A and put U = U, 4. By Theorem 8.1 U is defined on Q
and satisfies (8.5), (8.6). We can suppose t; < t, without loss of generality. Let
ny =sup{neN;ns < t,} and let g be the integer part of (t,/s) — ny (so that
sq St — 1y + ).

Now let us consider m € N such that (m, ny + g + 1) € Y. Taking into account
the construction of the approximate solutions, one can easily see that for each
xedy=((m—1)r,(m + 1)r> 0 <0, o) the values U(x, ,), i = 1,2, depend only
on U(¢ nys) for Eed, =<{(m —q—2)r, (m+ q + 2)r) n <0, o) and further
on uy(f), t = nes in the case m — g — 2 < 0. Let us define

U* = U(mr, nys) ;

Ure) = s (i(é nes) for éed,,
N for &£e<0, 0)\4,,;

u*(e) __/ul(t) for T=nes, m—q—2<0,
u(mr, ngs) for t=nes, m—qg—220
and consider the approximate solutions U}, of the problem
U+ FU),=0, x20, t2ngs;
U(x, nos) = Ug(x), x>0; u(0,1)=uf(t), t=ngs.

(These solutions are constructed in the same way as before, only in the case n, odd
we replace Y by Y* = {(m, n) e N*; m + n is odd}.) Using (8.5), (8.6) we obtain

I\

(816 108 - O] 5 J0C no9) = O] = dor
Var Uj = Var U(+, nys) < dsq ,

{0,») 4m

and evidently Varu} < dsq, |uf — d|| £ ds;. Thus we can apply Theorem 8.1
to U:k,a and hence Uf’a are defined for all x, t; evidently

(8.17) UE o(x, 1) =U(x, t,), xed,, i=12.
Further, (8.5), (8.16), (8.13) yield
lus

Jut — @

- U*” s 2“U(" nos) — U” = 8cyudso = dsyq
"uf - 17” + “U(" nOS) - U” = 4(1 + 014) dso < dsq .

AN °”’

91



Consequently, we can replace U by U* in Theorem 8.1 applied to U} ,, and so

(8.15), (8.17) imply
|U(x, t;) — U(x, t2)| < 2c04([|UT - O*| + |lul — a*| + Var U5 + Varu7).
<0,)

{nos, )
Let do = |Uy — U| + |u, — d|| + Var U + Var u;. Since
|Us — 0% < Var U(-, ngs); Var Ug = Var U(+, nos) ;
Am <0,w) Am
=0 if m—-—gq—-22z=20
= |u* — @*] + Var u*{ =
crs(m) = ut = a| army DN (L4 eqg)dy if m—q—2<0
and 4,, 0 4, = 0if [m — m*| 2 2(q + 2), we have
Yers(m) < (g + 3) (1 + c1a) do,
Y Var U(+, nys) < 2(g + 3) Var U(+, nos),
€0,0)

m A4m

and hence
(8.18)

J |UGx, 1) = Ue 1)] dx = 3 f . dx S8rey S[Var U+, nos) + cps(m)] <
0 m ) 4,0 m  Am

< r(g + 3) (1 + 17¢y4) c1ad, -
But r(q + 3) < qo(t, — t; + 4s) and thus (8.15) follows immediately from (8.18). =

9. CONVERGENCE OF THE APPROXIMATE SOLUTIONS

From now on we shall suppose that ds, satisfies (8.13), i.e. dso = ds,. Therefore

Theorems 8.1, 8.2 hold, in particular U, , are defined on @ for all r > 0, a€ A.
Let us denote

M= {p:0-> R; peL,(Q), supp ¢ is compact} .
For peM, r > 0, ae A we define

(9.1) A(r,a, ¢, n) = J. o(x, ns) [U, J(x, ns — 0) — U, ,(x,ns)]dx, neN;
0

(9.2) A(r,a,9) =) A(r, a, ¢, n)
n=1
(the expressions in (9.1), (9.2) are vectors 4 = (44, 4,)).

Lemma 9.1. Let eI, r > 0, aec A, ne N. Then
9.3) [A(", a, ¢, n)l = "“<P" 8¢y4dso -
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Proof follows from the definition (5.13) of U, (-, ns) and from Theorem 8.1
(see also [1]). "

Let P = [ <0, 1) be the probabilistic space equipped with the product mea-

(m,n)eY
sure dp generated by the Lebesgue measure dx on (0, 1). For r > 0 we define the
mapping Z, : P — A(r) as follows: Z,({pn.}) = {an,.} where p,,€<0,1> and
ay,=((m =1+ 2p,,)r, ns) for m > 0; a,, = (p,.r, ns). Further, we put

Ay(r, p, @, n) = A(r, Z,(p), ¢, n),

AO("’ D (P) = A(r7 Zr(p)’ (P) = ZIAO(", p, ¢, H)

and denote by M(r), r > 0, the set of all functions ¢ € M such that for each (m, n) e
€ Y, ¢ is constant on the diamond

Tm’nz{(x,t)eﬁ; xe((m—1)r,(m+ 1)r), —E[x—(m— Drl+ns <1<
r
<i[x«(m~—1)r]+ns for xémr;f[x—-(m+1)r]+ns§t<
r r
<—[x=(m+1)r] +ns for x>mr}.
r

Lemma 9.2. Let o e M(r), r > 0, ny + ny, n;eN, i = 1,2. Then
(9.4) f Ao(r, p, @, ny) Ao(r, p, 9, ny)dp = 0.
P

Proof follows the same ideas as in the case of the Cauchy problem (see [1]) and
so is omitted here. =

For ¢ € M, r > 0 let us denote n(r, ¢) = inf{neN; ¢ =0 for ¢t > ns}. From
now on we confine ourselves to r of dyadic form, i.e. r = 27%, ke N. Then n(r, q)) =
=r~"n(1, ¢) and if ¢ € M(r) then ¢ € M(r*) for all r* < r. Further, Lemma 9.2
implies

”Ao(r, *s ﬁﬂ)ﬂiz(v) = ;"AO(V, 5P, ")”124(?)

and using (9.3) we get the inequality

(9-3) 140(rs *> @)|Z.ey < 7 1(1, ) (]| Beradso)” -
Consequently '
(9.6) lim 4o(r, , ¢) =0 in [L,(P)]*.

r—0
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Thus for each ¢ e M(r) we can choose a subsequence {r;}iZ, such that
lim 4o(r;, p, (p) = 0 for a.a. peP. Applying the diagonal process we can achieve

this for a countable set of ¢. Since there exists a sequence {¢;} = [ M(27*) dense
in C} in the L, (Q)-norm, we see that the following lemma holds: *"

Lemma 9.3. There exist a sequence {k;}{2, = N and N < P such that mes (N) =
=0, lim k; = o and

9.7) lim 4,(27%, p, ) =0 forall peP\N, ¢eCj.
Proof of Theorem 2.4. Let d = ds, and let (2.12) hold. For fixed p° e P\N
we put
U,' = U"i,Z,.,(po) , 1€ N

(N, r; = 27% are the set and the sequence from Lemma 9.3). By Theorem 8.1 we .
have
(9.8) |[U(-,1) — U] £dg, VarU(-,1)<dg, 120, ieN.

{0,m)
Using Helly’s theorem one can find a subsequence of {U(-, 1)}, ¢ = 0, converging
in [Ll_,,,m(O, oo)]z‘ Applying the diagonal process we can achieve this for all rational
t > 0; let us denote this subsequence again by {Ui}. Now using Theorem 8.2 we
can prove by a standard argument (see [1]) that U(+, t) converge in [L; ;,.<0, ©)]*
uniformly for bounded t = 0; let the limit function be U. Then ”U - U” < dg
by (9.8) and hence U € [L,(2)]%, U(x, t) € Qp for a.a. (x, t) e @ and F(U) e [ L,(2)]*.
Further, it is seen that F(U;) - F(U) in [L; ;,.(@)]*. Therefore we obtain with the
help of Lemma 5.1

(9.9) J [t + U S(U)] dx dt + f "0, 0) g(x) dx =

~ lim j [ats + ¥ f(U)] dx di + f " (%, 0) () dx =

i— o

= lim {Al(ri, Z,(0°), ¥) + J :l//(x, 0) [t(x) — t10.(x)] dx}, Vel

1= 0

(9.10) J [0 + 0. g(u)] dx di + f "o, 0) volx) dx + J " 0(0, 1) g(uy (1)) di =

0

= lim {Az(r,-, Z,(1°), 9) + 'f:qJ(x, 0) [vo(x) = vo,r,(x)] dx +

[ ando]

+ j “0(0,1) [g(4(t) — glunn()] dt}, pecl.
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Now lim4; =0, i = 1,2 by Lemma 9.3 and since the remaining limits in (9.9),
(9.10) are evidently zero, U is a generalized solution of the mixed problem (2).
The inequalities (2.13)—(2.15) folow immediately from (8.5), (8.6), (8.15) (with
¢ = max (¢4, ¢;6)) and hence the proof is complete. =
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