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1

In this paper, we consider C" (2 < r < o) maps f: P x R' - R', where P is
a one-dimensional manifold and for every fixed p € P the map f, : R' - R* defined
as f,(x) = f(u, x) is a diffeomorphism satisfying

(1) fu(x+1)=fu(x) +1.

The space of such maps, endowed by the C" Whitney topology we denote by Z.

The maps f from & are obtained as liftings of one-parameter diffeomorphisms
of S! induced by the covering of S* by R!. By f we shall denote the map the lifting
of which is f; similarly, we shall mark by hats the projections of points and subsets
of R! to S*.

Our main subject of interest will be the behavior of the rotation number of f for
varying p and its stability under small perturbation of f in 4. In addition, we obtain
some results about the nature and stability of the loci of periodic points of f. Related
problems (dependence of the rotation number on the changes of the diffeomorphism,
problems of structural stability and topological classification of the diffeomorphisms
of S*) have been studied by several authors (cf. [1]—[5]). The understanding of the
topology of the parameter-dependent diffeomorphisms of the circle is important for
the problem of structural stability of one-parameter two-dimensional flows (cf. [6])
as well as for the problem of bifurcation of periodic problems of one-parameter flows
(cf. [7]. [8])

We shall carry out the proofs only for the case P = R!, since the case P = S*
requires only minor adjustments of the proofs and R! and S* are the only possible
connected components of one-dimensional manifolds.

For fe #, we denote by o,: P — R! the function assigning to every pu e P the
rotation number of f,. We shall call (1, ) an I-periodic point of f, if § is an I-periodic
point of f, in the usual sense, (i.e. fu(¥) — y is integer, but fi(y) — y is not integer
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for 0 < j < [). The set of I-periodic points of f in P x R' will be denoted by Z,(f).
Given f, by the orbit of a point (u, y) we shall understand the set of points {(u,
i(y)) | j integer}.

We shall restrict ourselves to the study of typical (or generic) properties of oy
and Z,. We shall call a property of maps from & generic, if it is valid for every f
from some residual subset of & (i.e. a set which is a countable intersection of open
dense subsets of F).

For convenience, we conclude this section by listing some of the well known
properties of diffeomorphisms of S* and their rotation numbers, which we shall
need in the sequel.

Let f be a C? diffeoemorphism R' — R' which is a lifting of a diffeoemorphism
f:S* > SY,ie. fsatisfies f(y + 1) = f(y) + 1 for all y. Denote by ¢(f) the rotation
number of f. Then

(i) o(f) is a topological invariant of f and is determined by f up to an additive integer,
(ii) if o(f) is irrational, then f is topologically equivalent to the shift y > y + o(f),
(i11) if o(f) = k1™, where k, [ are relatively prime integers and I > 0 (if we express
a rational as a fraction we shall allways implicitely assume this), then there exists

at least one point y such that f(y) = y + k and there is no j-periodic point with
0<j<loff,

(iv) for any n,¢, +6, <1, and ¢, 20, §, = 0, where ¢, = max [f"(y) — y] —
= no(f), 8, = no(f) — min (f'(y) — y). Y
¥y

The proof of these properties can be found e.g. in [9].
Further, we note that since f is a diffeomorphism,

(v) f’ does not change sign and if it is negative, o(f) must be an integer,
(vi) if /" is positive and o(f) = kI~ then all periodic points of f are I-periodic.

To prove (vi) assume that there exists a point y which is m-periodic, m + I
Since y is not [-periodic, we have f'(y) # k. Assume e.g. f{(y) < y + k. Since f* is
increasing, we have thus f™(y) — y < mk and since y € Z,(f), f™'(y) — y is integer.
Therefore, f/™(y) — y < mk — 1, which contradicts property (iv).

Note also that since allways (f?)’ > 0, it follows from property (vi) that if f/* < 0
all periodic points of f are 1- or 2-periodic.

2

We know from [1] and [2] that ¢ is continuous but not Lipschitz continuous in
general (later we prove that generically it is of bounded variation). From the results
of [10] it follows that, generically, there is an open dense subset &7, of & such that
for every fe 7}, and | £ L, Z/(f) are one-dimensional imbedded C" submanifolds
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of P x R, intersecting every set ¥, = {1} x R'inisolated points. Furthermore, the
points (1, y) € Z,(f) at which Z,(f) does not intersect X, transversally, are isolated and

satisty (/1) (5) + 0. (2)ow) (£}) () + 0.4)

Lemma 1. Let I, J be intervals of R, J compact. Let f:I x J - R! be C!.
Denote ¢(u) = mm f(u, y) for pel. Then, at every p € int I both the right derivative

@' " (1) and the left derivative ¢'~(u) exist and are equal to min {(0f/op) (u, y) | y €
€ M(u)}} and max {(0f/on) (1, y) | y € M(n)}, respectively, where M(u) = {y | f(u, y) =
= ()}

Proof. Denote ¥(u) = mx(n (of/ow) (1, ¥), N(u) = {y e M(1) | (of/or) (u, y) =
= y(u)}. Both M() and N() are compact.
We prove first that if h — O+, y,€ M(u + h), then y, - N(u). Assume the

contrary. Then, there exists a sequence h, = 0, y, € M(u + h,) such that y, —
— y* ¢ N(p). Obviously, y* e M(u) which implies that for sufficiently large n, there

exists a positive # > 0 such that (9f/ou) (1, yi,) > ¥(r) + 5. Consequently, for suf-
ficiently large n we have for any y, € N(1)

0 0
f(l't + hm yh,.) - f(ll' + hn: .Vo) = hn [(_?-'[é (ﬂ + vlhna yh,,) - 5;{(# + Vzhm .Vo):l > O

(0 = vy, v, £ 1), which contradicts our assumption.

Now we have for sufficiently small & > 0:

ou + h) — o(p) = miJnf(u + h,y) — miff(ﬂ, y) =S + o yy) = f(1, o) =
=f(u + h y) — f(w ya) + F( vi) — F(1s yo) 2 ;—i(u +vh, y) b,

where y, € N(1), y, € M(¢ + h), ve [0, 1], and, therefore, y, - N(u) as h — 0.
Consequently,

@ lim inf = (g(n + k) = 9(1) = W) ) 2 0.
On the other hand we have
o(u +h) — o) = flu + 1, y) = f(w, y) =

=f(u+h,y) = f(u + b, yo) + f(u + h, yo) — f(1, yo) = :—!ft(u, Yo) h + o(h)

*) Actually, in [10, I] the openness of & is not explicitely stated for L > 1 (cf. Theorem 1
and the following Remark 2). However, the openness of & }; (which is true in general), follows

easily in our case, since by properties 5, 6 of §1, Z; are closed and isolated from U Z;.
Jj<i
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from which
lim sup h™*(o(u + h) — o(1) — Y(r) h) £ 0
R0+

which together with (2) proves ¥(u) = ¢'*(u). The corresponding statement for the
left derivative is obtained by replacing u by —p.

For fe #, denote f'(u, x) = f,(x). Obviously, f' € & for all I. In several proofs
we shall use the following fact which we shall formulate as

Lemma 2. Given f € # and neighbourhoods W, of f' for 0 < | £ L, there exists
a neighbourhood W of f such that f'€ W, for 0 £ | < Las soon as fe W.

The proof follows from the fact that the operation of composition is continuous
on #.
A closed interval of R! will be called non-trivial if it has a non-empty interior.

Lemma 3. Let fe F1;. Then for every ¢ = kI”* with l £ L, o5 '(¢) is disjoint
union of non-trivial closed intervals only finitely many of which intersect any
compact interval I. If p, is a right (left) endpoint of an interval of o;'(o), and

(0s ¥0) € Z(f), then (fuo) (vo) = 1 and (0f[on) (f,,) (vo) and (f,)" (vo) are distinct
from zero and have the same (the opposite) sign.

Proof. First we prove that the number connected components of o '(g) in-
tersecting I is finite. If this was not true, there would exist a sequence of points (¢, y,)
from mutually disjoint components of Z,(f) such that u, € I and p, — p*. Because of
compactness of S* we can assume (u,, y,) = (u*, $*) € Z,(f), which contradicts to
the fact that Z,(f) are imbedded submanifolds of P x S™. ,

Let € o5 ‘(o). Then, Z,(f) 0 Z, * 0 and, since Z,(f) is a one-dimensional mani-
fold, the intersection of which with X, consists of isolated points, it must intersect X,
for all ' from some right or left neighbourhood U of u, which implies o (1) = ¢
for p’ e U. Since o, is continuous and, thus, af—l(g) is closed, this proves the first
part of the lemma.

The second part of the lemma follows from the fact that if y, is a right endpoint
of some interval of o '(¢), the components of Z,(f) intersecting X, all lie to the left
of it. Consequently, any (uo, yo) € Z,(f) is a collapsation point (in the terminology
of [10]) and the inequalities follows from [10, Lemma 3]. The proof for the teft
endpoint is similar.

If their modifications to other generically possible situations (left endpoint, different
signs of the inequalities) is straightforward, we shall formulate the statements
concerning the endpoints of the intervals of o ; 1(g) only for those right ones, satisfying

(0/01) (o) (¥0) > 05 (fio)” (vo) > O.

Lemma 4. Let f € &1y, po be a right endpoint of an interval of o7 '(kl™*) and let
(0lon) (fuo) (70) > 0, (£ih)" (o) > 0 for some periodic point (ug, yo). Then,
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(2)ou) £1.(») > 0, (fuo)” (v) > O for every periodic point (uo, y) and fi») > k for
all y and all u > po sufficiently close to .

Proof. Let f € #},. If there was a periodic point (i, y*) with (£.)" (v*) < 0, y*
would be a local maximum of the function ¢(y) = fy(¥) — ¥, while the point (y,, ¥o)
is a local minimum of ¢. Since ¢ has both a local maximum and a local minimym of
value k, there must also be a point y; with ¢(y,) = k which is not a local €Xtregmum
of ¢. Thus, (u,, y1) would be a periodic point not satisfying lemma 3.

Since by lemma 3, sign (9/dx) (f},) (y) has to be equal to sign (f,,)" (v) for every
periodic point (yo, y), the lemma is proven.

Lemma 5. The subset F,,, of F,, of those fe€ F1y which for every ¢ < kI™*
with | < Lsatisfy

(i) if o is an interior point of 65 (), then min [f,,o(y) —y]<k< max [0 -
(i) if wo is a boundary point of af_l(kl_l), then the projections (o, 91) of the
periodic points (1o, yi) belong to one orbit of f

is open dense in F.

For the proof of this lemma the following lemma wili be useful:

Lemma 6. Let f € 1, 0(1o) = kI™1. Then min f,(y) — y < k < max fu(y) — ¥
y

v
if and only if there exists an y, such that Z(f) intersects X,, transversally at
(o> ¥) (i-e. (fLY (¥) # 1 — cf. [10, I, p. 561]).

The proof follows easily from the fact that at points (1o, ) € Z,(f) with (fs,)’ (¥) =
=1, (f4)" () has to be different from zero and, therefore, fuoy) — y — k cannot
change signs at such points.

Corollary 1. If fe #',, peoy'(kI™Y), then mmf(y) —y<k< maxf(y) -y

if and only if u is an interior point of the prryectton of some component of Z,(f)
into P.

Proof of lemma 5. Openness. Let f € # ;. Then, by Corollary 1, the interiors of
the projections into P of the components of Z,(f) cover the interior of ¢, '(kI™') and
the components of Z,(f) whose projections contain the same boundary point of
o7 '(kI™*), belong to one orbit. The manifolds Z,(f), I < L are obtained as pre-images
of points of intersection of certain maps associated with the maps f, (cf. [10, I,
Lemma 1]) with the diagonal in R?, which for fe %, is transversal. Therefore, in
virtue of lemma 2, the transversal isotopy theorem [11, 20. 2]') implies that for

1y The compactness of X in [11, 20, 2] is not needed if the Whitney topology is used.
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every f from some neighbourhood of W of f, Z,(f) are isotopic to Z,(f) for I < L.
Also, it follows from the proof of [11, 20, 2] that Z,(f) can be made arbitrary close
to Z,(f), I £ Lprovided Wis choosen small enough. In particular, W can be choosen
so small that We &, and that the interiors of the projections of those components
of Z/(f), which are isotopic to the components of Z,(f) the projections of which cover
some interval J of o 1(kl"l), cover an interval J in such a way that each of the end-
points of J belongs to the projection of components of Z(f) belonging to one orbit.
Thus, We & ;.

Density. The density of #,, in & will be proven if we show that for any f € &#,,,
if u, is a point not satisfying (1) or (ii), then by an arbitrarily small perturbation of f
with an arbitrary small support a map from & can be obtained satisfying (i), (ii) for
all po contained in the projection of this support into P.

Let 11, be an interior point of o, '(kI™') not satisfying (i). Let e.g. f1(y) = k for
all y. Let ¢ : P —» R' be a bump function equal 1 in some neighbourhood of p,, the
support of which contains no boundary points of o7 '(kI™!) as well as no point except
of po in which (i) would not be satisfied (note that by Corollary 1 the points not
satisfying (i) are isolated). For sufficiently small ¢ > 0, the function f — e¢ will be
in # 1, and satisfy (i), (ii) for pe U.

Let now 1, be a right endpoint of an interval of ¢, '(kI™?') satisfying f1(y) = k
for all y, which implies

®) G >0, (L)) >0
n

for all periodic points (i, y). Let {(uo, 2,)} be a periodic orbit. Choose neigh-

bourhoods U of g, V of 2, and an & > 0 so small that ofﬂ(u) is not rational with

denominater less than Lfor pe U, u > p, and {yo} x V does not contain any other

periodic point except of (g, Z,). This is possible due to Corollary 1, the continuous

and monotonic dependence of o,,, on ¢ and the fact that by lemma 4 and (3),

min f,(y) — y > k for u > p, sufficiently close to y,. Further, let ¢ : P x R' — R*
y

be a bump function which is 1-periodic, equal to 1 in some neighbourhood of (i, zo)
and 0 outside U x V. Denote f = f + gp. From (4) it follows that for all points
(1, y)eU x V with u = p, we have f)(y) > k. In this way, we can destroy any
periodic orbit of fm) and leave only one to suit (ii).

From this lemma we obtain

Proposition 1. There is a residual set & | of & such that for f € F, the following
is valid:

For any ¢ = kI™*, o '(¢) is a disjoint union of closed non-trivial intervals only

finite of them intersecting any compact subset of P.If uq is an interior point of oy I(Q),

then min f,(y) — y < k < max f,(y) — y. If o is aright (left) endpoint of an interval
¥y y

of o;(0), then there is exactly one orbit of periodic points of Juo for every point 9,
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of which
Ly (7o) = 1, %fm £0, (FL) (vo) # 0

and the latter two quantities have the same (the opposite) sign.

Remark 1. In case f* < 0 it follows from 5, §1 and the continuity of o, that o,
is constant over P. )

Next we shall examine the behavior of the rotation number in the neighbourhood
of a boundary point u of 65 *(¢), ¢ rational, outside of o5 '(¢). The difficulty here is
that in any neighbourhood of 1, o, can have rational values with an arbitrarily large
denominator. We prove the following

Proposition 2. Let f € 7, o,(1o) = kI™" and let the set of periodic points of f with
1 = po form an increasing sequence (uo, y;) such that (uo, 9;) belong to one orbit

of . Let :
, 0 "
) (f) ) =1, P fuo¥) >0, () (v) > 0
for all i. Then, there is a neighbourhood U of p, in which o, is non-decreasing.

Furthermore, o, is not constant on any neighbourhood of po and o;'(0) N U is at
most a one point set for g irrational.

The prcof of this proposition is based upon the following lemma, which appears

to be crucial for the results of this paper:

Lemma 7. Let f, uo satisfy the assumptions of proposition 2. Then, there are
7 > 0, n such that for allv > n, ug < py < Uy < po + 1, yeRY,

) . fuly) < fly) -

Remark 2. It is easy to check that if (4) is satisfied for some i, then it is satisfied
for all i.

Proof. Denote g,(x) = fi(x) — k. Obviously, g,, has rotation number 0 and g
has a sequence of periodic points (i, y;), exactly I of which lie in [0, 1). Further, we
have

a ‘ ’ ”
(6) o 9(sos ¥:)) > 0, gu(v)) =1, g, (y)>0.

Rewriting (5) in terms of g, we have the inequality g,,(y) < g}.,(»)- Below in the proof,
if the index i occurs in some statement or formula, it should allways be read “for all i”’.

1° Denote N = 2 max [g,,(¥)], m = 4 min [g,,(»)]. From (6) it follows that m > 0

y y
and that y; are minima of the function gm,(y) — y. Consequently, yuo(J’) > 0 for
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Y # y; from which it follows
) lim g () = y; forall ye(yi—y,y:].

v—=o0

2° We prove that for every q positive integer, there exist {, > 0 and # > 0 such
that if { < (o, o < u < po + 7 then

(8) gZ(yi - C) <yi— 3
©) gilvi +{f2) <y + L.

Since g,,,(v;) = 1, there is a {o such that for |y — y;| < {o, g,(¥) — 1 > —(29)7%.
If { < {,, we have

g‘l()’i - C) - (.Vi - C) -—E::[gjﬂ(yi _ C) _ gf(yi _ C)] _
=S 60— )~ 90— 01 5 o) S - - 0] < 8

The inequality (9) for u = p, is established similarly. Because of continuous depen-
dence of g, on p, inequalities (9), (8), remain valid for [u — po| < # provided 7 is
sufficiently small.

3° Since g is C' in p, for | — po| < n there existsa I' > — oo such that

@ 9() = 9u(y) > T(uy — py) forally.

It follows from (6) that we can take n > 0, 0 < & < $min (y; — y;—4), & > 0 s0
small that

(i) 9u:(¥) = 9 (9) > ¥y — 1) forall yely, =& yi +1]
guy) <% <1 for yel[y; =& yi— ¥]
9y) > 1 for yely,— 3, yi +¢]
gy(yi—l + f) <y;—¢.
From (7) it follows that there is a g, such that

(iii) g + O >y — ¢
and that for sufficiently small { we have
(iv) gq'(J’i - f) <y;—¢

for all |u - uol < 1, provided n > 0 is sufficiently small.
According to 2°, # and { can be choosen so small that

) 92— &) <yi— 3,
‘ 920 +3) <y + ¢
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where g, > y7'(N — 1)"'(N* — 1)|I| and g5 >y~ 'm™*(m — 1)~ (m ") [T
are fixed.
It follows from (ii) that

(V) 9u(v2) 2 9,.(v1) as soon as yae[y; =& y; +¢] yi =y, and po Sy <
< ph2 = Mo + 1.

By lemma 4 we have min g,(y) — y > 0 for po < # < fto + 5 from which it
follows y

(vii) lim g)(x) = oo for all to < B < fig + 1 provided n is suitably restricted.

Throughout the rest of this proof we shall assume that 7, &, { are choosen so as to
suit (i)—(vii) and that py < py < py < po + n; for the purpose of later reference,
we shall sometimes write 1 = 1(f, 1to)- '

4° Let ye[y; — & y; + 3{]. We prove that there exists a g such that
(10) v —E2 a0 2y + ¢
and if g* is the smallest g satisfying (10) then
(11) () > g5 () + (m = D7 m™ 0 (m® — 1) ] (2 — py) -

The existence of a g satisfying (5) follows from (ii) and (vii). Let g, be such that
g%(») = yi + 3¢, g% < yi + 4. Then, from (v) it follows ¢* — g, = g5 and by
(vi) we have g%(y) — g%(») = 92(y) — g%(x), where x = g%(y). But according
to (i) we have for all vy, v, € [y; + 2, y; + &]

9:(02) = 9,,(01) Z 9,,(02) — 90, (02) + 9,,(02) — 9,,(01) Z V(2 — 1) + 02 — vy
from which we obtain by induction
ga(») — 98() 2 as¥(u2 — py)
from which (11) follows by (v). 7 v

5° Letvye[yi—y + & yi — Elv, 2 03 + (m — 1) m®(m® — 1) [T (up — py)-
Then, we prove g2,(v,) > g2,(v;) for all ¢ = 0.

In virtue of 4° and (vi), it suffices to prove that
(12) 95a(v2) 2 gf,(vs) forall g <gqf,

where g; < g, is such that HZIZ’(Uz) 2y;i—¢> gf,‘z' ‘.l(uz) (the existence of such a g}
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follows from (iii)). However, (12) follows by induction from the validity of
guz(Wz) - gm(WI) g gpz(wl) - gl‘l(wz) + gm(WZ) - gﬂx(wl) g
= Irl (M2 — py) + m(w, —w,) forany w, = w,,
W€ [yi-1 +& yi— f] .

6° From 4° and 5° it follows that for ye[y; — & y; + 4], g2,(y) = g%,(») for
allg > 0.

7° Letye[yi—y + & y; — &]. Then, there isaqj, < g, such that g%i(y) —g2(y) =
S(N =) (N = D) T(py — py), yi — ES 98 () S yi—  for j=1,2. This
follows by induction from (iii), (iv) and the validity of .
9ua(02) = 9, (01) = 9,,(02) = G1(v1) + 9,:(01) = g,,(v1) Z
= N(Uz - Ul) + F(llz - #1)
forall vy, v, € [_Vi—1 +& i — f], v, = 0g.

8° Let y, g} be as in 7°. We prove that then g% *%(y) > g2t *%(y).

231

It follows from (ii) that if v, = v, € [y; — & y; — 1{], then

gu:(UZ) - gu,(vl) g guz(vl) - g#z(vl) + g#z(vl) - gm(vl) z
= %(Uz - Ul) + )’(I»‘z - .‘11)
from which we obtain by induction and (v)
gu e (y) — gl e (y) = (N — 1)7 (N — 1) T(up — py) 2™ +
+ (e — 1) % Ny, — py) Z 2[(N = )7 (N = 1) +9g,] (12 — 11) > 0.
9° It follows now from 6° and 8° that
(13) HZZ(X) 2 931(x) =0 forall xe [J’i—1 +& yi + %C]

and g > ¢, + g,. From (ii) it follows that g,(y) — y Z 4 > 0for po < pt < po + 1,
ye[y: + ¢ y; + ¢] and some positive 2. Therefore, there exists a g5 > 0 such that
for every uo < u < po +nand ye[y, — 14 yi + {l, '

4 g2y = yi + (.

Let g% be the smallest g5 satisfying (13). Then, by (i), 9%(y) < gzs;'(y) and applying
(13) to x = g%'(y) we obtain g£,(y) < gi,(y) for all ¢ > g, + g, + g5 > g, +
+ g, + gq5. This completes the proof.

Remark 3. Going carefully through the estimates of 1°—3° one can check that
for every & > 0 there is a neighbourhood W of f such that for every f in W, the
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quantity 7(f, 1to) (defined so as to satisfy the analogues of (i)—(vii) for f, #o) can be
choosen so that 7(f, uo) > n(f, po) — . For any f, uo we can define 7 ~(f; ko) as the
quantity for which the analogues of (i) — (vii) are satisfied in [0, o — 7] the analogy
of the first part of this remark for #~ is straightforward.

Proof of Proposition 2. From lemma 4 it follows that for uo < p; = H2 =ty + 1

o7(p;) = limn” lfm(y)"hm (D) f,ff(Y)<hm ()7 fia(v) = o4(ka) -

n—oo

Furthermore, o, is constant in some left neighbourhood of po. Thus, o, is non-
decreasing in some neighbourhood of y,. From Lemma 4 it follows that o is not
constant in any (right) neighbourhood of .

Now, let ¢ be irrational and ¢,(1) = o for some p e U. Then, by (i), (ii), §1 there
exists an 1-periodic homeomorphism h:R! — R! such that F,(y) =h™'of,0
o h(y) = y + o for all y. From lemma 7 it follows that for all p’ > p, p’ € U it holds
FY(y) = h"tofy o h(y) > y + vo for all y and v = n. Because of the periodicity
of F, there exists a rational, pg~*, such that Fj/(y) > y + pg~' > y + nlg = F,/(y).
This implies F3(y) — y > p > F3'(y) — y and, by (i), §1, o,(¢) = op(w’) >
> p(nlg)™" > op(1) = o(1). In a similar way we can prove o (1) < o (1) for
o<

Proposition 2 allows us to establish some generic global properties of the behavior
of the rotation number as well as some stability results. For a more transparent
formulation of these we introduce the following notation:

A closed interval J will be called a plateau of a function ¢ : P — R if f is constant
on J but on no toher interval which contains J properly. A plateau will be called
extremal (upper, lower) if its endpoints are local extrema of the same kind (local
maxima, local minima). ¢(J) will be called the value of the plateau.

Theorem 1. For every fe %4, o, has at most a countable number of extremal
plateaus, only finitely many of them intersecting any compact subset of P. The
values of all non-trivial plateaus of o, are rational.

~ Proof. From proposition 2 it follows that the intervals [, — 17 (f, 1), 12 +
+ n(f, 12)] cover P, if [, u,] runs over all plateaus with rational values. From this
covering we can extract a locally finite subcovering. From proposition 2 it follows
further that there is at most one extremal plateau contained in every element [u, —

= 17 (f, 1), H2 + 1(f, p2)] of this covering, namely [y, #,]-
For the next theorem, we shall need two lemmas.

Lemma 8. Let fe %y, f, uo satisfy the assumptions of Proposition 2. Then, for
every choice of sufficiently small neighbourhoods U of ko, V; of ﬁ., there is a neigh-
bourhood W of f such that for every fe W:

84



1. there is exactly one l-periodic point (fI, §;) in U x V; such that

(15) (fy ) =1
is satisfied for p = fi, y = j;, where [i is the same for all i, and §, belong to one
orbit;

2. there are no other l-periodic points in U x R with u > [i except of the points
(@, 7:), while o(1t) = @ for p < fi, pe U;

3. it holds
(16) 270 >0, (Y 0)>0
u

forp=jiandy =y,

Proof. Let us choose U and V, so that f has no I-periodic points in H = U x
x (R'\UV;), no periodic points satisfying (15) in U x R* except of (o, y;), and

(16) is valid for f = f and all (1, y)e G = U x UV,. Since A and G are compact

there exists a neighbourhood W; of f such that every f e W, is without periodic points
in H, satisfies (18) in G and

(17) myax (i) —y) <k +1.

Denote F(u, y) = f(y) — k.

Then, the set of I-periodic points of f in G satisfying (15) can be written as
(J*F)~1 (Q) n G, where J'F means the 1-jet of F in J'(P x R, R") and by Q we
have denoted the submanifold of points (u, y,y,0) in J'(P x R}, R") ~ (P x
x R' x R' x J'(1, 1)) (in the notation of [12]). From (16) it follows that F inter-
sects Q transversally in G at the points (¢, y;). By [12, 8. 2, Proposition 1], there is
a neighbourhood W = W, of f such that for every fe W, J'F will intersect Q trans-
versally in G. Because of our choice of W;, (16) will be satisfied at these points. The
unicity of the points of intersection (which we denote by (u;, y;)) in U x ¥; follows
from the validity of (16) in U x V; and lemma 1. Because of unicity, the points (u;, y;)
must belong to one orbit, which implies the equality of y; for all i.

The equality o (1) = kI~* for u < ji in U follows from the unicity of the periodic
points of f satisfying (15) in U x R* (there should be a periodic point satisfying (15)
with p = py, if py is a left endpoint of an interval of o (kI™*)). From (16) and (17) it
follows that there are no I-periodic points of fin U x V; with u = ji. Since f has no
periodic points in H as well this completes the proof.

Lemma 9. Let f, ny satisfy the assumptions of proposition 2. Then, for every
& > 0, there exists a neighbourhood W of f such that for every f e W, there is a i, €
€(uo — & po + &) such that o () = kI™* for pe(uo — & o) and n(f, fig) >
> n(f, uo) — &.
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This lemma is a consequence of Lemma 8 and Remark 3.

By the profile of a real function ¢ with a countable number of extremal plateaus
we shall understand the sequence {o;}}_, of values of the extremal plateaus ordered
from left to right, where r is 0 or — oo according to whether the sequence is finite
from the left or not (note that in the infinite case the profile is defined up to shift).
Two profiles are considered equal, if they can be brought to each other by an appro-
priate shift.

Theorem 2. For every f€ & ., there is an open neighbourhood W of f such that
for every fe W the profiles of o, and o7 are equal.

Proof. Let J; = [/,t,-l, u,-z] be a collection of plateaus of o, with rational values
ki/1; choosen in such a way that only finitely many of them intersect any compact
subset of P and the intervals (u;; — #(f, pi1), tiz + n(f, #iz)) cover P. Then, by
lemma 6, there exists a neighbourhood W; of f such that for every fe W/, numbers g, ;i
will exist, corresponding to p;; as fip to o in lemma 9 and satisfying

l.ail - .“ill < min {Wh(fs Hi1)s %(Iln + Iliz)} >

|/7i2 - llizl < min {n(f, piz),  Hpir + pi2)} >
such that

Uf(ﬂ) = o'f(Ji) for pe [ﬁin Mg + 5] »o UWE [ﬂiz -8, ﬁiz]
for some & > 0 independent of f. By Lemma 6, min [ f,* u(y) — y] and max [f'{(y) —
! y y

— y] must be bounded away from k; by some positive constant for p € [p;; + &,
Mz — €] Therefore, there is a neighbourhood W; = W/ of f such that o (1) = o,(J;)
for pe[p;y + & pip — €] and, consequently, for pe J; = [f;, f;,]. Since there is
only a finite number of J;’s intersecting any compact subset of P, and W; can be
choosen in such a way that they do not restrict f outside a certain bounded neigh-
bourhood of J;, it follows from lemma 9 that (\W; will contain a neighbourhood W

of f such that for every fe W the intervals (i, — 1™ (f, i), fir + n(f fiz)) will
cover P. The correspondence J; — J; renders the equality of profiles of oy and o,
for fe W.

As a consequence of theorem 2, we obtain

Theorem 3. There is an open dense subset &, of & such that for every fe F,
d, has only finitely many extremal plateaus intersecting any compact subset of P
and the values of the extremal plateuas are rational. Moreover, for every fe F,
there exists a neighbourhood W of f such that for every fe W, the profiles of o
and o; are equal.

Proof. &, is obtained as the union of the neighbourhoods of the maps fe %,
the existence of which is proven in Theorem 2.
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Corollary 2. Generically (for every f e Fo), 05 is of bounded vyriation.

The second part of theorem 3 expresses a certain stability of behavior of o, under
small changes of f. This result is refined somewhat by the next theorem.

Theorem 4. For every f€ &, and any ¢ > 0 there is a neighbourhood W of f such
that for every f e W there is a continuous map h : P — P such that |h(u) — pu| < ¢
forallpand oy o h = o for fe Wn %, h is a homeomorphism.

Proof. Let K be any compact subset of P. Take L so large that the length of no
interval separating the plateaus of o '(kI™!) with I < L exceeds e. According to
Theorem 3 we can choose a neighbourhood W, of f so small that for every fe W,
the profile of ¢ is equal to that of o,. Since 6, and ¢; are monotonic between their
extremal plateaus, the correspondence of the extremal plateuas, rendered by the
equality of the profiles, can be extended to a unique value and order preserving
correspondence of all plateus. From lemma 9 and lemma 2 it follows that there is
a neighbourhood W = W, of f such that for all f € W,, if [uy, p»] is a plateau inter-
secting K of value kI”! with I £ L, then the corresponding interval [#;, fi,] of
oy (kI™") satisfies |i; — py| < %&, |ji, — 12| < %e. For f € W,, we construct h on K
as follows: h maps every plateau of o linearly and increasignly into the corresponding
plateau of o . It is obvious that h has the required properties on K. The fact that h is
a homeomorphism K — h(K) for fe W; n I follows from the non-triviality of the
plateaus of f with rational values.

To construct 4 on P we cover P by a strictly increasing sequence of compacts K.
It is obvious that having constructed h on K;_, it can be extended to K; without
changing it in K;_, for every f from some neighbourhood W; which does not impose
any new restrictions on f in K;_,. Therefore, (\W; will contain a neighbourhood W

of f such that for every f e W the map h with required properties over all P will exist.

Remark 4. If fe &, but f ¢ &#,, h may not exist (since some of the plateaus of f
with rational values can be trivial), but the one to one correspondence of the plateaus
of f and those of f from some neighbourhood of f can neverthless be established.

We conclude this section by a partial analogue of proposition 2 for the case of
o ,(uo) irrational. This result has certain implications for the problem of bifurcation
of periodic orbits (cf. [7], [8]).

Proposition 3. Let f,(y) = y + o, where o is irrational. Let B,= {s (offon) .
. (1o» ¥) dy # 0. Then, o, is increasing or decreasing in some neighbourhood of o
in accordance with the sign of f,.

This Proposition fo lows, similarly as Proposition 2 from lemma 7, from the fol-
lowing

Lemma 10. Let the assumptions of Proposition 3 be satisfied and let B, > 0.
Then, there exist n > 0, k such that for all p; < u, such that po —n < py <
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< py < po + 1y and all y,n >0,
fuiy) < £is0) -

Proof. Denote B(y) = (0f|ou) (o> y).- We have fi(y) =y + na + (u — Ho) -
n—1

S B + jo) + wulps y)] where lim w,(4, y) = 0 uniformly in y. From the in-
j=0 1= Ho

dividual ergodic theorem it follows that

1
(18) tim =[S 4y + ja)] = fo
n— oo j=

n—1

for a.e.y. Since the derivative of § (and, consequently, that of n [ ). B(y + ja)] is
j=0

bounded, (18) is valid uniformly for all y.

k—1

Choose k so large that ) (y + jo) = 1B, ‘and then 5 so small that |wy(y, y)| <
j=0

< 3B, for |u — po| < 7. Then, we have,

() = f50) = (12 — 1) 3B — 3B5) > 0

from which the lemma follows immediately.

Remark 5. Although (cf. [1, §1]) f,, is topologically equivalent to the shift pro-
vided o ,(po) is irrational, proposition 1 is not as general as it might seem, because it
is not known whether the equivalence homeomorphism is C? differentiable in general

(ef. [1], [4])

In this section, we apply the results of §2 to establish some generic properties and
stability properties of the loci of periodic points.

Proposition 4. Let f, 1, satisfy the assumptions of Proposition 2. Then, for every
o€ 0 (kos o + 1(f, o)), @ = %A™" and every plateau J of o;'(¢) contained in
(o> o + 1(f, 1)) Z; 0 (J x RY) is topologically a line.

Remark 6. The assertion of propostion 4 is true also under the assumptions of
proposition 3, for J contained in a sufficiently small (two sided) neighbourhood of .
The proof is the same, lemma 10 replacing lemma 7.

Proof of Proposition 4. From proposition 2 it follows that for u e [po, po +
+ 1(f, to)] to the right (left) of J, o ,(1) > (<e). Therefore, by (iv), §1, for sufficiently
large v, f)"*(y) — y > vbd(<vlx). Consequently, for every y € R', there is a pu*e J
such that f)1*(y) — y = vix, from which we obtain by (vi), §1, (u*, y) € Z,(f). It
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follows from lemma 7 that p* is unique. Denote p* = x(y). Then, Z,(f) n (J x RY)
is the graph of y. Since Z,(f) is closed, x is continuous, which proves the lemma.

Theorem 5. Let f € & ,. Then, given ¢ > 0, there is a neighbourhood W of f such
that for every f € Wthere exists a 1-periodic in y map g : UZ(f) - UZ/(f) satisfying
l
(19) l9(y) = ¥| <2
for all y e UZ(f), the restriction of which to every Z(f) is an isomorphism of Z,(f)
1
and Z/(f) isotopic to the identity.

Proof. We can assume without loss of generality that f; > 0. The case f, < 0
can be reduced to the former by considering f,f.

Let J; = [u;,, pio] be plateaus of o, with rational values o; = k;l; ! ordered from
left to right in such a way that any compact subset of P is intersected by only finitely
many of them, the intervals (u;; — n(f, ti1)s #i2 + n(f wiz)) cover P and

(20) lﬂi+1,1 - Hizl <le.

For every i there is a finite number of components of Z,, contained in J, x S*.
Since for every K compact, the numbers /; with J; n K # 0 are bounded, the existence
of the restriction of g on UZ,(f) n U(J; x R!) follows from the transversal isotopy

l i

theorem [11, 20. 2] similarly as in the proof of lemma 5.
To extend g outside U[J; x R'] we choose W so that for f € W the correspondence
of plateaus asserted in Remark 4 exists,

(21) W = k| < e
for p and g’ from corresponding plateaus outside (JJ; and the intervals (u;; —

12
= 17(f, i1)s #i2 + n(f, pi2)) cover P. Then, it follows from proposition 4 that given
a plateau J different from J,, if J; is the corresponding plateau of f, Q = UZ,(f) n

Nn(J xRY) and 0 = Ll}Z,(f) N [J x R'] are lines which can be represented as

0 = {(, y) | r = x(»)} and, similarly, 0 = {(1, y) 1 = #(»)}, x. ¥ continuous. From
(20), (21) it follows that if we define G :[0, 1] x [UZ,(f) n (J x R')] » P x R*
1

as G(t, x(y), ¥) = (x(») + {[7(») = x(»)]. ), 9 = G(1,.,.) will be the required
isomorphism, satisfying (19).
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