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EULERIAN POLAR GRAPHS

BOHDAN ZELINKA, Liberec

(Received January 18, 1973)

The concept of a polar graph was introduced by F. Zitex [1]. Its formal definition
was given in [2]. For polar graphs see also [3].

In [2] a heteropolar path was defined. A heteropolar path in which no edges are
repeated, is called a heteropolar trail. If u, = u, and the edges e, e,_, are incident
with different poles of u,, then a heteropolar trail is called closed; otherwise it is
called open (even if u;, = u, and e,, ¢,_, are incident with the same pole of u,).

A Eulerian trail in a polar graph G is a heteropolar trail which contains all edges
of G. A Eulerian trail can be open or closed (according to the above definition).
A Eulerian polar graph is a polar graph in which a closed Eulerian trail exists.

Lemma 1. Let G be a finite polar graph. At any vertex of G let the poles belonging
to it have the same non-zero degree. Then there exist closed heteropolar trails
T,, ..., Ty in G such that each edge of G is contained exactly in one of them.

Proof. We shall do the proof by induction. The least number of edges of a graph G
satisfying the condition is equal to the number n of vertices of G (this is the case when
the degree of each pole of G is 1). In this case G is a union of vertex-disjoint hetero-
polar circuits [3] and the assertion is true. Now let the number of edges be m and
suppose that for any number of edges less than m the assertion holds. Choose
a vertex v of G and form a heteropolar trail starting at v. After incoming into a vertex
w # v we choose an arbitrary not previously traversed edge incident with the pole
of w other than that by which we came. This can be always done, because, when
passing through w before, we have traversed the same number of edges at both poles
of w. If we come into v by the same pole at which we have started, we proceed
analogously. After a finite number of steps we come into v by the pole other than
that by which we have started and thus we obtain a closed heterepolar trail T,. After
deleting all edges of T, from G and all resulting isolated vertices we obtain either
a polar graph G’ in which at any vertex the poles belonging to it have the same non-
zero degree or an empty graph. If G is empty, the proof is completed. If G’ is non-
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empty, then it is a graph satisfying the assumptions of the lemma and having less
edges than m. According to the induction assumption there exist closed heteropolar
trails T,, ..., T,, in G’ such that each edge of G’ is contained exactly in one of them.
Thus Ty, Ts, ..., T,, satisfy the condition of the lemma for G and the assertion holds.

A polar graph G can be viewed as non-polar; we consider only vertices and edges
of G (not poles) and the incidence only between vertices and edges. Therefore we
say that a polar graph G is connected, if and only if it is connected when regarded as
non-polar.

Theorem 1. Let G be a finite connected polar graph. At any vertex of G let the
poles belonging to it have the saume degree. Then G is Eulerian.

Proof. As G is connected, the degrees of all poles of G are non-zero and the
assumption of Lemma 1 is satisfied. Therefore there exist trails Tj, ..., T, described
in Lemma 1. We use the induction according to k. If k = 1, the proof is completed.
Let k = m > 1 and assume that for k = m — 1 the assertion holds. Take the trail T,.
There exists at least one trail T; (2 <j= m) which has a common vertex v with T,
otherwise the vertices and edges of T, would form a connected component of G
and G would not be connected. Without loss of generality let j = 2. Now we traverse
the trail T, starting and finishing at v and the we traverse T, again starting and
finishing at v; we go out from v by the pole other than that by which we came when
finishing the traversing of T,. We have constructed a new closed heteropolar trail 7.
Now the rails Ty, Ts, ..., T,, are m — 1 closed heteropolar trails in G such that
each edge of G is contained exactly in one of them and according to the induction
assumption the assertion holds.

For a vertex v of a polar graph G we define d(v) as the absolute value of the dif-
ference of degrees of poles of v. Further, let

A(G) =) d(v).
veV
We see that 4(G) = 0 if and only if G satisfies the condition of Theorem 1, i.e. if it is
Eulerian. Further, we easily see that the converse of Theorem 1 holds. We have
a corollary.

Corollary 1. A finite polar graph G is Eulerian, if and only if it is connected
and 4(G) = 0.

We shall prove a lemma on the number 4(G).

Lemma 2. For any finite polar graph G the number A(G) is even.

Proof. For any vertex v of G let (v) be the sum of degrees of poles of v. Let

5(G) = ¥ o(v).

veV
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The number 2(G) is even, because the number of edges of G is evidently equalto} X(G)
and this number must be an integer. Now let ve V, x(v) = {p,, p,}, let €1, 22 be the
degrees of p,, p, respectively and, without loss of generality, let 0, = 22- We have

o(v) =0, + 05, () =0, —0,.
Therefore
3(v) = o(v) = 20,

and, as g, is an integer, d(v) has the same parity as o(v) for each v and therefore also
4(G) and X(G) have the same parity. As £(G) is even, 4(G) is also even.
Now we shall prove another theorem.

Theorem 2. A connected polar graph G can be covered by k and not less pairwise
edge-disjoint open heteropolar trails (k > 0), if and only if A(G) = 2k.

Proof. Let 4(G) = 2k > 0. Let v be a vertex of G with d(v) > 0. To G we add
[8(v)/2] new vertices and 2[d(v)/2] edges joining the pole of v with the smaller degree
with both poles of each of the new vertices. We do this for any vertex v of G with
d(v) > 0 and denote the resulting graph by G'. The number 2[d(v)/2] is equal to §(v)
for d(v) even and d(v) — 1 for (5(3 odd. Therefore if §(v) in G is even, then in G’
itis 0, if (S(U) in Gisodd,in G itis 1. As A(G') is even, the number of vertices v of G’
with §(v) = 1 is even. We divide the set of these vertices into disjoint pairs and for
any of these pairs we add a new vertex and join the pole with the smaller degree of
each vertex of such a pair by an edge with this new vertex; these edges are incident
with different poles of this new vertex. The resulting graph will be denoted by G".
We have 4(G") = 0 and therefore there exists a closed Eulerian trail Tin G". The
graph G” was obtained from G by adding k pairwise edge-disjoint heteropolar trails
of the length 2 such that the union of no two of them is a heteropolar trail; this is
easy to see from the construction. Therefore, by deleting the edges and the inner
vertices of these trails from T we obtain k open heteropolar trails such that any of the
remaining edges is contained exactly in one of them. But these remaining edges are
exactly all edges of G and the assertion is true. Now assume that there exist | < k
such trails in G, let these trails be T, ..., T;. Let v;, w; be respectively the initial and
the terminal vertices of T; for j = I, ..., I. We add [ new vertices x,, ..., x; and join
one of the poles of x; with the pole of w; with which the terminal edge of T; is not
incident, while the other pole of x; is joined with the pole of v;,, with which the
initial edge of T;,, is not incident; here j + 1 is taken modulo I. The graph thus
obtained will be denoted by G”. In G” there exists a closed Eulerian trail; we obtain
it traversing T), then going through x, to v,, traversing T,, going through x, to v,
etc. and finally traversing T, and going through x; to v,. This means that 4(G”) = 0.
But the number of edges of G” is equal to the number of edges of G plus 2/, therefore
A(G") = A(G) — 21, which implies 4(G) < 2I, which is a contradiction with 4(G) =
= 2k, | < k. Therefore if 4(G) = 2k > 0, there exist k and not less trails with the
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required property. Now if there exist k and not less such trails, we can prove 4(G) <
< 2k by the above procedure (where [ is replaced by k). If 4(G) = 21 < 2k, there
would exist [ such trails provided I > 0, or a closed Eulerian trail if | = 0, which
would be a contradiction.

Corollary 2. An open Eulerian trail in a finite connected polar graph G exists if
and only if A(G) =0 or A(G) = 2. In the former case this trail is obtained from
a closed Eulerian trail by deleting one edge. In the latter case, if there are two
vertices v for which 5(v) = 1, then these vertices are respectively the initial and the
terminal ones of this trail; if there is one vertex v for which 6(v) = 2, this vertex
is both the initial and the terminal one of this trail and both the initial and the
terminal edges of the trail are incident with the same pole of this vertex.
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