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TRANSLATION STRUCTURES AND GROUP PARTITIONS

JAROLIM BURES, Praha

(Received September 8, 1972)

Following the papers of V. HAVEL [2], [3] we shall present in this article an example
of a non-planar quasifield which describes a special translation structure in the sense
of ANDRE [1]. The author wishes to express his gratitude to V. Havel for suggesting
this research and for his valuable advice.

Definition 1. A set of non-trivial (i.e. of order > 1) proper subgroups (called
components) G, = (G,, +), a €I of a group G = (G, +) is said to be a partition if

(1) G=UG,

ael

(2) G, N G, consists only of the neutral element 0 whenever o, § are distinct indices
from I.

A partition (G), of G is called a t-partition if

(3) there are pairwise distinct indices a, 8, y € I suchthat G, + G, = G, Vvel \ {«}
and Gﬂ + Gy = G.

A partition (G,),; of G is called a n-partition if

(4) there exist distinct indices o, el such that G, + G, =G, Vvel \ {a},
G; + G, =G, WVvel \ {B}.

A partition (G,),r of G is called a congruence if

(5) G, + G; = G whenever o, f are distinct indices from I.

Remark. Evidently every congruence is a m-partition, every zm-partition is a
T-partition and every t-partition is a partition.
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Definition 2. By an algebraic t-system we mean an algebraic system (Q, +,)
such that

(i) (@, +) is an Abelian group (with neutral element 0);
(ii) Va,be Q,a £0,3!xeQ,x.a = b,
Va,be Q,a +0,3 yeQ,a.y = b;
(iii) there exists a neutral element 1€ Q \ {0} for the groupoid (Q, *);
(iv) 0 is a multiplicating zero, i.e.,0.a = a.0 = 0, Vae Q;
(v) the right distributivity holds, i.e., a(b + ¢) =a.b + a.c,Va,b,ce Q.

An algebraic t-system (Q, +, ) is called an algebraic n-system (a — not necessarily
planar — quasifield) if

(vi) @ \ {0} is a loop.

An algebraic 7-system (Q, +, *)is called a planar quasifieldif the following planarity
condition holds true

(vii) Va, b,ce Q,a £ b, xeQ, —a.x+b.x=c.

A 7-system in which (vii) is violated is called also a non-planar quasifield.

Theorem 1. Let Q =(Q, +, *) be an algebraic t-system. Then there is a t-partition
of the group (Q, +) x (Q, +) (this partition will be denoted by 2(Q)) such that

(i) 2(Q) is a m-partition if and only if Q is a m-system,
(ii) 2(Q) is a congruence if and only if Q is a planar quasifield.

The proof is a routine; #(Q) is composed of G,, = {(x,m.x)|xe Q}, Vme Q
and of G,, = {(0, x), x € Q}.

Theorem 2. Let ? = (G,),; be a t-partition of a group G (following the notation
of Definition 1). Let us choose an (arbitrary) element e e G, \ {0} Then there
exists an algebraic t-system Q(?) = (G,, +, *) such that

(i) Q(?) is an algebraic n-system if and only if 2 is a n-partition;
(i) Q2) is a quasifield if and only if 2 is a congruence.
Cf. [3] for the proof.

If Z = (G,)y is a partition of a group G (the notation here as wellas in the sequél
follows Definition 1) then the associated translation structure S(2) is constructed
as follows: w

points of () are precisely the elements of G;
lines of S(2?) are precisely of the form a + G,, Vae G, vel;
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parallelity | of lines is introduced by

a+ G, |b+Gyey=36.

Theorem 3. Let 2 be a partition of a group G. Then S(2) is a translation plane
exactly if & is a congruence.

The proof is well-known. Cf. e.g. [2].

Definition 3. A 1-translation structure is a translation structure such that

() there are classes &, &,, &5 of parallel lines with the following property:
each line of &, intersects each line which is not from #, and each line of .Z, inter-
sects each line from %;.

A m-translation structure is a translation structure satisfying the following axiom:

(n) there exist two classes &, + &, of parallel lines such that each line of %;
intersects each line which is not from &, (i = 1, 2).

Theorem 4. Let & be a partition of a group G. Then &(P) is a t-translation
structure or a m-translation structure if and only if 2 is a t-partition or a m-parti-
tion, respectively.

The proof is a routine.

In the paper [4], E. H. DAVIs described n-translation structures which are coordin-
atized by non-planar quasifields with an associative multiplication (i.e. by non-planar
nearfields) and found collineations of them. We can state

Theorem 5. Let Q = (Q, +, *) be a quasifield with an associative multiplication
(i.e. a nearfield). For 2(Q) let there exist pairwise distinct components G, G®, G
such that for Vi = 1,2,3, G? + G' = G for all components G' = GV. Then Q
is planar.

Proof. The proof follows from that of Theorem 3.2, [4]. The condition G 4-
+ G’ = G implies that each line of the form a + G intersects each line b + G’
if G+ GY, (i=1,2,3).

One of the lines 0 + G has the equation of the form y = n.x + k with n % 0.
If the point P does not lie on the line 0 + G then every line through P intersects
the line 0 + G'” which is a contradiction with Theorem 3,2 of [4].

It seems that Theorem 5 does not hold without the assumption of associative
multiplication. ‘

Example of a non-planar non-associative and non-distributive (1 e., thhout the
left distributivity) quasifield:

Let K*(x) be the field from [5] where K has the form M(6) with M a subfield of K
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and 0 transcendental over M, n a non-trivial automorphism of K fixing 6. To each

¢ e K*(x) \ {0} there exists a positive integer n and an integer 1 such that ¢ can
be expressed in the form

&= a,(0)x"" + yy4(0) XOH O 4|

with a(0) e K for all ie{h, h +1,...}, a(0) * 0. Define 0,(¢) as h, where hfi

is a irreducible form of h/n (as in [5]) and 5(¢) as the degree of the numerator of a,(6)
Further put

n(€) = n(a(0)) x"" + n(a, ,(0)) xvm 4
n0) =0,

T(¢) ah(O + 1) x4 apy4(0 + 1) x®EDm
T(0) = 0.

R

It holds

04(n(¢)) = 04(8), O(T(&) = 04(%), §(T(&)) = 5(n(¢)) = 8(¢).
If we define the new multiplication ® on K*(x) by

EOL=2¢ 02 (T°O(C)) whenever ¢ + 0
00¢(=0 for all ¢

then (K*(x), +, ©) is the quasifield which has all desired properties which may
be proved similarly as in [4], [5].

The non-planarity is guaranteed by nonsolvability of

y=00y+80.

The preceding construction originated from the connection of constructions of
a planar quasifield from [5] and a non-planar nearfield from [4].

It is easy to prove that (K*(x), +, ©) is a non-planar m-system.
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