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NON-ANALYTIC LOCAL FUNCTIONAL CALCULUS 

C. FoiAS and F. H. VASILESCU, Bucarest 

(Received March 20, 1973, in revised form August 13, 1973) 

1. Introduction. Consider a complex Banach space X and let ^{X) be the algebra 
of all linear operators on X. 

We recall that an operator Te£^{X) is said to have the single valued extension 
property [2] if for any open set ш c: C, the only analytic Z-valued solution of the 
equation (Я — T)/(/l) = 0 is the function/ = 0. It is known that if Tis spectral [2], 
or more generally decomposable [4], [ l ] , then T has the single valued extension 
property. Whenever T has the single valued extension property it is possible to 
define for each x e X its local spectrum GJ{X) (see [2]). We denote by Xj{F) the set 
of all X 6 X having their local spectrum contained in F cz С It is known that XT{F) 
is a linear manifold and if T is decomposable and F is closed then XT{F) itself is 
closed. In this case Xj{F) is a spectral maximal space for T; conversely, any spectral 
maximal space has such a form, for a certain F c: С [4], [1]. 

In case when Tis spectral, the proof of having the single valued extension property 
[2, Th. XV. 3.2] can be immediately adapted in order to show that Thas a stronger 
property: Namely, the equation (A — Т)/(Я) = 0 has no continuous Z-valued 
solution in any open set a> с C, except/ = 0. One aim of our paper is to study similar 
phenomena for more general classes of operators, namely for generalized scalar 
operators [3], [ l ] . 

For the convenience of the reader let us recall some definitions. Denote by C^ the 
locally convex algebra of all scalar functions, infinitely diff*erentiable in the complex 
plane. 

A spectral distribution U is a continuous homomorphism of the algebra C°° 
into ^(X), such that U(l) = l^. 

An operator is said to be generalized scalar if there exists a spectral distribution U 
such that T = U(z), where z stands for the function z -^ z. 

It is known that the support of any spectral distribution U is equal to the spectrum 
Ö-(T) of T, where T = U{z). The condition of continuity of a spectral distribution 
means the existence of a constant M > 0, of an integer m ^ 0 (the least such m is 
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called the order of the distribution) and of a compact neighbourhood Л of (т(Т) 
such that 

\\U{(p)\\ ^M| | (p |U, , (peC^, 
where 

\k\LA= E 777;'"P 
^(p' fc+î 

az^az -M 
and, as usual, if z = x + iy, we put 

dz 2 \dx dyj dz 2 \dx dy 

When (p is in C°° and has compact support (i.e. cp e CQ), then the symbol ||ф||^ 
will mean ||^||m,j? with any A :з supp cp. 

In what follows we shall show first that if Tis a generalized scalar operator having 
a spectral distribution of order m then in any open set œ cz C, the equation 

(A - T)f{X} = 0 

has no ?n-times continuously differentiable X-valued solution, except / = 0. 
Then we prove some results concerning the algebraic character of the structure 
of spectral maximal spaces of a generalized scalar operator. This' type of research 
has been initiated by P. VRBOVA [9] for generalized scalar operators (see also [7], 
[6]) and, essentially, we reprove her results. However, we get her statements in a dif­
ferent manner and our evaluations seem almost the best possible. 

2. Generalized single valued extension property. First we need some results con­
cerning scalar functions and their consequences for spectral distributions. Denote 
by D^Д the set {z e C; |z — >l| ̂  r}, for any r > 0 and Я e C. When Я = 0 then we 
put Я,о = Я -

2.1. Lemma. For any r > 0, r ^ 1, there is a function cp^ e CQ such that supp cp^ cz 
cz D ,̂ \\(Pr\\m й Mr'"^'^, where M > 0 does not depend on r, and such that for any 
spectral distribution U the integral 

(2/)" ' f f^(A) и{ф - z)) 61 л Л 

converges to U{il/) as r -^ 0 in the norm operator topology, for any ф e C^. 

Proof. It is known [5] that there is a function cpeC^, (p ^0, supp ^ c= D^ and 
(2/)-^ jj(p{w) dw л dw = 1. Take now ^,(z) = r"^ ф1г). Then we have 

nfc+«, ^ 
lôz^ dz' (4 < ^2+k+s 

271 



where М^̂  depends only on ç. Taking 0 g fc + s g m and г ^ 1, it is easy to get 

\\<PX^ S Mr--' , 
where M > 0 depends only on (p. 

Consider now the integral 

(20" ' [fiA(A) (PX^ - Z) d l Л dA , 

where ij/ eC°^ is arbitrary. It is known [5] that this integral converges to î (z) when 
r -> 0 in the topology of C°°. As C/ is a continuous spectral distribution, we have 

и ({2i)-' ^U{X) (PX^ - Z) d l Л аЛ = 

= (20" ' {\Ф{Х) U{(PX^ - z)) dl л dl -> Щф). 

2.2. Lemma. For any r > 0, г ^ 1 there is a function ф^ e CQ such that supp ф^ с 
^ ^3r» Фг "= ^ ^^ ^r ^^^ \\Фг\\т ^ Mr'"^, where M > 0 does not depend on r. 

Proof. Let (p^ be the function given by the previous lemma. Define 

ФХ^) = (^0 ^ ^r{^ — w) dw л dw , 

It follows then by [5, Th. L5.4] that ф^еС^, sup i/̂ , с D^^ and i/r̂  = 1 in D,. 
Furthermore, on account of the estimations of the derivatives of cp^ (see the proof of 
the previous Lemma), we obtain easily 

II^.IU^ M r - - , 
where M > 0 does not depend on r. 

2.3. Definition. We say that Te ^{X) has the msingle valued extension property 
if in any open set со cz С the only m-times continuously differentiable X-valued 
solution of the equation (Я -• T)f{X) = 0 i s / = 0. 

2.4. Theorem. Let The a generalized scalar operator having a spectral distribu­
tion и of order m ^ 0. Then Thas the m-single valued extension property* 

Proof. Let / : o) -> X be a function m-times continuously differentiable such hat 
(Я - Т)/(Я) = 0 for each Xeœ. Take a point AQEO} and suppose that /(Яо) + 0. 
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Take also a sequence Я„ ^ X^ (Я„ Ф X^ and set r„ = 1/4|Д„ - Яо|- Denote by а„(Я) 
the sequence ^rS?- ~" ^o)» where \j/^^^ are given by Lemma 2.2. Since A„ ^ ^згиДо ^^^ 
supp a„ c: /)з^,.до' ^^ ^ave Ца„)/(Я„) = 0 (see [4]). On the other hand, since a„ is 
equal to 1 in D^^j,^, we have 1/(а„)/(Яо) = / (^o ) (see also [4]). Therefore we may 
write 

0 = [/(«„)/(A„) = [/(a„) (/(i„) - /(Яо)) + /(Яо) . 

By Taylor's formula we have 

l^fc + s^m OA cX kl S! 

where lim„ \\9„{к„)\\ r^ = 0. 
Consider now the space Хт{{^]), which is ф {0} from our hypothesis. Notice that 

{d^-^'fldX" öP) (Яо) eXj.({io}), for any pair (fc, s). Indeed, from Àf(X) - Tf{X) = 0 
we get easily, for any fe > 1, s ^ 0 

for each Я 6 со. Since Хт{{Хо}) is T-absorbing [8], we have f{Ào)eXi{{Xo}). If we 
assume that (а*+У/аЯ* ар) (Яо) e Хг({Яо}) for О ̂  fc + s ^ g, then we may assert 
that (5''*7'/5Я*аР)(Яо)еХг({Яо}) for fc + s g ^ + 1, on account of the above 
relation, according again to the fact that ^^({Яо}) is T-absorbing. Therefore 
U{a„) (а^+У/ЗЯ* aP) (Яо)) = (а^+У/аЯ* aP) (Яо) and we may write 

С/(а„)(/(Я„)-/(Яо)) = 

= Z ^ . (Ao) ^̂ " ~ ^i ^]' ~ "̂̂ ^ + и{.„) e^{x„) • 
i^k+s^m d/" 5Я /c! s! 

On account of Lemma 2.2 we have 

||С7(а„)0ДЯ„)|1^Мг„-'"||оДЯ„)1|, 
hence 

И т | { 7 ( а „ ) ( / ( Я „ ) - / ( Я о ) ) | | = 0 , 
n-*oo 

consequently /(Яо) = 0, which is impossible, and the proof is complete. 
As a matter of fact, Theorem 2.4 may be stated for a slightly larger class of 

operators: 

2.5. Theorem. Let Vbe an operator quasi-nilpotent equivalent [ l ] to a generalized 
scalar operator T having a spectral distribution of order m. Then V has the m-
single valued extension property. 
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Proof. Suppose that /(A) is an X-valued m-times continuously differentiable 
function, defined in an open set со с C, such that (Я — V)f{X) = 0. Since V is 
quasi-nilpotent equivalent to T, it follows that F is decomposable [1]. Furthermore, 
for any closed set F с С we have Ху{Р) = X J ( F ) . In particular, /(Я) G X J ( { A } ) for 
any Я e CO. Since T is generalized scalar with a spectral distribution of order m we 
have (Я ~ Tf"-^ \ Хт{{Х}) = 0, therefore (Я - T f •*• V W = 0 in œ. According to 
the fact that Thas the m-single valued extension property (Theorem 2.4) we get by 
recurrence that f{X) = 0 in со. 

2.6. Corollary. Let Vbe a generalized spectral operator and Tits scalar part [ l ] . 
/ / Thas a spectral distribution of order m then V has the m-single valued extension 
property. 

2.7. Example. The index given by Theorem 2.4 is the best possible. Indeed, let X 
be the dual of the space C'"{D^) (i.e. the Banach space of all complex functions, m-
times continuously differentiable in Di) and Tthe adjoint of the operator Z defined 
by 

Z / ( z ) = z / ( z ) , feC-iD,). 

Then it is easy to see that Tis a generalized scalar operator and has a spectral distribu­
tion of order m, say (7, given by 

{и{ф)и){/) = и{ф/), ueX, feC^{D,), ф e C^ , 

Let us denote for any Àe D^ 

i.e. 0;^ is the ^-Dirac measure concentrated in {Я}. Notice that Я -> ^^ is an X-valued 
(m — l)-continuously differentiable function in Di. Indeed, we have 

dz^ dz' 

^k + sf 

iif) = i-réM) ' 
d^^'ô;^... а'̂ -^У 

dz'' dz' 

for any pair {к, s), О S k + s ^ m, and consequently for /с + s g m — 1 we infer 
easily 

ч ^VJ-c- с- /-чЬ4. с f II 

ôz" dz' ôz" дГ 

where С > О depends neither on X nor on /i. 
On the other hand, (1 - Г) я̂ = 0 for all A e Dj. 
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2.8. Remark. If we denote by Фх the sheaf of germs of analytic X-valued functions 
defined in С and by m^ the action of Я — Tin 6?̂ , where Те ^(X), then it is obvious 
that Thas the single valued extension property if and only if nij acts injectively on Ox-

Suppose now that Tis a generalized scalar operator having a spectral distribution 
of order m.lf ^x stands for the sheaf of germs of X-valued functions on C, m-times 
continuously differentiable, Theorem 2.4 shows that mj is injective on ^^. 

For any integer /c ^ 0, denote by a^j^x) (x eX) the complement of the open set 
Q^T\^) with the property that for any ÀQ G Q^T\^) there is a neighbourhood VQ of XQ 

and an X-valued function fx{X), /c-times continuously differentiable in VQ, such that 
(Я — Т)/ДЯ) = х(Я EVQ). If Tis a generalized scalar operator and it has a spectral 
distribution of order m then, on account of Theorem 2.4, it follows that for к ^ m 
there is only one function Хт{Х) in Q^T\^) such that (Я — T) Xj(A) = x. 

2.9. Proposition. Let T be a generalized scalar operator having a spectral 
distribution of order m. Then for any к ^ m + 1 and any x eX one has 

(7^j\x) = (7T{X) . 

Proof. It is obvious that (T^J\X) С (JJ(X) for any /c ^ 0 and XGX. Conversely, 
if Д; ^ m + 1 and (Я — T) Xj{X) = x in an open set со then (Я — T) {dxj\dl) (Я) = 0 
and by Theorem 2.4 it follows {dxjjdX) (Я) = 0, hence Xj is actually analytic, thus 
éP{x) CZ Q^{x). 

Proposition 2.9 fails to be true when /c ^ m. This fact will follow from the fol­
lowing 

2.10. Example. Suppose that p is a real number such that 1 ^ p < 2 and let X 
be the Banach space of all complex Borel functions, 2?-integrable with respect to the 
planar Lebesgue measure dv(z) = (2i)"^ dz л dz in the unit disc D ,̂ with the 
usual identification of the functions equal v-almost everywhere. Consider on X the 
operator T defined by 

(T/)(z) = z / (z) , feX. 

The operator Tis scalar in Dunford's sense, hence it has a spectral distribution of 
order 0. 

Take now in D^ the functions 

m-I {X ~ z)-^ z Ф Я' 
z = X . 

It is easy to see that ^^^^^ |/я(^)|^ dv(z) < oo for any Я e C, therefore/;L ^^^ elements 
of X. Furthermore, the map X-^f^{XeC) is continuous for the topology of X. With 
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no loss of generality we may consider this continuity in int D^. Take /l„, ÀQeint D^, 
1„ -^ ÀQ and r > 0 arbitrary. Then for a sufficiently small r we have 

•^'--^'•'"iiJVi^o-.|H"-'' 
= {f K j ^ i i l ! dv(z) + ï{ 1̂ ° ~ ^"1" dv(z) . 

J J o M o l ^ - z M ^ o - z l " JJc«, . , jA„-z | ' ' |Ao-z l ' ' 

Notice that lim„ [AQ - Kl" \К - z|~^ |До - г]"" = 0 (v - a.e.) if z ^ £)̂ д„, therefore 
by Lebesgue theorem of dominated convergence we have 

lim [[ I^V/"'" I dv(z) = 0 . 

VJJx,, ,^jA„-z| ' ' | lo-z| ' ' ' V 

On the other hand 

dv(z) 
z 

When n is sufficiently large, we have 

ff dv(z) _ r r dv(z) ^ rr dv(z) 

where r„ = r — |Я„ — Ao|- We have again by Lebesgue theorem 

lim [Г d(z) 

An easy direct calculus gives 

Я dv(z) _ гяг^"" rC dv(z) 

BMOI^O-ZI"" 2 - P ' JJD,„ , , J1„-Z | ' 

dv(z) _ гяг^"" |*j* dv(z) _ 2ягГ' ' < 2r^"-'' 

Summarizing, we obtain 

m\\f,„-f4u2 2-p 

As r > 0 is arbitrary, letting r -^ 0 we obtain that /̂ ,̂ -> /д^ in X, therefore the map 
A -> /д is continuous. 
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Now, let us remark that for any Я e С we have (Я — Т)/д = 1, therefore, with the 
notations of Proposition 2.9, (J^T\^) ~ 0? while Ö-J(I) = D^. 

3. The algebraic structure of spectral maximal spaces. In this section we intend to 
describe, following Vrbova [9], the structure of spectral maximal spaces of a gener­
alized scalar operator, pointing out its algebraic character. 

3.1. Proposition. Let T be a generalized scalar operator. Assume that T has the 
property 

n( i - r )«x = {o}, 
ЯеС 

for a certain natural number q. Then we have: 

1) For any closed F cz С 

Xr{F) = n{^-TyX; 

2) If Vis another operator such that Vcommutes with Tand (V — T)^^^ = 0 then 

Р1(я -vy-^^x = {0}. 
ÀeC 

Proof. 1) It is clear that XT{F) Œ () (2. - ТУ X. Conversely, let x be in 

f){À — ту X and take cp e CQ, ф = 1 in a neighbourhood of F. Let L/ be a spectral 
Афр 

distribution of T. Then у = 1/(1 — cp) x e Xт{^ирр {l — cp)). As л: = (A — Ту X; 
for any Аф F, then we can define 

^(U{l-cp)x, HF 
^' \{X-^T\Xr{snpp{l^cp))r'y XeF. 

and we have (Я - ту }̂я = У for any Д e С, hence j = 0. We get that x = U{(p) x 
for any (p such that ф = 1 in a neighbourhood of F, hence x G XT{F) [3]. 

2) Let us remark that 

(Я - vy^^ = (Я - ту X (--1)̂ ' (^ "̂  ^) (Я - ту-^ {у - ту. 
j=o \ J J 

Suppose that x e П (Я - vy^^ X, hence x = (Я - Vy-^^ y^ (Я e C). If 

хл = .1 ( - ly [^ ) ' ) (̂  - 7-/" '̂ (̂ ^ - ту у. 

then (Я -- ту хд = X (Я G С), hence x = 0. 
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3.2. Theorem. Let The a generalized scalar operator having a spectral distribu­
tion of order m. If q is an integer such that q '^ m -h 3 then 

П ( я - тух = {о}. 
ЯбС 

Proof. First, let us notice that we have in fact to show that П (^ "~ ту X = {O}. 
Then we need the following Ае<т(г) 

3.3. Lemma. Suppose that there is an integer ^ ^ 1 and an element x e X such 
that (Я — ту У;, = X for any Я e ö'r(x) (x Ф 0). Denote by Y^ the set {y^^eX; 
(Я — ту з̂ я = ^}- Then there is an open disc D such that D n (TJ(X) Ф 0, a constant 
С > 0 and Хд e Y^ with ||x^|| ^ С for X in a dense subset of D r\ Ö'J(X). 

P r o o f of the lemma. Consider the sets 

Б„ = the closure of {Я e ö'r(x); inf Цх̂Ц ^ n] . 

We have obviously (т^(х) = \JB„, therefore by Baire's theorem at least one set B„ 
n 

has a non-void (relative) interior. If Б„^ is such a set, we take С = HQ + 1, an open 
disc D such that 0 Ф D n Б„ c: Ö-J(X) and then we may choose x^ e Y^ such that 
||-^я|| ^ C, for X running through a dense subset in D n сг^(х); the proof of the lemma 
is finished. 

Let us return to the proof of our theorem. Assume that there is an x e 
e П {X — ту X such that x Ф 0. Let D be the disc given by Lemma 3.3; suppose 

that (X — ту Хя = X with x^ chosen according to this lemma. Denote by U the 
spectral distribution of T and take XQE D n crĵ (x). There exists (p e CQ such that 
(p = Una, neighbourhood of XQ, supp cp a D and V{q)) x Ф 0 (otherwise aj{x) ф XQ). 
Obviously (X - ту U{(p) Хя - U{(p) x and \\U{(p) x j ^ C||t/((?))|| for Я in a dense 
subset of D n Ö-j(x), therefore if we take instead of x the element U{q)) x and instead 
of X and Tthe space XT{F) and Т\ XT[F), where F = (Tj(U((p) x), we may suppose 
(Я — ту Хд = X, for any XeC, and ||x^|| ^ С for Я in a set В whose closure contains 
a^[x) = a{T). 

Now, consider for any XeC and r > 0, r ^ 1, the function ф̂ (Я — z) given by 
Lemma 2.L We want to evaluate the absolute value of the map 

Я _ (Я - ту и{ф - z)) Хя , 

defined for Я e С. Note that [/(<^Д ~ z)) Хя e Xr(D^^), therefore if D^ я «̂  -̂C )̂ = <* 
then U{(PXX - z)) Хя = 0. If D^ ̂  n а(т) ф 0 then we choose fi;^€B such that 
^зг,дл ^ ^гд- Let us notice that 

(Я - r ) " l/(ç,XA - г)) Хя = (/1л - ту U{<PXÄ - z)) X,, = 

= Ь/СС/'я - z)" <?>ХЯ - z)) х,^ . 
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On account of Leibniz' formula and the proof of Lemma 2.1 we obtain 

gk + H 

dz' dz' 
:Л-"я - z)>,(A - z) < 

uYCt,s sup 
pik + h-s-t P*"*"' 

~ (ß, - z)" — (p(X - z) 

й X c,r«-''+v-'~'"~^ ^ м,,r«-*-''-^ 

where M^,, are constants (independent on Я and r). Consequently, 

11(1 - ту U{CPX^ - z)) x,\\ й Mr"-"-^ , 

for 0 < r ^ 1, where M > 0 is a constant independent on X and r. Take now 
a function X e CJ such that x = 1 in a neighbourhood of ff{T). We have then 

Ij X{À) (A - T)" U{<PX^ - z)) хя d l л dX -l\ x{X) U{(PX^ - z)) xdl A dX 

(the left part is integrable as being equal to the right, which is obviously integrable). 
On account of Lemma 2.1, 

Hm %(Я) U{(PXX - z)) X d l л d i = 2/ U{x) x = lix . 

On the other hand, if ^ ^ m + 3 then 

lim 
|->0 Л̂  x{X) (A - ту U{(p,{)i - z)) хя d l л dA 

hence jc = 0, which is a contradiction. The proof is finished. 

= 0 , 

3.4. Corollary (Vrbova). Let The a generalized scalar operator. Then there is an 
integer q such that for any closed F one has 

ЛфР 

The p r o o f follows directly from Proposition 3.1 (l) and Theorem 3.2. Moreover, 
q can be any integer ^ m + 3, where m is the order of я spectral distribution of T. 

3.5. Remark. If T is a generahzed scalar operator with real spectrum then the 
minimal index given by Theorem 3.3 can be improved. Indeed, in such a case the 
function (p^y which appears in Lemma 2.1, may be taken on the real line and then it 
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satisfies an estimation of the form \\(Pr\\m = ^^ "* »̂ hence in Theorem 3.2 the mini­
mal index is then m + 2. 

4. The case of spectral operators. In what follows, we intend to give a variant of 
Theorem 3.2 with a better minimal index, vaHd for some scalar operators, and its 
immediate consequences. The proof is based on Badé's multiplicity theory [2, Ch. 
XVIII]. 

4.1. Theorem. Let S be a scalar operator in Dunford^s sense. If the Boolean 
algebra corresponding to its spectral measure is complete then for any integer 

0{^-syx = {o}. 
ЯеС 

Proof. Without loss of generality we may take q = 2. Suppose that xe 
e 0{À - sy X, X Ф 0; then we have (A - Sf z^ = x {z^ e X) for any ЯеС. Let 

A 

a -^ E{a) be the spectral measure of 5 {a Borel set in C) and Ш(х) the cyclic subspace 
spanned by x i.e. 

Ш{х) = c.l.m. {E{(7) X; <J Borel set} . 

Notice that Ш{х) is invariant for the spectral measure of 5, hence for the functional 
calculus of S with Borel functions. Let us remark that the solutions of the equation 
(Я — sy z^ = X may be chosen in Ш{х). To see that, let us denote B„ ^ = ^J^i/n,x 
and let us define x^ = lim„ E{B„^;^ Z^. We have that £(Б„д) z^ = {X - S)~^ £(5„д) xe 
G 50î(x), therefore Хд e 5№(x). Moreover, (Я — S)^ x^ = x; indeed, if Я is an eigenvalue 
then £({Я}) X = (Я - sy £({Я}) z^ = 0, hence 

(Я - sy хя = (Я - sy lim Е(Б„д) z, = lim £(Б„,я) x = 
и n 

= E{C{X]) X = E{C{X}) X + E{{X}) X = X . 

If Я is not an eigenvalue then lim„ Е{В„;) = Ix and similarly (Я — sy x^ = x. 
Let us recall some facts concerning the structure of 9Jl(x), taken from [2, Ch. 

XVIII]. Let/ be a scalar Borel function and let us consider the set 

^(^(/)) = \y^ 1™ f / W ^(d^) У existsl , 

where a^ = {Я; |/(Я)| g w}. Define then the operator 

S{J) y = lim f /(Я) £(dЯ) у, ye 9{S{f)), 
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not necessarily bounded. It is known that 

m{x) = {S{f)x; xe^{S{f))}. 

Moreover, there exists a positive Borel measure a -> fi{o) (cr Borel set) which 
dominates the vector measure a -> E(a) x, such that if x e S(5(/)) then / € L̂ (dju) 
and the mapping 

т{х)эБ{/)х -^feÜ{dfi) 

is continuous and injective. 

Now, consider again the relation (Я — Sy x^ = x. As x^ 6 Ш{х), we have x^ = 
= 5(/я) X, where /^ e Ü(dfi), for any A e C. We see that 

5((A - Z)VA)X = (Я - S)^ S(A)x == X . 

As T(X) = 1, we get (л - z)^/^(z) = 1, hence f^{z) = (Я - z)"^ eL^(d/i). But 
setting gx{z) = (Я -- z)"^, then ^^ el?(d/i) and [1 — Z)gx = U where (Z/) (z) = 
= z/(z); since Z is a normal operator on Û{àp), the property П(^ — Z) L̂ (dju) Ф 0 

is impossible, according to [7]. Consequently x = 0 and the proof is complete. 

4.2. Corollary. Let T be a spectral operator of type m such that the Boolean 
algebra corresponding to its spectral measure is complete. Then for any q ^ m + 2 

П ( Я - T)^X = {0}. 
ЯеС 

4.3. Corollary. With the conditions of the previous corollary, if E is the spectral 
measure of T then for any closed F we have 

E{F)X = П ( Я - тух, 

for any q ^ m + 2. 

4.4. Remark. The minimal index given by Theorem 4.1 is the best possible, as 
shown by our Example 2.10. 

4.5. Corollary. Let X be a separable reflexive Banach space. 
1) / / S is a scalar operator on X then for any integer q'^2 

n(A-S)«X = {0}. . 

2) / / Tis a spectral operator of type m then for any integer q ^ m + 2 

(\{х^тух = {о}. 
ЯеС 
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These facts are direct consequences of Theorem 4.1, Corollary 4.2 and of the 
following 

4.6. Proposition. Let X be a separable reflexive Banach space and ê the Boolean 
algebra associated to a countably additive spectral measure E on X. Then ê is 
complete. 

It is very plausible that this proposition is known. In the sequel we shall give its 
proof, since we have not found a pubHshed one. 

Proof. Let M > 0 be a constant such that ll£ (̂ö-)|| ^ M, for any Borel set a in C. 
Since X is separable and reflexive then its dual is also separable, hence the weak 
operator topology on 

may be given by a distance d. Moreover, the space {^u^ d) is compact. 

Let {£а}абЛ be a monotone increasing generalized sequence in ^ and denote by S'^ 
the closure in {^м^ ^) of the set {Eßi ß ^ a]. Let F be an element of C\é'^, which does 

a 

exist on account of the compactness of (5^м? ^)- It is easy to choose a sequence 
{E^j}f=i such that ai ^ a^ ^ ..., E,.e<^,. (j = 1,2,...) and d{E,.,F)->0 as 
j -> 00. Let ffj be a Borel set such that £((TJ) = E^. (7 = 1, 2, . . . ) . Since 

E{(rj+i) E{cTj) - E{aj) = E,.^ß,. - E,. = 0 , 

we have E{aj \((jj n (7j+i)) = 0 (j ^ 1), therefore, by neglecting eventually null-
sets, we may suppose that the sequence of Borel sets {(yj}f= i is itself increasing. Denote 
by a the union [JCTJ, Since E is a spectral measure, the sequence E{(TJ) is strongly 

i 
convergent to E{o), hence £((т) = F. Let a be an arbitrary index in A and a^ a Borel 
set such that E^ = £( (TJ . Assume E{a^ \ ÖT) Ф 0 and take x = E{a^ \o) x Ф 0. 
Then Fx = £((j) x = 0 and EßX = EßE^x = x, for any j5 ^ a. If x* is a continuous 
linear functional on X such that x*(x) Ф 0 then 

|x*(E^x) - x*(Fx)| = |x*(x)| > 0 , 

hence F ф ê^, which is a contradiction. Consequently £(cr^ \ cr) = 0, therefore we 
may suppose G^^ о from the beginning. In order to finish our proof, we have only 
to show that E^ = E{CF^) (a e A) is strongly convergent to F = E{o). But we have 
for a ^ (Xj 

1|(£, - F) x\\ = !(£, - F) (£(<x,̂ .) + £(Ca.^.)) x|| = 

= l|(£(tr,) - E{a))E{Ca^)x\\ ^ ||(£(a.) - £(a)) (£(Ccr,^.) - E{CCT)) x\\ + 

+ 1|(Ê((7,) - E{a)) E{Ca) x\\ й 2М1|(£(Ссг,^.) - £(С<т)) x|| , 
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hence the generalized sequence {E^} is strongly convergent to an element E(a) e (f. 
According to [2, Lemma XVII 3.4], S is complete. 

Acknowledgement. We thank Dr. PAVLA VRBOVA for her pertinent remarks on our 
paper, which allowed us to improve it; in particular, to improve the exponent q 
in Theorem 3.2 from 2m + 3 to m + 3. 
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