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ON INFINITESIMAL ISOMETRIES OF SURFACES IN E*

Arots Svec, Olomouc

(Received February 25, 1975)

To a given surface in E", there are too many infinitesimal isometries, and we cannot
expect to prove reasonable rigidity theorems. In what follows, I restrict the infini-
tesimal isometries by a simple condition which enables me to prove a direct generali-
zation of the classical rigidity theorem. The calculations are restricted to E*, the
general case is to be treated in the same way.

Let M < E* be a surface of class C* with the boundary dM such that there is
a diffeomorphism ¢ :Duw dD - M U dM, D <= #* being a bounded domain.
Let T(M) and N(M) denote the tangent and normal bundle of M resp. The map

(1) 1, :N, (M) x T,(M)> 2%, meM,
be defined by
(2) I,(ng, 1) = —<tm, tn)

for any local section n : M — N(M) around m such that n,, = n,. It will be shown
that this is a good definition; for a given ny, I1,,(no) = I1,(n,, *) is a quadratic form
on T,(M). Let v : M — V* be a C* map into the vector space of E*; v is said to be
an infinitesimal isometry of M if

(3) {tm,w) =0 foreach teT(M).

We are going to prove the following

Theorem. Let n : M — N(M) be a section such that, for each m e M, the form
11,(n,,) is definitive and the vector n,, is not orthogonal to the mean curvature
vector £, at m. Let v be an infinitesimal isometry of M such that, again for each
me M, the vector v,, is situated in the vector space spanned by T,(M) and n,,
Further, let v, L T,(M) for each m € oM. Then v = 0 on M.
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Proof. To each point m € M, associate an orthonormal frame {m, v, v,, 03, v}

such that T, (M) = {m, v;, v,}. Then

4) dM =  o'v, + o, ,
do, = olv, + ooy + wlv,,
do, = —oiy, + w3v; + W30,
do; = —wlv; — wdv, + ojv,,
doy = —ofv; — w3, — W3v;

with the well known integrability conditions. From o® = o* = 0,

o' Ao+ A0 =0, o' Aottt Awi=0,

and we get the existence of functions ay, ..., b; such that
(5) 0} = a,0' + 4,0, 0} = bo' + b0?,

03 = a,0' + a,0°, 3 = b,o' + by0?.
The mean curvature vector of M is given by
(6) &= (ay + a3)vs + (by + b3)v, .
Let v be an infinitesimal isometry of M,
(7) v = x0; + yu, + zvy + tv, .
Then
()  dv=(dx — yoi — zo} — to}) v, + (dy + x0f — zw] — tw3)v, +

+ (dz + x0} + yo3 — to}) vy + (dt + xof + yoi + zo3) v, .

The condition (3) <dm, dv) = 0 reduces to
) o'(dx — yoi - z0] — to}) + 0*(dy + x0} — 70} — tw}) =0,

and there is a function p such that

(10)  dx — yoi — zo} — to} = po?, dy + x0} — zo} — t0} = —po' .
Let
(11) n = Av; + B, .

Because of (&, n)y * 0,

(12) (ay + a;) A+ (by + b)) B+0.
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Now,

(13) dn = —(4w? + Bo}) v, — (Ao} + Bol)v, +
+ (d4 — Bw3) vy + (dB + Awd) v, ,

ie.,

(14) 1(n) = o'(Aw} + Bw?) + 0*(40} + Bol) =

— (A, + B5) (@' + Ada + Bb,) 00?4 (day + Bb) (o)
The form (14) being definitive, we have
(15) (Aa; + Bb,)(Aas + Bb;) — (4a, + Bb,)* > 0.

Because of v e {vl, v,, n}, there is a function ¢ such that z = Ag, t = Bgq, and the
equations (10) reduce to

(16) dx — yoi = (da; + Bb,) qo' + {(4a, + Bb,) q + p} w?,
dy + xof = {(4a, + Bb,)q — p} &' + (4a; + Bb,) qw? .

Over M, choose the isothermic coordinates (u, v) such that

(17) I'=r*du? +dv?), r(u,v)>0; o' =rdu, w?=rdo.
Then

(18) o} =r""(=r,du + r,dv)

because of do' = —w? A w!, dw? = ©' A @?, and we have

Ox - Ox -1
(19) S+ r'ny = (day + Bbi)ar. = r7'ry = (4a; + Bb,) gr + pr,

9 iy = - W
5, = (Aa, + Bby) qr — pr, P +r7'rx = (day + Bb,) qr

from (16). The elimination of p and q yields

oy
)Y -

bl
(20) (Aay + Bby) > — (Aa, + Bb,
u v

= (Aa, + Bb,)r'r,x — (Aa; + Bby)r 'y,
v Ju

0 0 )
2(Aa, + Bb2)<--)f + -1> — {A(a; + a3) + B(b, + b,)} <£75 + ‘?i) =
ou ov 0

= —2(Aa, + Bb,) (r.x + r,y)r ! —
- {A(a, + 03) + B(b1 -+ b3)} (rvx -+ ruy) ot
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Recall [1] that the system

0 0 0y 0y
(21) a11l+azzi+b112+b,22+c,x+el_y=fl,
0 ov du v
ox 0x dy dy
Ay — + Ay — + byy — 4+ byy — + c3x + e,y =
21 ou 22 0w 21 ou 22 P 2 2y =12
is called elliptic if
(22) 4:= 4(“12’722 - a22b1.2) (al.lbzl - aztbn) -

- (ax.lbzz — dy1byy + agybyy — azzbn)z >0.

In our case,

(23) A = 4{(Aa, + Bb,)(Aa, + Bb,) — (Aa, + Bb,)*} .

AA(ay + a3) + B(by + b3)}*.
and 4 > 0 because of (12) and (15). On the boundary M, we have x = y = 0, and
the maximum principle for the solutions of (20) implies x = y = 0 on M. The
equations (16) imply
(24) (Aa, + Bb,) q = (Aa, + Bb,)q = (Aay + Bby)q =0;

because of (15), ¢ = 0,i.e., z =t = 0. Thus v = 0 on M. QED.
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