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Let T = (ay) (i, k = 1,2,...) be an infinite matrix of real (complex) numbers.
The sequence {1,},%, of real (complex) numbers is said to be T-limitable (limitable
by the method (T)) to the number ¢ if lim ¢, = 1, where

n—oc
o
t =kz'1a"ktk (n=12..).

If {1,}7 is T-limitable to the number ¢, we write T — lim £, = t.

We denote by F(T) the set of all T-limitable sequences. The set F(T) is called
the convergence field cf the method (T) or the convergence field of the matrix trans-
formation defined by T (cf. [7], p. 2,4). The method (T) defined by the matrix T
is said to be regular provided that F(T) contains all convergent sequences and
limt, = timplies T — lim ¢, = ¢. If (T) is regular then T'is called a regular matrix.

n— o n— o0

It is well-known that the method (T) is regular if and only if the matrix T satisfies
the following three conditions:

(1) There exists K > 0 such that for each n = 1,2, ... we have Y, Ia,,,-“ <K;
k=1

(2) lim a,, = 0 for each fixed positive integer k;

n—o

(3) lim Y a, =1
1

n—ow k=

(cf. 13, p- 79; [7], p- 8).

H. STEINHAUS has shown in the year 1911 that for each regular method (T) there
exists a sequence of numbers 0 and 1 which is not T-limitable (to any real number)
(cf. [10]; [17, p. 93—94).

In the year 1958 F. R. KoEGH and G. M. PETERSEN have shown that if (T) is a regu-
lar method and x = {}i-, is a bounded divergent sequence of real numbers then
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there exists a subsequence of the sequence x which is not T-limitable (cf. [5]; [1],
p- 405; [7], p- 78—81).

Denote by X the set of all sequences of 0’s and 1’s with an infinite number of 1’s.
Define the function v: X — (0, 1) in the following way: for x = {£}7., € X put

v(x) = ng2 ¥, Evidently, v is a one-to-one mapping of X onto (0, 1). Denote

by Xl(T) the set of all x € X which are T-limitable. In the year 1945 J. D. HiLL has
shown that the set v(X(T)) is a set of the first Baire category in (0, 1) provided that
(T) is a regular method (cf. [4]; [1], p. 239).

The purpose of this paper is to show the usefulness of the well-known theorem on
discontinuity points of functions of the first Baire class in the study of the structure
of convergence fields of regular matrix methods. Using this theorem we shall prove
an assertion (Theorem 1.1) from which the above mentioned results of Steinhaus,
Koegh-Petersen and Hill follow. Further, we shall give a new proof (based on the
theorem on discontinuity points of functions of the first Baire class) of a result of
C. GorrMAN and G. M. PETERSEN (cf. [3]) on submethods of regular matrix methods
(Theorem 1.2). In the second part of the paper we shall study some problems for
certain T-limitable sequences defined by help of Cantor’s expansions of real numbers.

Let M, (k =1,2,...) be a non-void set of complex numbers. Put Y = M x
X M, x ... Define the function g on the set Y x Yas follows: if x = {&};2, €Y,
vy = {m}i=, €Y, then we put o(x, y) = 0 for x = y and

o(x, y) = (inf {n: &, + n,})~"
for x % y.

It is easy to check that ¢ is a metric on Y and the metric space (Y, ) is complete.
According to the well-known Baire’s theorem Yis a set of the second Baire category
in (Y, o).

If T= ( ) is an infinite matrix of numbers, then the set of all T-limitable se-
quences x € Y will be denoted by Y(T).

If (M, ¢,) is a metric space, xe M and & > 0, then the set S(x, ) = {ye M;
04(x, y) < 6} is called the spherical neighbourhood of the point x in the space M.
Further, diam A denotes the diameter of the set A4.

Theorem 1.1. Let T = (a,), let (T) be a regular method. Let M, (k = 1,2,...)
be a non-void set of complex numbers. Let us suppose that

(1) sup diam M, < + w0 ;
k=1,2...
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(ii) there exist two sequences

y = {’112}1?:1 € YI(T) , LY = {WZ}Zsz € YI(T) N

such that {n;, — n;}7-, is a convergent sequence and .. = lim (n; — n;) *+ 0.

k—

Then the set Y,(T) is a dense set (in Y) of the first Baire category.

Corollary. The set Y,(T) =Y — Y,(T) of all sequences from Y which are not
T-limitable to any number is a residual set of the second category in Y.

Proof of Theorem 1.1. Let x° = {&/};2, € Y, § > 0. Choose a natural number s
so that 1/s < & and define the sequence y = {,};~, as follows: n, = & for k < s
and n, = 7, for k > s (see the assumption (ii) of the theorem). Then ¢(x°, y) <
< 1/s <, hence ye S(x° &) and evidently ye Y;(T). Hence Y{(T) is a dense
setin Y.

On the subspace Y; = Y,(T) of the space Y we shall define the functions t, 1,
(n = 1,2,...)in the following way: for x = {&}7-, € Y; we put

w(x) =

k

M8

ankék (n = 1’2’-")’

1

©(x) = lim7,(x).

n— o

We shall show that:

(a) each function 7, (n = 1,2, ...) is continuous on Y;;

(b) the function 7 is discontinuous at each point of Y.

It follows from (a), (b) that 7 is a function of the first Baire class on Y; and according
to the well-known theorem on discontinuity points of functions of the first Baire
class (cf. [9], p. 185) the set of discontinuity points of t is a set of the first Baire
category in Y. Therefore (see (b)) the set Y; is a set of the first category in Y; and
hence of the first category in Y, too. '

Hence it suffices to prove the assertions (a), (b).

(a) Let n be a fixed natural number, x° = {¢/};2, € Y;. We shall show that t,

is continuous at x°.

According to (i) there exists a number K; > 0 such that
(4) diamM, <K, (k=1,2,..).

Let ¢ > 0. On account of (1) there exists a natural number m such that

Ak

© >y

€
< —.
Ky
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Let x = {&}72, € S(x° 1/m) (S(x°, 1/m) is the spherical neighbourhood of x°
in the space Y;). Then it follows from the definition of the metric ¢ that & = &7
for k = 1,2, ..., m. Using (4), (5) we obtain easily the estimate

) = w9 = | T aues - ) =

@
. €
£ Y |au|diamM, S K, — =¢.

k=m+1 K,
Hence 1, is continuous at x°.

(b) Let z° = {{?}i>, € Y;. We shall prove that the function 7 is discontinuous
at z°. It suffices to prove that in each spherical neighbourhood S(z°, 6) of the point z°
(in the space Y;) there are two points x', x* such that [t(x") — t(x?)| = 3|A| (see the

assumption (ii)).
Let S(z°, 6) be an arbitrary spherical neighbourhood of the point z° in the space Y;.

Put
m—m=4+e (k=12..),

hence & — 0 (see (ii)). Choose a natural number m so that 1/m < § and simul-

taneously
(6) |e] < L}[ foreach k> m.
Define x' = {&}¢2, (i = 1, 2) as follows:
G=&=0 for  1<k<m, &=mn and & =gy for k>m.

It is easy to see that o(x’, z°) < 1/m < 6, hence x' € S(z°, ) (i = 1, 2).
Let n be an arbitrary natural number. According to the definition of x! (i =1, 2),
a simple calculation yields the estimate

0 b - ule)] = | Sa(@ - )] = | % autii - n)] -

o m 0
= llzank - A’Zank + Z ankgkl g
k=1 k=1 k=m+1

A

—_>— ,llkglank' - ll,k; —k=mz+lla"kl lgk’ ’

According to (3) there exists ny such that for each n > n; we have

(®) RETAES?
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Similarly, according to (2) there exists n, such that for each n > n, we have
(9) Z 1ank1 < ‘1‘_ .
k=1
For each n > max (ny, n,) we get from (7) on account of (6), (8), (9) the inequality
o) e 2 2

and from this by n — co we obtain |t(x*) — 7(x')| = #||. The proof is complete.
Now we show that the above mentioned results of Steinhaus, Koegh-Petersen and
Hill (see Introduction) follow from Theorem 1.1 just proved.

(I) Theorem of Steinhaus.

Put
M={0,1}, ni=0, ni=1 (k=12..).

The assumptions of Theorem 1.1 are evidently fulfilled. It follows from the corollary
of Theorem 1.1 that the set of all sequences of 0’s and 1’s which are not T-limitable
((T) being a regular method)is a set of the second category in Y, hence it is non-empty.
Therefore there exists a sequence of 0’s and 1’s which is not T-limitable.

(II) Theorem of Koegh and Petersen.

Let a = {0}, be a bounded divergent sequence of real numbers. Hence

—o < liminfo, =t; <t, =limsupo, < +00.

k— oo k—

It is evident that there exist two sequences of natural numbers
ki<k,<..<k,<...,

ki<ky<..<k<..
such that
ki <ki <k, <kj<...,

limo,, =t;, limoy, =1,
n—*oc n—+o
and for each n = 1,2, ... we have o, + oy, -
Put
Mn = {ak"’ ak,.'} > ’1;’: = ak,,’ "’r: = ak,,' (n = la 29 ~)

Then the assumptions of Theorem 1.1 are fulfilled. It follows from the corollary of
Theorem 1.1 that the set of all sequences x€ Y, Y= M, x M, X ..., which are not
T-limitable ((T) being a regular matrix method) is a set of the second Baire category
in Y. It suffices to notice that each point of Y is a subsequence of the sequence a.
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(111) Theorem of Hill. :

Put
Mk={0,1}, =0, n=1 (k=1,2,...).

The assumptions of Theorem 1.1 are fulfilled. Denote by Y’ the set of all x =
= {&}& € Y which contain an infinite number of 1’s and also an infinite number
of 0’s. Y’ is considered a metric subspace of the space Y. Denote by D the set of all
rational numbers of the form k/2", where n is a natural number, k is an integer,
0 < k 2" It can be easily verified that the mapping v | Y’ (see Introduction) is
a homeomorphic mapping of Y’ onto (0, 1) — D. If (T) is a regular matrix method
then according to Theorem 1.1 the set Y,(T) is a set of the first category in Y..From
this fact it follows easily that the set Y(T) = Y{(T) n Y’ is a set of the first category
in Y'. Hence the set v(Y{(T)) is a set of the first category in (0, 1> — D and soin (0, 1),
too. Since Y(T) = X((T) and v(X,(T)) — v(Y,(T)) is countable, the set v(X,(T))
is a set of the first category in (0, 1>, too.

o

Let T = (a,,) be an infinite matrix of numbers and let x = ) 27" be the dyadic
k=1

expansion of the number x € (0, 1. Denote by T(x) the matrix (a,, ). In the paper
{3] the following result is proved.

Theorem 1.2. Let T = (a,,) be a regular matrix and {s,}- a bounded not T-
limitable sequence. Then the set M of all x € (0, 1) for which the sequence {s,},’-
is T(x)-limitable, is a set of the first category in (0, 1.

We shall give now a new proof of the foregoing theorem based on the same idea

as was the proof of Theorem 1.1.

Proof of Theorem 1.2. Let D denote the set of all numbers k/2”, where k, n are
natural numbers, 0 < k < 2". Put M’ = M n [(0, 1> — D]. It suffices to prove
that M’ is a set of the first category in (0, 1.

We shall define on M’ the functions f, f,, (m = 1, 2, ...) as follows: for x e M,

oo
x=32""; np<n,<..,
k=1
we put

f(x) =k1im U s () =kzlaj',‘sk, i=12..).

o0
Let m be a fixed natural number, let again x = ) 27" e M’. If m < n;, we put
k=1

fu(x) = 0. If m 2 n,, then we can choose a natural number p = p(m) such that

- oo
n, £m < n,, and we put f,(x) = Y a,, 5, = v,,.
g =1

If m — oo, then p — oo and so lim f,(x) = f(x) (for each x e M").

m-= o0

618



It is well-known that all irrational numbers from a given interval of the form
(s/2", (s + 1)/2™) (0 < s < 2™ — 1) have the same digits on the first m places in
their dyadic expansions. This implies that the function f,, is constant on each of the

sets
SOSEN M (s=01,.2m 1)
o

and so f,, is continuous on M’.

We shall prove that f is discontinuous at each point of the set M".
Since {s,},%, is not T-limitable, we have

—o < t; =liminfu, < limsupv, =1, < +0,

n— oo n—oo
o
=y ans, (n=1,2,..).
K=1
Let us construct such sequences

my<m,<..<m<..,

rp<r, <..<1 <.

of natural numbers that

(10) limv,, =t;, limy, =1,.
k— o k— oo
o0

Let xoe M, xo =) 27", n; <n, <... Then f(x,) differs at least from one
k=1

of the numbers #,, 7. Let e.g. f(x,) # 1, and put &, = |f(x,) — #;| > 0. It suffices
to prove that for each natural number m = max (ny, m,) the following assertion
holds:

If

xoe(%,s:,nl)nM’:Dm O<ss2m—1),

then there exists such a point x, € D, that |f(x;) — f(x,)| = &.
Let m = max (ny, m,), X € D,,. Let us choose natural numbers p, v such that

n,=m<n,.;, ms=m<m,,.

Put
Xg =2TM 4427 2T 2T

Then, evidently, x, € D,, and (see (10))
f(xq) =limv,, =1,
k—
hence If(xl) —f(xo)| = !tl_ —f(xo)l = g.
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If f(xo) * 15, then we proceed analogously using the second part of (10).

Hence f is a function of the first Baire class on M’, discontinuous at each point
of M'. From the well-known theorem on discontinuity points of functions of the first
Baire class we conclude that M’ is a set of the first category in M’ and hence also
in (0, 1>. The proof is complete.

2

Let {g,}s-; be a sequence of natural numbers, g, > 1 (k = 1,2,...). Then each
x € €0, 1) is uniquely expressible in the form

where g(x) (k = 1,2,...) are integers, 0 < g(x) < ¢, — 1 (k =1,2,...) and for
an infinite number of k’s we have g(x) < g, — 1. The series on the right-hand side
of (11) is called the Cantor expansion of the number x (cf. [6], p. 7— 10).

From Theorem 1,1 we can easily deduce the following

Theorem 2.1. Let T be a regular matrix, let there exist lim q, = q (it may be
k=

q = +). Then the set P = P(T; q1, 45, ...) of all x € 0, 1) for which the sequence
{ew(x)/ai}i= 1 (see (11)) is T-limitable, is a set of the first Baire category in {0, 1).

Proof. Using the notation used in the proof of Theorem 1.1 put

M, ={0,l, q—"_—l}, =0, ni=1 L (k=1,2,...).
dk dx dx

It is easy to check that the assumptions of Theorem 1.1 are fulfilled. Following

Theorem 1.1 the set Y;(T) of all T-limitable sequences z = {{};~, €Y, Y = M, x

X M, x ..., is a set of the first category in Y.

Denote by H the set of all z = {{;}; € Y with the following property: there exists
m = m(z) such that for each k = m we have {, = 0 or for each k = m we have
L = (9« — 1)/g\ Evidently H is a countable set. Put Y* = Y — H. Then Y* is a set
of the second category in Y* (Y* is considered a subspace of Y)and Y{(T) = Y,(T) n
N Y*is a set of the first category in Y*. For z = {Zj,,},f’:l € Y* we put

o0

l//(Z) — Z o ‘Ika__ .
k=14y .93 ... 4

It is easy to check that y is a homeomorphic mapping of Y* onto P* = <0, 1) — Q,
where Q denotes the countable set of all numbers v € <0, 1) of the form

5 B
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n is a natural number, B, are integers, 0 < f, < q, — 1 (k = 1,2, ..., n). Hence
Y(Y;(T)) is a set of the first category in P* and therefore also in <0, 1). But P =
= Y(Y{(T)) v Q and so Pis a set of the first category in <0, 1). The proof is complete.

Theorem 2.1 is related to an earlier result of the author. From Theorem 3 of the
paper [13] it follows that in the case lim g, = + oo the following assertion holds

k= o

for almost all x e <0, 1):
The set of all accumulation points of the sequence

sy

dr Jk=1

coincides with the interval <0, 1).

Hence the set C of all x € €0, 1) for which the sequence (12) converges, is a null-set.
Let T = (a,,) be the matrix of convergence, ie. a,, =1 and a, =0 for n + k
(n, k=12, ) Then according to Theorem 2.1 the set C is a set of the first category
in €0, 1) and the analogous result holds also in the case of an arbitrary regular matrix.

In the paper [4] some metric problems connected with the limitable sequences
of digits in dyadic expansions of real numbers are studied. Since the dyadic expansions
are special cases of Cantor expansions, the natural question arises whether this
study can be extended to the study of analogous problems for Cantor expansions.
The situation for Cantor series will be more complicated, e.g. in the case lim sup g, =

k= oo
= + 00 the sequence {&,(x)}i, of the digits of x (see (11)) can be unbounded.

In what follows T = (a,;) denote the Cesaro matrix, i.e. for each n we have a,, =
= 1/n if k < n and a,, = 0 if k > n. The method defined by the Cesaro matrix
will be denoted by (C, 1).

Denote by S = S(q1, 4, -..) the set of all xe<0,1) for which the sequence
{e(x)}i=, is (C, 1)-limitable. Further, let S* = S*(qy, 45, ...) denote the set of all
x € 0, 1) for which the sequence

n=1>s

R R G| O R 1. C R AP

is bounded. Obviously we have

S(ql’ qd2, "') < S*(ql, qs,, ...) .
If A< {1,2,..,n,...} =N, then we put

A(n)

h(4) = lim sup —,
1]

n—oo

where A(n) = Y, 1. The number h(A) is called the upper asymptotic density of the

a<n,aecA

set A. Evidently h(A) € <0, 1) for each set 4 = N.
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Theorem 2.2. Let A =« N, A = {k; < k, < ...} have the following properties:

(i) h(4) > 0,
(ii) limg,, = +o0.

Then S*(q,. 45, ...) is a set of the first category in <0, 1).

Corollary. Under the assumptions of Theorem 2.2 the set S(ql, 4y, .-.) is a set
of the first Baire category in {0, 1).

Proof of Theorem 2.2. Let m e N. Denote by B,, the set of all x € €0, 1) for which

m

o,(x) £ m(n=1,2,..). Then S* = (N B,, and hence it suffices to prove that each

m=1

of the sets B, (m = 1,2, ...) is a nowhere-dense set in <0, 1).

Let me N. Let I be an interval, I < (0, 1). It suffices to prove that there exists an
interval I’ = I such that I’ n B,, = 0.

Let us choose such integers s 2 1, ,0<1=<¢,.9,...q, — 1 that

i§”=< l ’ I+1 )CI_
41-92---49s 41 -92---4s

It is well-known from the construction of Cantor expansions that for a fixed n
the whole interval <0, 1) consists of q; . g, ... q, pairwise disjoint intervals

’.(v)=< v v+ 1 )
! 9i-492---49n 41 -92 ... 4,

(v=0,1,...,4y.4;5 ... g, — 1) of the n-th order. The number v/q, . q, ... g, can
be uniquely expressed in the form

I\

n

v &;

41 -G Gn =14y .q3...q;

g; being integers, 0 < ¢, <q;— 1 (i=1,2,...,n). For each xeil, x =

=Y &(x)/q1,q; ... qi (see (11)) we have g(x) =g (k = 1,2,..., n). Briefly we
k=1

say that ") is associated with the (finite) sequence ¢, ¢,, ..., &,
Put h(4) = 2d, d > 0. Choose K > 0 such that

(13) dK > m + 1.
According to (ii) there exists n, such that for each n > n, we have

(14) qk,,>K+1.
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In virtue of the definition of h(4) there exists g such that

. A

(15) Ab+a) g,
s+g

The number g can be chosen in such a way that even

noK

s+g

(16) <1
holds.

Let the interval i{"” be associated with the sequence &}, &3, ..., e, put r = A(s + ¢)-
Let us construct the interval i), of the (s + g)-th order associated with the sequence
€ s 80, EQy s ouns Eoy gy Where &0y ; = 0if s+ j ¢ {ky, koo k) and &4 ; = q,,—1

if s +j=ky,1<i=<r Theni, < i” =Iand for xei), we have

Z (qki - ]) ) Z (qki - 1)
0x+g(X) g i=1 g i=ng+1 .
s+ g s+ g

Hence using (13)—(16) we obtain

oyry(x) 2 AC T = m)K e mK = m.
s+g s+g

(u)
s+g

In what follows we shall prove some metric results on the (C, 1)-limitable sequences
of digits of real numbers in Cantor expansions.

Let us recall the notion of a homogeneous set. A set M < (0, 1) is said to be
homogeneous if there exists such a number d, 0 < d < 1 that for each interval
I =<0, 1) we have [M n I|/|I| = d, where |H|, and |H| denote the outer Lebesgue
measure and Lebesgue measure of the set H, respectively. It is well-known that if
M < (0, 1) is a measurable homogeneous set then M has the measure 0 or 1 (cf. [ 14]).

In the following we put

Hence i, n B,, = 0. The proof is complete.

E = E(q1, 45, ---) = {x€<0, 1); limg,(x) = + 0} .

Lemma 2.1. The set S*(qy, 4, ...) is a homogeneous Gs,-set in 0, 1). Each of the
sets S(qy, Gz, ---)s E(qy, g2, ---) is @ homogeneous Gsy5-set in <0, 1).
Proof. It follows from the definition of the set S* that

(17) S* =

m

w8

N Cos
1n=1
where C,,, = {x €0, 1); &(x) < m}. The set C,, is the union of some intervals
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of the n-th order. Therefore it is a G;-set in <0, 1) and it follows from (17) that S*
is a Gs,-set in <0, 1).
We have

e o o0

(18) . S = n U n Dk,m,p s

k=1 m=1 p=1
where

Doy = {x € €0, 1); [omso(x) = Omea(x)] < %} ,

Obviously, D, ,, , is the union of some intervals of the (m + p)-th order and so it is
a G,-set. It follows from (18) that S is a G,,s-set in <0, 1).
Analogously we can deduce from the relation

< feel

E=N U N {xe<0,1); o,x) > k}
k=1m=1n=m+1
that E is a G,,,-set in €0, 1).

It remains to prove that each of the sets S, S*, E is homogeneous. It can be done
by help of the following criterion of homogeneity (see [12]):

Let a measurable set B < (0, 1) satisfy the following condition: For each n =
=1,2,... and at each fixed n, for each two integers k, k', 0 < k, kK" < q;.4q, ...
.. g, — 1 we have

[B il = [B il

Then B is a homogeneous set (and therefore its measure is 0 or 1).
It is easy to check that if B is any one of the sets S, S*, E and k, k" are integers,
0=k k'Z£qg,.495...9, — 1, and further,
k " €;

— J

41 -92 -4y  i=141 .45 ...4;

0<¢=<q;,—-1) (j=12,....n),

’ n ’
k _ g

4y -92---49n =14y -4>..-4;

'<q;—1 (j=1,2,...,n)

]

o
IIA
™

then
(19) CBAi = (BAi®) 4y ST
i=14qy-9qz...4g;

where H + t denotes the set of all numbers x + t, x€ H. From (19) we conclude
that |B n iff”| = |B n i{|. On account of the mentioned criterion of homogeneity
each of the sets S, S*, E is homogeneous. The proof is complete.
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Lemma 2.2. Let us suppose that there exists such a set H = {0, 1) with a positive
measure and such a number § < 1 that for each x € H we have Y h(x) < &, where
r=0

h,(x) = lim sup —2>=2 (r x) , N(r,x)= Y 1.

n—ow k<n.ex(x)=r

Then |E(qy, 45, ...)| = 1.

It

Corollary. Under the assumptions of Lemma 2.2 we have |S(q1,q2,...){
IS*(‘h, qs, -- )| =0.

Proof of Lemma 2.2. It suffices to prove that
(20) H < E(qy, 95, ...) = E.

Indeed, it follows from (20) that |E(qy, g5, ...)| = |H| > 0 and so |E| = L (see
Lemma 2,1).

We prove (20). Let 0 < ¢ < 1 — §. Let K be an arbitrarily chosen positive number.
Let 0 < ¢ < 1 — 4. Let us construct the sequence

(21) 0,1,...,s,

where s = [K[(1 — & — &) + 1] ([u] denotes the greatest integer <u). On account
of the definition of the numbers hj(x) (0 < j < s) there exists such a natural
number n, that for each n > n, the number of k’s, k < n, for which g(x) is a member
of the sequence (21) is not greater than

lg <h

Therefore the sequence &(x), ..., &(x) contains more than n(l — 6 — &) numbers
which are greater than s. From this fact we obtain easily

. gk(x) n(l = 6 —3) [__KT__S n 1] »

n

)n < ne +i§0h,-(x)) < n(e +9).

for each n > n,. Hence lim a,,(x) = 400, x € E. The proof is complete.

n— o
Now we prove two metric results which guarantee under certain, general enough
assumptions on the sequence {q,}i= that the measure of the set S(qy, q,,...) is
equal to 0.

Theorem 2.3. Let Y (1/g,) < +oo. Then IS*(q,l, qs» )I = 0.
K=
Corollary. Under the assumption of Theorem 2.3 we have |S(q1, qs, )| =0.
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Proof of Theorem 2.3. If ) (1/q,) < + o, then |E(q1> g2, ---)| = 1 (cF. [2]).
k=1

From this fact the assertion follows immediately.

Theorem 2.4. Let the sequence {qk}le satisfy the following conditions:

(a) > Lot
k=1,
(b) lim g, = +o0;
(©) i LI o(n) (n > ).
k=14

Then |E(qy. g5, ...)| = 1.

Corollary. Under the assumptions of Theorem 2.4 we have |S(q1,, qz,...)l =
= [S*(91- 42.-..)| = 0.

Proof of Theorem 2.4. It is proved in [8] that if (a), (b) holds then there exists
such a set M < <0, 1) that [M| = 1 and for each x e M we have

limﬂz(r;lxh 1 (r=0,1,..).

k=1 qy
From this according to (c) we get (for x € M and each integer r > 0)
1
N,(r, x) Ny(r, x) k=1 g _ 0

h(x) = lim sup —===> = lim sup —~

n—w n n—w n

& g,
The assertion follows now directly from Lemma 2.2.

Let us remark that the assumptions of Theorem 2.4 are satisfied if ¢, = k + |
(k =1,2,...). Hence the set S(2,3,...) is a null-set and therefore also the set
5°(2,3,...) of all x € 0, 1) for which {g(x)};Z, is (C, 1)-limitable to 0, is a null-set.
Concerning the last set, we shall prove that even its Hausdorff dimension is 0.

Theorem 2.5. dim S°(2,3,...) = 0.

Proof. Let us consider that
n X

(22) Z‘Sk(x) =Y rN,(r, x) ;"iN,,(r, x).

k= r=0
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If x € S°(2, 3, ...) then (22) implies

SN X)

lim "~ =0.

n— o h

Since obviously N,(0,x) = n — ZN (r, x), we obtain lim (N,(0, x)/n) = 1. There-
fore we have e

(23) 5°2,3,...) = {xe(O, 1); ]imjy"—(o’—x) = 1} =G.

n— oo n

It follows from the corollary to Theorem 6 of the paper [11] that dim G = 0 and
hence (see (23))

dim §°(2,3,...) = 0.
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