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Dedicated to the Memory of Professor WOLFGANG KRULL

In this paper we introduce the notion of a partial x-operator of a semigroup,
which is a generalization of notions from the ideal theory due to KRULL, PRUFER,
LORENZEN and lately to AUBERT (s. Section 5). The main result is Theorem on
x-extension (3.3.4) concerning the existence of an extension of a partial x-operator
to an x-operator (e.g. x-extension) and describing the finest and the coarsest ones.
Here, when describing the finest x-extension, it is necessary to use the transfinite
induction (3.10.6).

In Section 4 we introduce some applications of Theorem on x-extension. Especially
necessary and sufficient conditions are given when an x-operator of a semigroup
may be extended to an x-operator of its total quotient semigroup and the finest and
the coarsest x-extensions are described (4‘9).

1. FUNDAMENTAL CONCEPTS

1.1. Algebraic concepts. By a semigroup we understand a non-empty set with
a binary commutative and associative operation.
Let G = (G, *) be a semigroup. For A = G, B = G, b € G we use the usual notation:

A.B=1{g .g,:8,€A g,eB}, A.b=b.A=A.{b},
A:B={geG:g.B= A}, A:b=A:{b}.

If the semigroup G contains an identity element, we shall denote it by 1..
An element 0 e G is said to be zero of the semigroup G if it holds:

geG=g.0=0.
The semigroup G with zero 0 will be called a (trivial) group with zero if (G — {0}, )

is a (trivial) group.
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The element g € G is called regular if it holds:
aeG, beG, a.g=b.g=a=0>.

The semigroup G* = (G*, -) of all fractions (a/b) (a€ G, be G, b is regular) with
the usual multiplication and equality is called the total quotient semigroup of (the
semigroup) G; in case G contains no regular element, we shall consider (by con-
vention) G to be its own total quotient semigroup (G = G*).

In case all elements of G are regular, the semigroup G* is a group — the quotient
group of (the semigroup) G.

We shall call a subset A of G* fractionary (or bounded) if there exists a regular
element g e G* such that g. A = G. The element g is called a multiplier for A. In
case G contains no regular element, then we consider each subset of G* = G to be
fractionary.

1.2. Topological concepts. Let P be a set. The system of all subsets of the set P
will be denoted by 2°.

A mapping z of the system 2° into 2°(A — A.) will be called a general closure
operator of (the set) P if it holds:

1I°AcP=AcA,
2°AcBcP=A < B.

If it holds moreover:

3AcP=A =A_,
= will be called a closure operator of (the set) P.

For general closure operators z;, z, of P we put as usual z;, <z, if A, = A,
for each A = P and we say that z, is finer than z, or that z, is coarser than z,. The
relation < is an ordering of the set of all general closure operators of P. The least

(largest) element of this ordered set is the closure operator u(v) of P defined by:
AcP=A —A, A =P.

The closure operator u(v) will be called the finest (coarsest) closure operator of
(the set) P.

Let z be a general closure operator of P. The finest closure operator of P from the
set of closure operators of P coarser than z will be called the modification of z.

We define to each ordinal ¢ > 0 a general closure operator z, of P by transfinite
induction: for M = P we put M. = M., and for an ordinal £ =n + 1 > 1 we put
M., = (M.,). while for a limit ordinal £ we put M., = UM, (0 < 5 < ¢).

Evidently,

1.2.1. There is an ordinal { > 0 such that z_is the modification of z.
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If 0. = 0, then the pair (P, z) is a topological space in the sense of CECH’s paper [2]
from the year 1937. The idea of the construction of z; is due to HAUSDORFF ([2], 6.5).
The following notion of neighborhood as well as the statement 1.2.2 are taken over
from [2] (2.1 and 2.1.4).

A set U < Pissaid to be a z-neighborhood of p (p € P)if p ¢ (P — U).. The following
assertion is evident.

1.22. If pe P, M = P, then pe M. if and only if U M % O for every z-neigh-
borhood U of p.

1.3. Convention. In the whole paper S = (S, +) will denote a semigroup.

If I'is a set and for each ¢ e I it holds A, = S, then for | = 0 we put:

NA(tel)=S, UA(el)=0.

2. PARTIAL x-OPERATOR

2.1. Definition. Let % < 2°. A mapping y of the set % into the set 2° (A —» A)) is
said to be a partial x-operator of (the semigroup) S if it holds:

1"AeW =Ac A,

2°Ae¥, Be®, B Aj=B,c A,

3 Ae¥,Be®, aeS, a. B A =a.B S A,

We shall call the set % the domain of y. If the domain of a partial x-opetator y
of S is the set 2°, then the mapping y is said to be an x-operator of (the semigroup) S.
Then v is evidently a closure operator of the set S.

2.2. Remark. a) If an x-operator y of S fulfils also the condition S. B, < B, for
each B = S, we get the notion of an x-operation studied by AUBERT ([1]) (s. 5.5.1),
which JOHNSON and LEDIAEV ([5]) call an x-operator (in case the semigroup S con-
tains an identity element).

b) If the semigroup S contains an identity element, then 3° implies 2°, evidently.
. g p ) 2 A

2.3. Definition. Let x be a closure operator of S.

a) For AcS, B<S we put A.B = (A.B),. Then (2%, 2) is a commutative
groupoid. We denote the system of all sets M, (M = S) by J(S) = 3I(S, x). Then
(3(5), <) = (3(S, x), <) is a subgroupoid of the groupoid (2%, 5).

b) We say that the operation * on the semigroup S is weakly continuous if for

each ae S, b e S and x-neighborhood V of a . b there exists an x-neighborhood U of a
such that U. b <= V.
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2.4. Theorem. Let x be a closure operator of S. Then the following statements are
equivalent:

(a) X is an x-operator of the semigroup S,

(b) the operation « on the semigroup S is weakly continuous,

(c) A= S, A, =S for each vel implies A. [UA(tel)], = [UA. A(te Nl

(d) A= S, A =S for each vel implies Ao [UA(cel)], = [UA- A(cel)]..

Proof. I. Let (a) hold, let ae S, beS and let V be an x-neighborhood of a . b.
We put C = {seS:s.be(S— V). It holds b.C < (S — V), and according to

2.1,3°b.C, = (S — V), hence a ¢ C_. It follows that U = S — C is an x-neighbor-
hood of aand U.b = S — (S — V), < V. Therefore (a) implies (b).

II. Let (b) hold, let A < S, A, = S for each te [ and let ae A. [UA,(c€)],. Then
there exist be A and ce [YA(ce /)], such that @ = b.c. Let V be an x-neighbor-
hood of a. Then there exists an x-neighborhood U of ¢ such that U. b = V. According
to 1.2.2 there exists de Un [UA(cel)]. Then d.beVn[UA.A(el)] and 1.2.2
implies that ae [UA . A(ce I)],. Consequently, (c) holds.

III. The equivalence (c) <> (d) and the implication (c) = (a) can be proved easily.
Thus, Theorem 2.4 is proved.
2.5. Remark. For a closure operator x of S the axiom 3° in 2.1 is equivalent to
the property:
(1) aeS, B S=a.B < (a.B).
which is equivalent to the axiom:
(2QQAcS, B=S=A.B, c(A.B),.

Aubert ([ 1]) calls this axiom the continuity axiom and gives some of its equivalent
forms which we shall use the following ones ([ 1], Theorems 1 and 3):

B)AcS, BSS=>A.B=AB,

(4)AcS, BcS=(A :B), =A :B

If the set Iin (c) and (d) of 2.4 is a two-element set, we get further equivalent
formulas of this axiom given in [1] (Theorem 1).

From (3) of 2.5 or directly from (2) of 2.5 similarly as in the proof of Theorem 2
([1]), it follows:

2.6. Proposition. Let x be an x-operator of the semigroup S. Then the groupoids
(2%, <) and (3(S), <) are semigroups.
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2.7. Definition. Let % < 2° and let y be a mapping of % into 2°. Then we put:
E(y) ={seS:Ae¥ =>s. A = A}.

Evidently, the following Propositions 2.8 —2.10 hold:

2.8. Proposition. Let %; < 2° and let y; be a mapping of ¥, into 2° (i = 1, 2).
If for each Be ¥, there exists A€ ¥, such that A, = B, then E(y,) < E(y,).

In particular: if z is a general closure operator of S and x is a closure operator
of S coarser than z, then E(z) = E(x).

2.9. Proposition. If x is a closure operator of S, then E(x) = {seS:teS=
=s.te{t],}

xj-
2.10. Proposition. Let % < 25 and let y be a mapping of % into 25. Then it holds:
aeE(y), beE(y)=>a.beE(y).
In particular: if E(y) # 0, then E(y) is a subsemigroup of the semigroup S.

2.11. Proposition. Let y be a partial x-operator of S with a domain %. Then it

holds:
Ac%, AcE(y)=A < E®y).

In particular: if E(y)e @, then [E(y)], = E(y) and for A < E(y), B = E(y),
A.Be® itis(A.B), < E(y).

Therefore, for an x-operator x of S it holds:
[E(x)], = E(x); A< E(x), B< E(x)=>A-B < E(x).

Proof. For Ae %, A < E(y) and for Be % we have A.B, = B, (by definition),
hence b. A < B, for be B, It follows that b. A, = B, therefore A, = E().

2.12. Proposition. Let x be an x-operator of S. Then the following statements are
equivalent:

(a) the semigroup (3J(S), o) contains an identity element,

(b) seS=se[s.E(x)],.

If (a) holds, then 1y, = E(x).

Proof. I. Let (a) hold and let E € 3(S) be the identity element of (3(S), o). Then
E(x).E < E, hence E(x) = E(x)- E = E. On the other hand, E. A, € Ec A, = A,

for each A < §, therefore E = E(x) (by the definition of E(x)). Thus 13, = E = E(x).
For se S we get se {s}, = {s}, - E = [s.E], by 2.5(3). Consequently, (b) holds.
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I1. If (b) holds, then for € 3(S) we have | = [E(x). /], 2/, whence | = [E(x).
1. = E(x)-I. QE.D.

2.13. Proposition. Let x be an x-operator of the semigroup S with identity. Then
{Is}. = E(x) and {15}, is the identity element of the semigroup (3(S), o). If the
element a€S has an inverse, then a.A = (a.A), for A<S and in particular:
{a}, = a. E(x).

Proof. According to 2.5(3) A, = (A. 1), = A, - {I}, for each A < S, hence {I},
is the identity element of 3J(S) and 2.12 implies {I}, = E(x).

It holds a. A, < (a. A), for ae S with an inverse a ' €S and A = S, hence A, <
ca'.(a.A),<=(a"'.a.A), =A, Therefore A, =a~'.(a.A),.

2.14. Proposition. Let x be an x-operator of S and let the semigroup (3J(S), <)
contain an identity element. If the element | € J(S) has an inverse I=' € 3J(S), then
17" = E(x) : I

Proof. From I™' .1 = 7' .1 = E(x) it follows that "' < E(x) : . Since (E(x) :
:1). 1 < E(x), it holds (E(x) :1)o ! < E(x), whence E(x) ="' ol < (E(x): /). | <
< E(x), therefore I™' ol = (E(x):l)o/, hence 1" = (E(x)-/)s E(x) = E(x):1,
since by 2.5(4) E(x) : e 3(S).

2.15. Proposition. Let x be an x-operator of S. Then the following statements are
equivalent:

(a) the semigroup (2%, <) contains an identity element,

(b) x is the finest closure operator of the set S and the semigroup S contains an
identity element.

If (a) and (b) hold, then E(x) = {15} = 1,s.

Proof. If (b) holds, then clearly E(x) = {1} is the identity element of (2°, -).

Let E€2® be the identity element of (2°,:). For A= S we have A=A E =
= (A.E),, whence A, = (A.E),, = (A.E), = A

Evidently, there exists ee E. For se S we get e.seE.

{s} = {s}, hence e.s =s.
Thus, the element e is the identity element of the semigroup S.

2.16. Proposition. Let x be an x-operator of S. Then the following statements
hold:
(A) 0, is the zero of the semigroups (2°, o) and (3(S), ).
(B) The following statements are equivalent:
(a) (3(S), o) is a trivial group,
(b) (3(S), o) is a group,
(c) x is the coarsest closure operator of the set S.

C) The semigroup (25, o) is not a group.
(
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Proof. Clearly, 0, is the zero of (2% o) and therefore also the zero of (J(S), -).
Since S # 0, the semigroup (2%, o) cannot be a group by 2.15. The implications
(a) = (b) and (c) = (a) in (B) are evident.

Let (b) in (B) hold. Let Ae 3(S) be the inverse of 0, in the group (3(S), ). Then

=500, cA=(5.0),-A=0,.Ac0,.S=0, whence 0, =S. Consequently
(c) in (B) holds.

2.17. Proposition. Let x be an x-operator of S. Then it holds:

(A) The following statements are equivalent:
(@) (3(S), <) is a trivial group with zero,
(b) (3(S). o) is a group with zero,

() S.SE0;ASS AL =>A =5
(B) The following statements are equivalent:
(a) (25, o) is trivial group with zero,

(b) (2°, <) is a group with zero,

(c) S = {ls} and x is the finest closure operator of S.

Proof. I. The implications (a) = (b) and (c) = (a) are in both cases (A) and (B)
evident.

1. Let (3(S), ) be a group with zero. Then clearly 0, # S, hence Se 3J(S) — {0},
whence we get S. S & 0.

Let E be the identity element of 3(S) (according to 2.12 E = E(x)). Forse S — 0,
we put B = {s": n positive integer}. Let Ce 3(S) be the inverse of B_ in 3(S). Then
we have se B, = CoB,oB, = C.(B.B), = C.B, =E, hence E = S.

ForAc S, A g 0, let De 3(S)denote the inverse of A in 3(S). Then A, = A, . S 2
2A oD =S thusA =S

The implication (b) = (c) in (A) holds.

L. If (2% o) is a group with zero, then according to 2.15 x is the finest closure
operator of S, the semigroup S contains the identity element and 1,5 = {1}. It follows
that So S =S, hence S = 1,5 = {I}. Q.E.D.

Necessary and sufficient conditions for a closure operator x of the set S with the
property (c) in 2.17 (A) to be an x-operator of the semigroup S, can be derived from
the following proposition, which is easy to verify.

2.18. Proposition. Let M = S and let a closure operator x of S be defined in the
SJollowing way: A= M=>A =M, AEM AcS= A =S. Then the following
statements are equivalent:

(a) x is an x-operator of the semigroup S,

(b)) S. M= M; aeS, beS— M, a.beM=ad.Sc M.
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3. x-EXTENSIONS OF A PARTIAL x-OPERATOR

3.1. Lemma. Let z be a general closure operator of S with the property:
aeS, AcS=a.A < (a.A)..
Then the modification of = is an x-operator of S.

Proof. Let # be an ordinal greater than 1 and let the following implication hold
for each ordinal 1 < ¢ < n:

beS, B=S=b.B, < (b.B),.

Let aeS, A< S If »is a limit ordinal, then a. A, =a.UA,, (1 £ <n) =
=Ud. A, (1=&<ncU(a. A, (1=&<py) =(a.A),,. If there exists an
ordinal number « such that n =a 4 I, then a. A, =a.(A,). = (d.A. ). =

< [(a. A).]. = (a. A,

Now Lemma follows from 1.2.1.

3.2. Definition. Let # < 2° let y be a mapping of % into 2° and let x be a mapping
of 2° into 2°. Then we call x an extension of y (in the set S) if B € % implies B, =8,

If an x-operator x of the semigroup S is an extension of y in S, then we call x an
x-extension of y (in the semigroup S).

3.3. Let # < 25 and let y be a mapping of % into 25: For A < S we put:
(1) A =AUUBMBe# B=A UUs.B,(secS, Be¥,s.BcA),

(2) A, =NBBe¥, B, 2A)nN(B,:s)(seS, Be#, B, 2 A.s).
Clearly, the following assertion holds:

3.3.1. z is a general closure operator of S, which satisfies:

(a) aeS, AcS=>a.A < (a.A),
(b) Be® =B, < B..

3.3.2. v is an x-operator of S, for which it holds: Be % = B, = B,.

Proof. Evidently, v is a closure operator of S and B, < B, for Be %.

Let aeS, AcS. If Be®, B,2a.A, then B,:a=2 A, hence B,2a.A,. If
Be®,seS,B,2a.A.s, then B, :s.a=2A, hence B, :s 2 a. A, It follows that
a.A < (a.A),

We shall denote by u the modification of the general closure operator z of S.

From 3.3.1 and Lemma 3.1 we obtain the following assertion:

3.3.3. u is an x-operator of S.
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3.3.4. Main Theorem (Theorem on x-extension). The following statements are
equivalent:

(a) v is a partial x-operator of the semigroup S,
(b)Be® =B, =B_=8B_,

(c) u is an extension of y in S,

(d) v is an extension of y in S,

(e) there exists an x-extension of y in the semigroup S.

If (a)—(e) hold, then u(v) is the finest (coarsest) x-operator of the semigroup S.
which is an extension of y.

Proof. Clearly, (b) = (c) = (¢) = (a) and (d) = (e). Let us suppose that (a)
holds. '

I. Let Be%. According to 3.3.1 (b), B, = B.. Let be B_. If beB, then beB,.
Let Ce#. 1f C < Band be C,, then C, = B, and hence b € B,. If there exists s $
such thats. C < Bandbes. C, thens. C, < B and therefore be B,. Thus B, < B,.
whence B, = B. < B_..

Let beB_. and let Ce#. If be C and C < B_, then C, = B,, whence be B, If
there exists se Ssuch thats . C < B_and bes. C.thens. C < B, hences. C, = B,
and conseqgently be B,. Thus B._ < B,.

Therefore (a) 1mphes (b).

II. Let Be %. According to 3.3.2, B, < B,. For Ce %, C, 2 B we have C, 2 B,.
For Ce#,seS. C, 2 B.s we obtain C, 2 B, . s, hence C,:s 2 B,. It follows that
B, =2E. ' '

Thus (a) implies (d).

ITI. Let w be an x-extension of yin S and let A < S.

Let Be @. If B < A, then B, = B, < A,. If there exists s €S such that s.B < A,
then s. B, =s.B, S A, Therefore A < Aw, which implies u < w.

If B, 2 A, then B, =B, =B, 2 A_. If there exists se$S such that B, 2 A.s,

then B, 2 A .s, hence B, :s 2 A, Therefore w <.
The proof is complete.

3.4. Remark. a) We can omit neither the equality B, = B_ nor the equality B, = B__
in 3.3.4(2).

aa) Let us put % = {S}, S, = 0. Then the mapping y : % — 2° is not a partial
x-operator of S. For A = S we have A. = A, therefore A, = A__, but S, + S_.

ab) Let the semigroup S have at least three different elements a, b,c and let
s,.s, = c hold for each s, €S, s, €S. Let us put # = {{a}, {a, b}}, {a}, = {a, b},
{a, b}, = {a, b, c}. The mappmo y % — 2 is not a partial x-operator of S. It
holds {a}. = {0 b} = {a},, {a,b}.={a b c} ={a b}, but {a}.. ={ab}. =
= {a,b,c} * {a}..
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b) For different ordinals n,, n, > 0 there always exist a semigroup S and a partial
x-operator y of § such that z, =+ z,, (s. 3.10.6).
c) For A < Sand Be# it holds:

B,:(B,:A)=(B,:s)(seS, B,2A.s).
If the semigroup S contains an identity element, then A < § satisfies:

A.=AUUs.B(seS, Be®, s.BcA),
A, =n(By:s)(seS, Bew, B).QA.s)=ﬂ[By:(By:A)](Be‘??/).

The following two propositions, 3.6 and 3.7 give necessary and sufficient conditions
when the formulas for z and v can be simplified in another way. Before formulating
these propositions we introduce a lemma which follows from 3.3.4 and 2.13. It can
be proved also directly.

3.5. Lemma. Let S contain an identity element and let y be a partial x-operator
of S with the domain %. Then for any element a € S which has an inverse, it holds:

Ac®, a. AcW =a.A =(a.A)

y -

3.6. Proposition. Let % < 25, let y be a mapping of % into 2° and let z be the
general closure operator of S defined by the formula (1). Then the following state-
ments are equivalent:

(a) Be#,beB, seS,s.b¢s.B=there exists De ¥ such that D < s .B and
s.beD,

(b) A= S=A =AU UB(Be%, B c A)

Proof. I. Let (a) hold and let A= S, seS,Be®,s.B< A ces. B,. Then there
exists be B, such that c =s.b. If s.bes.B, then ce A If s.b¢s.B, then there
exists De % such that D < s.B and s.b¢D,. Hence ceD,, De% and D < A
Thus (b) holds.

Il. Let (b) hold and let Be %, be B, seS,s.bg¢s.B. Let us put A=s.B. Then
s.bes.B, = A. Hence there exists D € % such that D < A, s. be D,. Therefore (a)
holds.

3.6.1. Corollary. Let y be a partial x-operator of S with the domain % satisfying
seS, Be¥ =s.Be¥.
Then the general closure operator z is given by the formula:

AcS=A =AuUB(Be%, B c A).
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3.7. Proposition. Let % < 2° let y be a mapping of % into 2° and let v be the clo-
sure operator of S defined by the formula (2). Then the following statements are
equivalent:

(a) Be®, seS, deS, d.s¢ B, = there exists De ¥ such that d¢ D, and D, =
2 8B,:s,

(b) A= S=A =NB(Be#, B, 2 A).

Proof. I. Let (a) hold and let A< S, seS, Be %, B,2A.s,deNC, (C, 2 A).
Ifd¢ B, :s, then d.s¢ B, hence there exists D € % such that d ¢ D, and D, =28, :s.
Since B, : s = A, we obtain a contradiction.

Il. Let (b) hold and let Be %, seS,deS, d.s¢B,. Let us put A = B, :s. Since
A.s < B, it holds A, = B, :s, hence A = A_. It follows that there exists D € % such
that D, 2 Aand d ¢ D,.

3.7.1. Corollary. Let S be a group and let y be a partial x-operator of S with the
domain % and with the property:
seS, Be# =s . Be¥.
Then the closure operator v is given by the formula:
AcS=A =NB(Be#, B, 2 A).

Proof. For Be#,seS,deS, d.s¢B, we put D =s'.B. Then De % and ac-
cording to 3.5 D, = s~' . B,, which implies the assertion.

3.7.2. Let S be a group with zero 0 and let # < 2°. A mapping y of the set % into 2°
is called an a-mapping if the following conditions are fulfilled:

1° There exists Ce % such that 0¢ C,

2°De¥, 0eD=D, =5,

3De¥, 0¢D=D, =5 — {0}.

Evidently, then y is a partial x-operator of S and for 0 + A < S we have:

incase OeA,

S
A =(NB(Be®, B, 2 A) =
o 24 {S—{O} incase O¢A.

For the empty set we obtain 0, = 0.

3.7.3. Corollary. Let S be a group with zero, let y be a partial x-operator of S
with the domain % which is not an a-mapping and let the following implication
hold:

seS, BeW =s.Be¥.
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Then the closure operator v is given by the formula:
AcS=A =NB(Be¥, B, 2 A).

Proof. Let 0 be the zero of Sand let Be %, s€S,deS,d.s¢B,. If s + 0, we put
D =s"'.B Then De® and D, = s '.B, follows from 3.5 whence D, = B :s
and d ¢ D,.

Lets = 0. Then 0 ¢ B, and therefore B, : s = 0. Let us suppose that d € D, for each
De%.Thend #s. ForceS — {0} and De# we get c.d"' .De# and from 3.5
it follows that de(d.c™'.D), =d.c™'.D,, thus ce D, and therefore S — {0} =
€ D,. If 0eD, then evidently D, =S. If 0¢D, then D = B, =S — {0}, hence
D, =S — {0}. Then y is an a-mapping, which is a contradiction.

3.8. Remark. The mappings z and v defined by (1) and (2) have not generally the
form 3.6(b) and 3.7(b) even in case of y being a partial x-operator of S.

Example. Let S be a group which contains at least three different elements a, b, e,
where e = Igand a® = e. Put% = {{a}}, {a}, = {e, a}. Then y is a partial x-operator
of S. For A = {b} we obtain A, = A, = {b, ab}, but

AUUBMBe#, B< A)={b} and NB(Be#¥, B,2A)=S.

(S. also the example in 5.5.4.)

3.9. Let y be a partial x-operator of S with the domain %. Let z, u, v have the same
meaning as in 3.3. Thus by 3.3.4, u(v) is the finest (coarsest) x-operator of S, which
is an extension of y.

3.9.1. E(z) = E(u) < E(y) = E(v).

Proof. According to 2.8, E(z) € E(u) = E(v) = E(y). Let reE(y), A< S,
Be®. ForB,2 Aweget rrA,=r.B, =B IfseSandB, 2 A.s, thenr.s. A, =
cr.B, =B, whence r. A, = B, :s. Therefore r. A, = A, from wbere we obtain
r € E(v). The assertion is proved.

For A < S we put:

(3) A, =A UA E(y) =A UA.E(v) =A UA .E(y) = A UA. . E(v).

3.9.2. pis a general closure operator of S with the following properties:
(a) aeS, AcS=a.A, <= (a.A),

(b)z=p=sy

(c) Be®w =B,=28,
(d) E(y) = E(p).
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Proof. Obviously, p is a general closure operator of S. For ae§, A = S we get
by 331 (a)a.A,=a.A, ua.A E(y)s(a.A).va.A E(y) =(a.A),

Evidently z < pand for A < SweobtainA, = A, UA.E(v) < A,UA,.E(v) = A,

From 3.3.4(b) and from thedefinition 2.7 of E(y) (or from 3.3.4(b) and (d) and the
previous property (b)) the property (c) follows.

For A< S we have E(y).A, = E(y).A. UE(y).E(y). A, = A, according to
2.10. This implies E(y) = E(p). Since p < v, we obtain from 2.8 E(p) = E(v).

3.9.3. Theorem. Let w denote the modification of p. Then w is the finest x-operator x
of S, which is an extension of y in S with the property E(x) = E(y). The coarsest
one of such x-operators of S is the x-operator v.

Proof. From 3.9.2(b) we get p < w < v, whence by 2.8 we obtain E(p) = E(w)
< E(v). 3.9.1 and 3.9.2(d) then imply E(w) = E(»). From 3.9.2(c) and 3.3.4(d) we
getB, =B, = B, = B, = B, for Be %, whence by Lemma 3.1 and 3.9.2(a) we obtain
that w is an x-extension of y.

Let x be an x-estension of y in § with the property E(x) = E(y). Then for A< S
we have A, 2 A, . E(x) 2 A.E(y) and since z < x, we obtain A, = A, whence
w = X,

The proof is complete.

3.9.4. Proposition. Let S contain an identity element and let {1} € %. Then
E(x) = E(y) = {15}, = {1}, for any x-extension x of y in S.

Proof. By 2.13 and 3.9.1 we get E(x) = {15}, = {I5}, = {15}, = E(v) = E(»).

3.9.5. Remark. a) Generally, E(u) = E(y) does not hold. If # =0, e.g., then
A, = Afor each A < S, hence E(u) = {1} if the semigroup S has an identity element
and E(u) = 0 in the opposite case, while E(y) = S.

Also in Example 3.10 (by 2.13) E(u) = {15} + E(»).

b) For different ordinals #,, 7, > 0 there always exist a semigroup S and a partial
x-operator of $ such that p,, + p,, (s. 3.10.6).

3.10. Example. Let o, &, 1, &y, &5, &5, 14, 11, denote ordinal numbers. We denote
s= ([0 [a1]:e5a)
and for ¢, < o, &, < a we put
[&.0].[&n 1] = [fr 1] & 0] = [&.0], [118] éae] = [&s e],

where ¢ = 0 or ¢ = 1 and &; = min {&;, &,}.

Then S = (S, *) is a semigroup with an identity element and 1g = [a, 1].
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For n < o we put:
{ [.0].[& 1]:¢ < n} incasenis isolated ,
i {[£,0],[¢, 1]:¢ < n} incasenis limit,

(Bu)y =B, v {[’ls l], ['7 + 1,1]}.

The system of all B, (5 < «) is denoted by #.

Obviously, the following assertion holds:

3.10.1. E(y) = {[& 1] :¢ < o} U {[0,0]}.

3.10.2. The mapping y : % — 2% is a partial x-operator.

Proof. The properties 1° and 2° in 2.1 are evident. Let ¢ S «, n < a, ' < a.
Then [£,0]. B = [& 0].(B,), and in the case [&, 1].B, = (B,), we have n <y,
thus [¢, 1].(B,), = (B,), = (B, ),. Therefore the condition 3° in 2.1 holds.

For n < a let us put:

{[&0]: ¢ sy u{[¢1]:¢ = nf for pisolated,
! {[.0]: ¢ <a}u{[e 1]:¢ <n} fornlimit.

Let us denote the set A, by A. The mappings z and p are given by the formulas (1)
and (3).

3103. p <a=(A). = A,

Proof. From the relation B, = A we obtain A, S (A,).. Letae (A): — A4y
Then a = [&, 1], where n + 1 < & = o Then there exist &, < o and &, < o such
that [¢,,1] .8, = A and ae [¢,, l] (Bs,),- Hence it follows that [&, 1] = [&,, 1].
s 1] or [&1] ~[ 1].[& + L1] Hencc E< &, ESE + 1. Then we get
n+1<&, n+1=¢E, whence [n+ 1,1]€B,,, hence [+ L1]=[&,1].
[+ 1L1]e[&,. 1] . B,, = A,. which is a contradiction.

The following assertion evidently holds:

3104. n S a=E(y). A, =A

n n*

3105. 0 <n=sa=A =A =A

Pn n
Proof. This assertion is proved by transfinite induction and by virtue of 3.10.3
and 3.10.4:
Forn =1 wehave A, = (A)). =A, A, =A UA E(y) =A,.
Let the assertion hold for each ¢ (1 £ ¢ < p < a).
If r1 is isolated, then # =¢ + 1 and A, = (A,). = (A): = Ay = A, A, =
= (A = (A, = (A). U A E(y-A“,uA—A.

490



For limit n we get A, = UA,, (1 £¢ <n) =UA, (1 £¢ <n) = A, and analo-
gously we obtain A, = A,

From 3.10.5 it follows directly:

3.10.6. Letny, # n,,0<n, £, 0<n, £a Then z,, ¥ z,, p,, * Py,-

4. APPLICATIONS OF THEOREM ON x-EXTENSION

If we putin 3.3 % = 0 and y = 0, then the following proposition follows from
3.3.4, which we can also see directly:

4.1. Proposition. The finest (coarsest) closure operator of the set S is the finest
(coursest) x-operator of the semigroup S.

4.2. Proposition. Let M = S. Then there exists an x-operator x of S such that
M. = M. The finest one of such x-operators is the finest closure operator of the set S
while the coarsest of them is the mapping v : 2° — 2° defined by the formulas:

AcM=>A =[M:(M:A]nM,
AcS, AEM=A =M:(M:A).

Proof. If we setin 3.3 % = {M} and M, = M, we obtain the proposition (s. 3.4c)).

4.3. Proposition. Let M = S. Then the following statements are equivalent:
(a) there exists an x-operator x of the semigroup S such that M = 0,
(b)S.Mc M.
If (a) and (b) hold, then the finest (coarsest) x-operator of S with the property
given in (a) is the mapping u(v): 2° — 2° defined in the following way:
AcS=A=AuM,
AcM=A =M,
AEM, AcS=A =M:(M:A).

Proof. In 3.3 weset # = {0} and 0, = M.

4.4. Proposition. Let % be the system of all non-empty subsets of the set S and
let y be a partial x-operator of the semigroup S with the domain %. Let u(v) be the
finest (coarsest) x-operator of S which is an extension of y in S and let M = B,
(®+Bc<YS)
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Then it holds:
L, =0 S McM=0,=MS MEM=0, =0,
E(u) = E(v) = E().

If x is an x-extension of y in S, then x = u or x = v.

Proof. From 3.3.4 it follows that @, = 0. Let M &+ 0 (in the case M = 0 the asser-
tion holds). Then Me % and M < B, for each Be %, whence M, = M.

If x is an x-extension of y in S and 0 % 0, then 0, e % and 0, = M, =M <
€0, =0,=0.Thus 0, =M

If S Mc M, then M,:s =M:s 2 M for each seS and by 3.3.4, 0, = M. If
S. M & M, then there exists s € S such that s . M & M, hence M & M : s and by 3.3.4,
M = 0,. Therefore 0, = 0.

The equalities E(u) = E(v) = E(y) follow from 2.9 and 3.9.1.

4.5. Proposition. Let M = S. Then the following statements are equivalent:

(a) there exists an x-operator x of S with the property E(x) = M,

(b) M.M = M and the set M contains all elements s€S with the following
property: t€S=s.t =1 or there exists m,e M such that s.t = m, .t

If (a) holds, then the finest x-operator of S with the property given in (a) is the
closure operator u of S defined by the formula:

AcS=A =A.MUA.

IfM:M =M, then (a) holds and the coarsest x-operator of S wtih the property
given in (a) is the closure operator v of S defined by the formula:

ASS=A =M:(M:A).

Proof. I. Let (a) hold. According to 2.10, M. M = M. If se S has the property
given in (b), then for r€S we get s.71 =1te{t}, ors.t =1t.met.E(x) < {t},.
By 2.9, s € M. Thus (a) implies (b).

1. Let (b) hold. For A < Slet us put A, = A. M U A. Using 2.9 we can see directly
that u is the finest x-operator of S with the property E(u) = M.

III. Let M : M = M. Then (b) holds and according to II (a) holds, too. For A = M
we have M:(M:A) = M and by 4.2, v defined by the formula A, = M :(M:A)
(A <=S) is the coarsest x-operator of S with the property M, = M. For s ¢ E(v)
wehaves . M < M, hencese M. IfA < S, then M. [M:(M:A)] . M:A) =M Mc
S M, whence M. A, = M:(M:A) = A, therefore M = E(v). Hence we obtain
M = E(v) and from 2.11 it follows that v is the coarsest x-operator of S with the
property given in (a).
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4.6. Remark. If (b) holds in 4.5, then in general the coarsest x-operator of S with
the property given in 4.5(a) need not exist:

Example. Let s, € S exist such that it holds:
S;ES, s,€S=>5,.5, =5.
The following two assertions are evident.

4.6.1. A closure operator x of the set S is an x-operator of the semigroup S if and
only if 0, £ 0 =s,€0..

4.6.2. If for an x-operator x of S there exists 0 = A = S such that s, ¢ A,, then
E(x) = 0. In the opposite case E(x) = S.
For each 0 + B = S — {s,} we put:

O0;y =9:; 0FASB=>AG =B; AEB, AcS=A, =S.

Then v(B) is a closure operator of S and by 4.6.1, v(B) is an x-operator of S. From
4.6.2 it follows that E(v(B)) = 0. If x is an x-operator of S such that E(x) = 0, then
by 4.6.2 there exists 0 + B = B_ = S — {s,}. Since 0, = 0 according to 2.11, we
have v(B) = x.

If we denote by O the set of all x-operators x of S with the property E(x) = 0,
then it holds:

4.6.3. (a) 0 + B < S — {so} =v(B) is a maximal element of the ordered set
(0, =),
(b) x € O = there exists 0 + B = S — {so} such that v(B) = x.

4.7. Proposition. Let M = S. Then the following statements are equivalent:

(a) there exists an x-operator x of the semigroup S such that M is the identity
element of the semigroup (3(S, x), o),

(b)y MM =M.

If (a) holds, then the coarsest x-operator of S with the property mentioned in (a)
is the closure operator v of S defined by the formula:

AcS=A =M:(M:A).

The finest one such x-operators of S is the modification of the general closure
operator z of S defined by the formula:

AcS=>A =AMUAU(A:M).
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Proof. I. If (a) holds, then by 2.12, E(x) = M and for se S, s. M = M we have
sef{sjy={s},.M=(s. M), =M, =M hence M:Mc M By 45 M. Mc M,
thercfore M = M : M. Consequently, M: M = M.

II. Let M: M = M. For A < Slet us put A, = M : (M : A). Then 4.5 implies that v
is the coarsest x-operator of S with the property E(v) = M. For se S we get s . M.
(M:s.M)<= M, hence s.(M:s.M)<= M:M =M. Hence it follows that se
eM:(M:s.M)=(s. M), According to 2.12, M is the identity element of the
semigroup (3(S, v), o). '

I11. Clearly, the mapping z : 2° — 2° given in the proposition is a general closure
operator of the set S. For aeS, A< S we obtain a.A. =a.A . Mua.Aua.
(A:M)csa. A Mua.Au(a.A: M) =(a.A).ByLemma 3.1 the modification u
of z is an x-operator of S.

Let M: M =M. Then M, = M, whence E(u) € M: M = M follows. For A< S
we have M. A, = A, = A, hence M = E(u), which implies M = E(u). For se$
we get s € (s. M : M), therefore s € (s . E(u)), and according to 2.12, M is the identity
element of the semigroup (J(S, u), o).

If x is an x-operator of S such that M is the identity element of the semigroup
(3(S, x), o), then for A =S, se A: M, according to 2.12, it holds se(s. M), = A..
Since AMc A .M =A_, wegetz<x, thusu < x.

The proof is complete.

4.8. Remark. The general closure operator z defined in 4.7 is generally not a closure
operator. Moreover, it holds:

4.8.1. There exist a semigroup S and a subset M = S such that MM =M
and for the general closure operator z defined in 4.7 it holds: if 0 < n, £ v,
0 < 1, £ w are different ordinal numbers, then z, =+ z,,.

Proof. Put S={m; m, ...} U{g,a, ..} and m;.m; =m, ; q .a, =a,
a.m;=m;.q =gq_; for k2iand a.m, =m;.a =a, for k <i(k =
=0,1,...; i.j=1,2,...). Then (S, +) is a semigroup and for M = {m,, m, ...}
we have M: M = M. For a non-negative integer n we put A, = {a,, a, ..., q,}.
Clearly, A,:M =A,., and for n 2 1, A,. M = A,_,. By mathematical induction
it follows that (A)). = A, for any positive integer n. Consequently, the proof is
complete.

However, the general closure operator z, does not increase any more for ordinal
numbers greater than . Indeed, the following assertion holds:

4.8.2. Let M = S. Then the general closure operator z defined in 4.7 satisfies

Zo = Zo+1-
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Proof. Let A=S. Then A, =A_.MUA_ U(A :M)=2 A, . Conversely,

A, M=(UA).M=U(A, McUA,  =A and A :M=(UA):M=
i=1 i=1 i=1

n

i=1
oo fee] !
= U (Al'i : M) = U Ai-'i+| = AZm' Thus A:m+1 = Al'm'
i=1 i=1

4.9. Proposition. Let $* = (S*, +) be the total quotient semigroup of the semi-
group S and let y be an x-operator of the semigroup S regarded as a mapping
of 2% into 25'.') Then the following statements are equivalent:

(a) there exists an x-extension of y in the semigroup S*,

(b) for any regular element ae S and for be S, A = S, B = S it holds:

b.Bca.A=b.B ca.A,

(¢) for any regular element a€ 'S and for A = S it holds a. A, = (a.A),.

Let x be an x-extension of y in the semigroup $*. If re S is regular, then E(x) =

=r~' . {r}, and E(x) is the identity element of the semigroup (3(S*, x), -). For
a fractionary subset A < $* with a multiplier a it holds A, = a™' . {a . A),.
If (a)—(c) hold, then the finest (coarsest) x-operator of S*, which is an extension

of v in the semigroup S*, is the modification of the general closure operator = of S*
(x-operator v of $*), where it holds for A < S*:

A =Au(AnS),uUr " . (r.AnS), (res regular);
if $* =S, then A, = A, and if S* £ S, then

A=N[(s.A),:s](seS, s.Ac$)?)
=a"'.(a.A), fora fractionary set A with a multiplier a

= N(s. A), :s] (seSisnot reqular,s. A< S)?)in case A is not a fractionary set.

Proof. I. According to Main Theorem 3.3.4 the statements (a) and (b) are equi-
valent. Evidently, (c) also implies (b). The implication (a) = (c) follows from 2.13.

H. Let x be an x-extension of y in the semigroup $*. Then for a regular element
reS, 213 implies r=' . {r}, =r7" . {r}, = {r™" .r}, = {1}, = E(x) and E(x) is
the identity element of the semigroup (J(S*, x), o). For a fractionary subset A < S*
with a multiplier a we get (a.A), = (a.A), =a.A, according to 2.13 and since
a.Ac S Consequently A, = a ' .(a.A),

Furthermore, let (a)—(c) hold and let A = $* and S + S*.

III. Let z denote the general closure operator of $* mentioned in this proposition.
IfB< S, B< A then By = (AnS),. Hence UB(B = S, B < A) = (AnS),

') yis a mapping of 2% into 2% and if i is the identity embedding of 2% into 25°, then we con-

sider y to be the mapping io y.
2) The operation: is considered in the semigroup S*.
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Let B= S, seS* s.B < A Then there exists ae S and a regular element be S
such that s =a/b. Then s.B, =b"'.a.B,cb™' . (a.B), =b™' . (b.ANYS),
Hence Us . B(seS*, B= S, s.B< A)=Ur '.(r.AnS), (reSs regular).

Then we obtain from 3.3.4 that the modification of z is the finest x-operator of $*,
which is an extension of y in $*.

IV. The semigroup $* has an identity element, therefore, by 3.4.c) the coarsest
x-operator v of $*, which is an extension of y in S*, satisfies A, = (B, : s) (s € $*,
BcS B, 2A.s)=N[(s.A),:s](seS*, s.Ac=S) =N[(s.A),:5](seS, s.Ac
< §), since for ae S, be S regular we have a/b. A = S, which impliex (a.A), :a =
< (a/b . A), : a/b. Then the given formula for v follows in case A is not fractionary.

The proposition is proved.

4.10. Problem. Is the general closure operator = defined in 4.9 a closure operator
or does there even exist a semigroup S (if need be with the cancellation law) such
that z, * z,, for different ordinal numbers n, > 0, 5, > 0?

4.11. Example. Let R = (R, +, -) be a commutative ring, T = (T, +, -) its total
quotient ring. For 0 = M < R let M, denote the ideal of the ring R generated by the
set M. Let % denote the system of all non-empty subsets of R. Then y is a partial
x-operator of the semigroup (R, ) with the domain %. By 4.4 there exist just two
x-operators yy, v, of (R, +) which are extensions of y. Here 0,, = 0 and 0,, = {0g}.

By 4.9 there exist x-operators of (T, -), which are extensions of y, and y, in (T, -),
respectively. The finest (coarsest) ones of such operators are denoted by u, and u,
(v, and v,), respectively.

Let 0 = M < T. If M is fractionary with a multiplier m, then by 49, M, =M, =
=M, =M, =m"" (m.M), which is the fractional ideal of the ring (R, +, *)
generated by the sct M. If M is not fractionary, then by 49, M, = M,, = N[(s. M), :
:s] (s e Ris not regular, s. M < R). In case (R, +, ) is an integral domain, we have
M,, = M,, = T. For x-operators uy, u, of (T,+), M, = M,, is the R-submodule
of the R-module T generated by the set M.

Evidently, E(u,) = E(u,) = E(v,) = E(v,) is the fractional R-ideal generated
by {1} in case R & T. Otherwise, this set is equal to R = T,

5. VARIOUS SYSTEMS OF IDEALS CONSIDERED AS PARTIAL x-OPERATORS

5.1. Krull (1924). 5.1.1. Let B = (B, ., <) be a semigroup with an operation * and
an ordering <, where the ordered set (SB, <) is a conditionally complete lattice3)
with a least element o.

3) The ordered set (B, <) is said to be a conditionally complete lattice if it is a lattice and each
of its non-empty bounded subsets has an infimum and a supremum. If, moreover, (3B, =.) has
a least element then each of its non-empty subsets has an infimum.
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We call B = (B, <) a K-system of ideals if it holds:
(1) aeB, 0 M B=a.infM =infa.M.

From (1) it follows:

5.1.2. For a K-system of ideals B = (B, +, <) and ae B, be B, ce B it holds:
ab=a.c<hb.c.

From 2.4 and 2.6 we obtain

5.1.3. Let x be an x-operator of the semigroup S. Then (J(S). o, 2) is a K-system
of ideals.

5.14. Let B = (!B, -, £) be a K-system of ideals. For 0 + 9 = B we put
M, = {meB:m=inf M.
From (1) and 5.1.2 we conclude:

v is a partial x-operator of the semigroup (‘B *), its domain is the system of all
non-empty subsets of the set *B.

5.1.5. Let 8 = (B, +, <) be a K-system of ideals. For 0 &= 9 < B let us put
M, = M, = M,. Further, let us put @, = @ and in case (B, <) has a largest element b
with the property a.b = b for each ae B we put 0, = {b}. In the opposite case
we put 0, = 0.

Then 4.4 implies:

u, v are the only x-operators of the semigroup (B, +), which are extensions of y
in B. Furthermore, E(u) = E(v) = E(y) holds.

5.1.6. Let B = (B, -, <) be a K-system of ideals. Then the following statements
are equivalent:

(a) E(y) = B,

(b) aeB, beB=a.b = sup{a, b}

Proof. I. Let E(y) = B, ae®B, be V. Then {a.b}, = {{a},. {b},}, = {a}, n
n {b}, = {sup {a, b}},, which implies a.b = sup {a, b}.

II. Let (b) hold and let a<®B, beB. Then b. {a}, = {a, b}, = {sup {a,b}}, =

I
< {a},. Thus b e E(y), whence E(y) = 8.

5.1.7. The system of ideals introduced and studied by KrRULL in the paper [6] is
the R-system of ideals with the property (b) in 5.1.6.
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5.2. Priifer (1932). Let ® denote an integral domain, & = (&, +, *) its quotient
field, % the system of all non-empty finite subsets of the set & and y a mapping of %
into 2%,

Let us introduce the following properties of y:
(1) Ac A,

() B A =B <A,

(3) {a}, =a.6,

(4) aeAy=a.be(b.A),

(5) @ + be{a, b}

Sy

where Ae %, Be#,ac K\, be K.

5.2.1. PRUFER in [10] introduced and studied the system of sets {A, :Ae ¥},
where y had the properties (1)—(5). Here by finite sets Priifer obviously means the
finite and non-empty sets (s. 5.4.1).

5.2.2. The following statements are equivalent:

(a) y is a partial x-operator of the semigroup (R, *),

(b) (1), (2) and (4) hold.

Proof. Let (b) hold and let ae ], Ae %, Be %, a.B = A,. Given be B, then
according to (4) and (2) a.be(a.B), = A, hence a. B, < A,

If y is a partial x-operator of (8, *), then (1) and (2) hold evidently. For Ae %,

be & we have b.Ae® and b.A < (b.A),, hence b. A, = (b. A), from which (4)
follows.

From 3.9.4 the following assertion follows.

5.2.3. If y is a partial x-operator of the semigroup (8, +), then E(x) = E(y) =
= {14}, = (1a}, for any x-extension x of y in K.

5.2.4. Let y be a partial x-operator of the semigroup (S, *).
(A) In case & + K the following statements are equivalent:
(a) E(y) = 6,

(b) {l.ﬂ}y = 6,
(c) (3) holds.

(B) In case ® = K the following statements are equivalent:
(@) E(y) = 6, {04}, = {04},

(b) {1}, = ©, {04}, = {04},

(¢) (3) holds.
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Proof. By 3.3.4 there exists an x-extension x of y and by 5.2.3, E(x) = E(y) =
= {1}, If {0y}, # {0y}, then {0y}, = K. Thus by 2.13, we obtain the assertion.

5.2.5. Let y be a partial x-operator of the semigroup (K, -). Then the finest
(coarsest) x-operator of (R, *), which is an extension of y in K, is the mapping u(v)
of the system 2% into 2% defined for A = K by the formula:

A, =UB(Be®, B A);
in the case that y is not an o-mapping, it holds

A, =NB(Be#, B, 2 A);
in the case that y is an o-mapping, it holds

K for Og€eA,
A, =<K — {04} for Og¢A, A%0,
0 for A=0.

Proof. The formula for the x-operator u follows from 3.6.1 and the formulas
for v follow from 3.7.2 and 3.7.3.

5.3. Krull (1935). Let D denote an integral domain and L = (L, +, *) its quotient
field. Let %, be the set of all non-empty fractional ideals of D and y, a mapping
of %, into 2" such that A, is a fractional ideal of D for each Ae #,.

Let us denote the properties of y, as follows:

() Ac A,

(2) Ac B=A, <8, ,
() (A = A

(4) (a LA),, =a A,
(%) (9)y, = (a),

where ael, Ace %, Be %, and (a) denotes the fractional ideal of D generated by
the element a.

5.3.1. Krull in his book “Idealtheorie” ([7]) paragraph 43 introduced (1)—(5)
as axioms (for an integrally closed integral domain D) with further two axioms:
(A, +B,),, =(A+ B),, (A, .B,), =(A.B), (A.B denotes the ideal product),
which follow from the former ones. The mapping v,(A — A, ) is denoted by’ (A — A")
and called "-operation ("-Operation). Krull studies this "-operation in detail in his
paper [8].
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In GILMER’s treatise “Multiplicative Ideal Theory™ ([3]) D need not be integrally
closed and the set %, does not contain the zero ideal. The mapping y, is called
a *-operation on D and references to the literature concerning this notion are given
in the paper.

Evidently, it holds:

5.3.2. The mapping y, is a partial x-operator of the semigroup (L, *) if and only
if (1)-(4) hold.

Further, let % denote the system of all non-empty fractionary subsets of L and for
Me %, let M,, denote the fractional ideal of D generated by the set M. The mapping
v, % — 2% is a partial x-operator of (L, -).

For Me & we set M, = (M,,),.. Then y is a mapping of % into 2" and evidently
the first part of the following assertion holds. The other part follows from the formula
(2) in 3.3.

5.3.3. A mapping y is a partial x-operator of (L, *) if and only if y, is a partial
x-operator of (L, +). In this case the coarsest x-operator of (L, +), which is an exten-
sion of y in L, is then the coarsest x-operator of (L, *), which is an extension of y,.

5.3.4. If y is a partial x-operator of (L, *), then E(x) = E(y) = E(y,) = {1,}; =
= {1,}, = (1.),, for any x-extension x of y in (L, +).

Proof. By 5.3.3 the coarsest x-operator v of (L, ), which is an extension of y,
is the coarsest x-operator of (L, +), which is an extension of y,. By 3.9.1 we have
E(y) = E(v) = E(y,) and by 3.9.4, E(x) = E(y) = {1,}, = {1,}, for any x-exten-
sion x of y. Since {1}, = ({1,},,),, = (1,),,. the proof is complete.

5.3.5. Let y, be a partial operator of (L, -) and let D # L. Then the following
assertions are equivalent:

(a) E(r,) = .
(b) (5) holds.
Proof. If (5) holds, then (1,),, = D and by 5.3.4, E(y,) = D.

If E(y,) = D, then according to 5.3.4 E(x) = D for any x-extension x of y and
from 2.13, (a),, = {a}, = {a}, = a.D = (a) for each ae L — {0,}. If there exists
bel — {0} such that be(0.),,. then L.b < (0)),,, hence L = (0),, = D, which
is a contradiction. Thus (0,),, = (0,).

5.3.6. Let y be a partial x-operator of (L, +). Then the finest (coarsest) x-operator
of (L, -), which is an extension of y, y, is the modification of the general closure

operator z, z, of L, respectively (the mapping v of the system 2" into 2'), defined
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for A< L by the formula:

A =UBBe# BcA), A, =AUUB (Bc¥,, B <A

for D =+ L,
A, for Ae¥,
A =<L for A¢%, A%0,
0) for A=0,
for D =L,

A _fL Jor 0 A+{0},
L), for A=0 or A=1{0}.

=

Proof. This assertion follows from 3.6.1 and 3.7.3.

5.4. Lorenzen (1939). Let g be a semigroup with an identity element in which the
cancellation law holds and let & = (®, -) be its quotient group.

Let us denote by /() the system of all finite, non-empty (fractionary, non-empty)
subsets of the set  and let a(b) be a mapping of .2/(4) into 2°.

Further, let y denote a or b, let % denote .o/ or 2 and let us denote by (1)—(4) the
following properties of y:

(1) Ac A,

(2) B< A =B, <A,
(3) {a}, =a.s,

(4) a. A, = (a.A),

where Ae %, Be % and ae ®.

5.4.1. Lorenzen in [9] introduced and studied the system of sets I = {A, : Ae %},
where » has the properties (1)—(4). He denotes the mapping y by r and in case
vy = a he calls I the r-system of ideals (das r-Idealsystem) while in case y = b
3 is called the total r-system of ideals (das totale r-Idealsystem). JAFFARD in his
book ““‘Les Systémes d’'Idéaux” [4] studies equivalent systems of ideals.

In Lorenzen’s paper [9] the author does not say explicitly that 0 ¢ % but from
the context we can conclude that the empty set is not considered an element of the
system #. If O e o/, then for g + & we have 0, = 0 (if d€ 0, then for each ge ®
we get g.deg.0, =0, thus 9, = ®). But then the notion “r-closed™ (A, : A, = g
for each A e <7, Definition 2 [9]) is never fulfilled for g + © since 9,:0, = 0:0 =
= ®. Similarly in the case 0 € # the notion “total r-closed” (B, : B, = g for each
B € 4, Definition 4 [9]) is never fulfilled for g + ®.

For the same reason we can see that also Jaffard in [4] and Priifer in [10] mean
the finite non-empty sets when saying finite sets.
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From 2.13 it easily follows:

5.4.2. The mapping y is a partial x-operator of ® if and only if (1), (2) and (4)
hold.

From 3.9.4 we obtain:

5.4.3.If y is a partial x-operator of ®, then E(x) = E(y) = {1), = {1}, for any
x-extension x of y in ®.

This together with 2.13 implies:

5.4.4. If y is a partial x-operator, then E(y) = g if and only if (3) holds.
From 3.6.1 and 3.7.1 we get:

5.4.5. Let y be a partial x-operator of ®. Then the finest (coarsest) x-operator of
®, which is an extension of y, is the modification u of the general closure operator
= of ® (the mapping v of 2% into 2“) defined for A < ® by:

A, =UB(Be®, Bc A, A =NB(Be¥, B, 2 A).

Fory = aand % = & the general closure operator z is a closure operator of ®
(hence it equals its modification u).

5.4.6. Let b be a partial x-operator of & for which (3) holds. Then the coarsest
x-operator of ®, which is an extension of b, is the mapping v of 2% into 2% defined
for Ac G
A, for Ae %,

& for 0+ AdH,
’ O for A=0 incase g+ &,
® incase g=06.

Proof. Since (3) holds, we have g, = g. It follows that B, € # for Be # and thus
by 5.4.5 we get A, =® for 0 = A¢ #. If ge 0, then h.geh .0, < 0, for each
h e 6, hence 9, = &, which is possible only if g = 6.

5.4.7. Let a be a partial x-operator of & fulfilling (3) and let u, v be x-operators
of G defined in 5.4.5 for y = a, % = /. Let u,(v,) be the mapping u(v) restricted
to the system %. Then u, and v, have the properties (1)—(4) and a mapping b of %
into 2% fulfilling (1)—(4) and extending the mapping a satisfies

B, =B, =B,
for Be 4.
Setting @ = r Lorenzen ([9]) denotes u, by the symbol r, and v, by the symbol r,.
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5.4.8. Letusput % = {{g} : g€ 6}, {g}. = g. g = (g)for ge G. Then c is a partial
x-operator of & with the domain €. Then from 3.6.1 and 3.7.1 we obtain:

the finest (coarsest) x-operator of &, which is an extension of c, is the mapping
u(v) of 2% into 2° defined for A < G:

A, =U(a)(aeA) =A.g,

A, =N(a)(ae®, (a) 2 A) =g:(g:A).

Now 3.9.4 implies:

For any x-extension x of ¢ in &, it holds E(x) = g.

Restriction ot u(v) to o7 or 4 is usually denoted by s(v) (s. Lorenzen [9], Jaffard

[4]).

5.5. Aubert (1962). Let x be a mapping of 2° into 2°. The following properties of x
let be denoted by (1)—(3"):

(1) A=A,

(2) AcB,=A <=8,

(3) A.B, < B, ~(A.B),

(3) A.B, < B,

(3') A.B, = (A.B),

where Ac S, B < S.

5.5.1. Aubert in [1] defined and studied the mapping x fulfilling (1)—(3). ((3) is
equivalent to the conjunction of (3') and (3”).) Then he says that a system of x-ideals
or shortly an x-system in S is defined. He calls the axiom (3”) the continuity axiom
(s. 2.5).

In Jaffard’s book [4] (1960) in Appendix (Appendice — Les x-Idéaux), axioms
equivalent {except an unimportant exception — the mapping A — A, concerns only
non-empty sets, s. 4.4) to those of Aubert are introduced.

Clearly, it holds:

5.5.2. x is an x-operator of S if and only if (1), (2) and (3") hold.

From Definition 2.7 we get:
5.5.3. E(x) = S if and only if (3') holds.

5.5.4. If Z is the system of all subsets of S and y is a mapping of & into 2°, then
v is a partial x-operator of S if and only if Ae F, Be F satisfy:

AcA; AcB =AcB,: A.B c(A.B).
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Further, we have
E(y) =Sifand only if A.B, < B, for Ae #,Be #.

If (1)—(3) hold for y and for Ae #, B e # (therefore, y is a partial x-operator of S
satisfying E(y) = S), then Aubert speaks about a finite x-system.

From 3.6.1, 3.9.1 and 2.8 we get:

If y is a partial x-operator of S, then the finest x-operator of S, which is an
extension of y in S, is the mapping u of 2° into 2° given for A = S by the formula:

A, = UBBe F, B < A).
For any x-extension x of y in S it holds E(x) = E().

In case E(y) = S Aubert calls the x-system defined by u a finite x-system.

For the coarsest x-operator v of S, which is an extension of y (in case y is a partial
x-operator), the formula A, = NB(Be #, B, 2 A) (A < S) does not hold in general
even if E(y) = S.

Example. Let S be an infinite set, 0, « different elements of S. We put s; .s, =0
for each s, €S, s, €5, [sy,5,] #+ [« o], and o. @ = o. Then (S, -) is a semigroup.
For any finite subset A of S we put A, = A U {0}. The mapping y is a partial x-operator
of S with the domain % of all finite subsets of S and evidently E(y) = S. We set
B=1{0}, s=d=oa Then B,=B%d.s and B,:s ={0}:a =S — {a}. By 3.7
there exists A < S such that A, + ﬂBy(Be %, B, 2 A), where v is the coarsest x-
operator of S extending y.

5.5.5. Let S$* be the total quotient semigroup of S, % the system of all fractionary
subsets of S* and y a mapping of % into 25",

We have:

y is a partial x-operator of S* if and only if for each Ae %, Be % and ae S*
the following implication holds:

(4)AcA; AcB =A cB;a.B < (a.B),

If the semigroup S has an identity element, if (4) holds and if S, =S, S.B, <
< B/(Be %), then Aubert ([1], paragraph 14) speaks about a fractionary x-system
in S (or in S*). The given properties of y for the semigroup S with an identity element
are equivalent to the property that y is a partial x-operator of $* and E(y) = S.

In case y is a partial x-operator of $* and S, = S, 4.9 yields the finest (coarsest)
x-operator of $*, which is an extension of y.
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