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ON PARTLY GIVEN BOUNDARY VALUES

Ivo VRkOC, Praha
(Received May 25. 1972)

Definitions and notation. Let C be the set of complex numbers. Denote by Kg
the open circle |z| < ¢, by K, the closed circle |z| < { by I'; the boundary of the
circle |z| = {. In the case { = 1 the index { will be omitted: K{ = K°, K, = K,
I'y = I'. An interval I(¢,, 8) on the boundary I is defined by I(¢, 8) = {z:z =
=€, |p — ¢o| < 8} where @, € (—m, 7). In the sequel, different types of conditions
will be needed.

i) f(z) is holomorphic on K°,

i) lim sup [f(z)| S & zo €1,

z—zo

iii) |f(z)| < M on K°

iv) Re f(z) is continuously extensible onto I, so that Re f(e'®) exists for e el,,
there exist derivatives dRe f(e'*)[dp and |dRe f(e®)/dg| < N for e € I,.
(This condition can be substituted by the weaker codition: Re f(z) is continuously
extensible onto I, and Re f(e'?) is Lipschitz continuous as a function of ¢ for e'® e,
with a coefficient N),

v) let p(x) be a continuous nonnegative function defined for x Z 0, p(0) = 0,
assume that Re f(z) is continuously extensible onto I, so that Re f(€™) exists for
e?el, and |Re f(e'®) — Re f(e")| < ullo — ¥|) for e €l,, eV el,,

vi) |Ref(z)| < M on K°

vii) f(z) is continuously extensible onto K.
1, I, are some intervals on the boundary I.

Let % (&, M, I(o, 9)) be the class of complex functions which fulfil i), ii) and iii)
where I, = I(@, ).
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First a well-known theorem (the two-constant theorem) (see [1]) is introduced
together with a modification which will be useful in our further considerations.

Theorem 1. Given numbers ¢oe(—mn,n), 6 > 0, M > 0 and a point z,€ K°,
then
|f(zo)| < g1~ w(zo) prw(zo)

where fe F (e, M, 1(po, 8)) and w(z) is the harmonic: measure of I, with respect
to K°.

This estimate can be generalized to the case that the inaccuracy & depends on z [2].
This theorem guarantees that the problem to find a value of the holomorphic function
f(z) at the inner point of K is well posed if the values of f are known only on I with
the possible inaccuracy ¢ while on the remaining part of I only the estimate |f(z)| <
< M is known. Frequently the following generalization is needed:

Theorem 1’. Let numbers ¢q, 6, M be the same as in Theorem 1. Given a compact
set A, A = K° UI(¢q, 9), then

limsup sup |[f(z)] =0 where F = F,(e, M, (¢, 5)).
el0 zed feF .

Holomorphic continuation from one part of the boundary to another.

Let I,, I, be intervals on T, ie. Iy = {z:z = €, |p — ¢,| < &,}. Denote by
F(e, M, N, 1,,1,) the class of complex functions which fulfil i), ii), iii) and iv).
Similarly denote by #3(e, M, N,I,,I,) the class of complex functions f(z) such
that if(z) € #9(e, M, N, 1,,1,). This means that f(z) e #3(e, M, N, I, I,) if the
imaginary part Im f(z) is continuously extensible on I, and its derivatives are
bounded by N on I,.

Theorem 2. Given numbers ¢y, ¢,, @3 all from (——n, ny, 0, > 0,06, >0,6; >0,

M > 0, N > 0 such that ¢, — 0, < ¢3 — 83 < @3 + 03 < @, + 0, then

lim sup sup |Im f(z)] =0 where I, =I(¢3), k=123
el0 zels feF

and F = F(e, M,N,I,,1,). If I, = T, then I; = T is possible.

Remark 1. A similar theorem is valid for #3(e, M, N, I, I,). If the assumptions
of Theorem 2 are fulfilled, then

lim sup sup |Re f(z)] = 0 where % = FP(e, M,N,I,,1,). 3
el0 zels feF

Proof of Theorem 2. Throughout the first part of the proof it will be assumed
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that f(z) fulfils vii) so that, evidently, |f(z)] £ M on I'. Under these conditions
an auxiliary inequality (2,1) will be proved:

Gy [PRese)

2 2
< M1-0) +1M(1 2%
0p

= 20(1 — cos A)*  2m ol — cos )
for 0<o<1, |p— o <5

where A =min(¢, + 6, — @3 — 83, @3 — 03 — @, + ;). Since fi(0, ¢) =
= Re f(0e'?) is a harmonic function in K° the Poisson formula yields

2

i o
file, 0) = o j_"fl(ho)l — 20 cos (¢ — 0) + ¢

Suppose 0 < ¢ < 1, then there exists df,[0¢ and

ofle,0) 1" (1 — 0%) 20sin (¢ — 6)

——=—-—| fi(l,0) =
op 2n ) _, [1 — 20 cos (¢ — 0) + 0]

If this integral is divided into two parts, one over J = (—x, n) — I, and the other

overI, where I, = {9 : ¢ e (—m, 1), e? € I,} and if the latter is integrated by parts,
then the formula

(2.2) ?J_’l_g%i) __1 J 11, 0) 2L = ) sin(o = 0)2 :
? - 2m); [1 — 20 cos (¢ — 0) + ¢%]

_1 1-¢ ratis
o L e et

p2— 32
2
L[ (L0) -0 ]
2n )y, 90 1 —2gcos(p — 0) + @?

can be easily obtained (it is assumed 6 < m,). As 2t — A 2 |p — 0| 2 A (e €1,)
in the former integral as well as in the expression in the square brackets, it is
1 — 2¢0cos (¢ — 0) + @*> > 2¢(1 — cos A). Obviously A < . In virtue of the as-
sumption |df;(1, 8)/d¢| < N on I, and the additional assumption |f(z)] £ M on
J the inequality (2,1) follows immediately from (2,2). Denote

h__ M 1 3M
2(1 —cosA)? 2m1 —cosi

+ 2N.

Certainly N* is an upper bound of the right-hand side of (2,1) divided by ¢ for
3 < ¢ £ 1. Due to the Cauchy - Riemann relations and (2,1),

23) 9 Im f(0e'™®)

- SN* for $<e<1, |p—qi <8
0
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is valid. Now let any positive number n be given. Choose p* first such that
N*(1 — g*) < 5/2 and } < ¢* < 1. Inequality (2,3) implies

(24)  |Imf(e) — Im f(g*e®)| < N¥(1 — o*) < nf2 for |p — gs] < 5.

According to Theorem 1’ where 4 is the set of points g*e, |¢p — ¢;| < 8, there
exists a number g, > 0 so that

(2,5) |f(e*e®)| < nf2 for |p — @3] <65, 0<e=<e,.
Inequalities (2,4) and (2,5) give
[Im f(e™)| < |f(e*e™)| + N*(1 — ¢*) < n for | — @3] <85, 0<e=<e,.

Hence the statement of Theorem 2 is proved under the additional assumption that
f(2) is continuously extensible onto K.

If the additional assumption is valid only for Re f(z), then instead of (2,4) only
[Im f(o1e") — Im f(0,¢™)| < N*|oy — ;] where % <, <@, <1,

|@ — @3] < 85 is proved. This implies that ;grll Im f(ge') exists for e el,. Put

Im f(e'®) = elerll Im f(ge™) for ' € I,. Since Im f(ge'®) are continuous in ¢ (harmonic

functions) and Im f(ge™) converges to Im f(e*®) uniformly the function Im f(e*)
is continuous on I;. As [Imf(e*') — Im f(ge'??)| < [Im f(e'*') — Im f(e'*)| +
+ |Im f(e'*?) — Im f(ge'*?)| < |Im f(e*®') — Im f(e'*?)| + (1 — @) N* the function
Im f(e') is a continuous extension of Im f(ge’®) onto I.

In what follows, assumption vii) will be removed. With respect to Theorem 1
there exists a region Q, in C, Q; = K° O, nI' = I, (Q, is the closure of Q,) such
that | f(z)| £ /(Me) for z € @, (uniformly in the class ). Let J be the Jordan curve
in Csuchthat J =« K, JnI' =1, and J n Q; = 0. Denote by Q the interior of J.
The region Q can be conformally mapped onto K°. Since I, is the analytic part of J
the conformal mapping has continuous nonzero derivatives on I, (see Theorem 5, § 3,
Chapt. II, [3]). By this transformation the problem is reduced to the previous one.

If I, = I, then instead of (2,2) the equation

(e @) _ LJ"‘ af,(1, 0) Ry

de
op 2n)_, 99 1—20cos(p — 0)+ o

is used so that |9f,(z)/d¢| < N for |z| < 1. The remaining part of the proof is un-
changed also in the case I3 = I'" (Q can be chosen as K;).

If the function f(z) describes some physical phenomena it is sometimes better
to consider the mean values f,(¢e*?) = [217 f(ge') dy[(2«) than the values f(z) them-
selves. The number o is supposed to be sufficiently small positive which is connected
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with the inaccuracy of measurements. The following theorem for the mean values
f.(z) is sometimes quoted but without proof. Another reason why to treat the problem
here is that the proof makes it possible to reduce an estimate of the error of the
mean values f,(z) to the estimate given by Theorem 2 (see Remark 2).

Let F4(e, M, 1), I = I(@o, 8) be the class of complex functions fulfilling i), ii)
and iii).

Theorem 3. Given numbers ¢oe(—mn,n), 6 >0, M > 0 and o > 0, then for
every function f(z)e Fi(e, M,I) the corresponding mean value function f,(z)
is continuously extensible onto K and

limsup sup |f(z)] =0 where I =1(po,8), F = F;(e, M,I).
el0 zel feF

Remark 2. Assume that I, = I' in Theorem 2, then there exists a function
x(e; M, N, I,) so that
lim x(s, M, N,I,) = 0 and |f(z)| < x(e, M, N, I,)
el0
for ‘
feF (e, M,N,1,,T)n FP(e, M\,N,I,,T).

Let s be a positive integer such that «/s < §, then
)| < x<g, MM, Ia,s> for f(z) € F3(e, M. I) where I, = 1<¢0, 5— i'f) :
o s

Proofof Theorem 3. Let u(g, ¢) = u(z), v(¢, ¢) = v(z) be the real and imaginary
parts of f(z), respectively. Let a positive integer s be chosen as in Remark 2. Denote

Pl o) = [ we ) anen. wieo) - |

@

e ) 3018,

Since ug, v, fulfil the Cauchy - Riemann relations in K° the function fy(z) = us + ivg
is a holomorphic function in K°. Evidently

|f4(z)] < J:i: If(e: )| dyJ(2B) < M for g <1.

The derivatives fulfil |9fy(e, ¢)/09| = |f(e: ¢ + B) — fle. 0 — B)|/(2B) < M[B
for ¢ < 1. Using the Cauchy - Riemann relations once more the inequality
|dfy(z)/dz| < M](Be) for |z| < 1 is obtained. Obviously the function fy(z) can be
continuously extended onto K. This means that fy(z) e #9(e, M, M[B, 15, T) 0
N FP(e, M, M|B, Iy, T') where I = I(¢po, 6 — ). Using the notation from Remark 2
and applying Theorem 2 (Remark 1) the inequality

o(=)] = (e, M. M[B, 1)
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is easily derived. Since
fa(z) =faz(g’ (P) = (1/s)s;0fﬂ(g’ » — (S -1 21) /3)

the statement of Theorem 3 is proved.

The assumption of Theorem 2 (viz Re f(z) must have bounded partial derivatives
on I,) is rather strong. There is a possibility to modify this theorem using Theorem 3
in such a manner that a weaker condition is posed of f on I,. However, this does
not mean that Theorem 4 is a generalization of Theorem 2. While Theorem 2 assumes
that Re f has bounded derivatives and states that Im f converges to 0 for ¢ — 0,
both the assumption and the statement of Theorem 4 concern the same (real or
imaginary) part of f. Only if Theorem 2 and 4 are used for both parts simultaneously
(i.e. for absolute values), then Theorem 4 is a generalization of Theorem 2.

Let I, I, be intervals on I" and let u(n) be continuous function defined for n = 0,
#(0) = 0, u(n) = 0 for n > 0. Denote by FP(e, M, u(n), I, 1,) the class of complex
functions which fulfil i), ii), iii) and v). The class (e, M, u(n), I, I,) is defined
so that fe F{(e, M, u(n), I,,1,) if and only if if € (e, M, u(n), I, I).

Theorem 4. Given numbers ¢, @,, ¢3 all from (—x, ), 6; > 0,5, > 0, d; > 0,
M >0 and a continuous function u(n) such that ¢, — 6, < @3 — 65 < @3 +
+ 83 < @3 + 85, u(0) =0, p(n) = 0 for n > 0, then

limsup sup [Re f(z)| = 0 where I, =I(¢, &), F =F(e, M, p(n),1,15).

el0 zels feF

Proof. Choose an arbitrary number # > 0. Let a be a positive number such that
a<d;, a <@+, — @3 — 03 a<@3— 063 — @, + 6, and such that

1) L uhax <2
20 ) _, 2
By Theorem 3 the mean value function f, is continuously extensible onto K and

lim sup sup |f,(z)] = 0 (F = £,). This yields that there exists &, > 0 such that
£l0 zel feF

42 |2 < g for zel, feF oo My Iy, 15) c Fyfeo, M, 1)
According to the definition of the mean value function

. ; 1 [e*e .
(43)  |Ref(e)| < |Ref(e)] + ZJ Wle — ) dy for e?el;.
o—a
Inequalities (4,1), (4,2) imply |Re f(¢"?)| < n for e'® €I, & = &. The last inequality
proves Theorem 4 as fg)(al’ M’ H, 11’ I2) < '975{)(825 M’ H, Il, IZ) for &4 é €y

so that the expression sup sup |Re f (z)| depends monotonously on &.
zel3 feF
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Remark 3. An estimate for the values of f(z), z eI, under the assumptions of
Theorem 4 can be established on the basis of inequality (4,3) where f,(e’) can be
estimated as in Remark 2.

All previous theorems assume that the functions considered are uniformly bounded
by the same constant M. This assumption can be weakened, namely it is sufficient
to assume that only the real (or the imaginary) parts are uniformly bounded. It is clear
that in that case the estimates will be much worse and also that it will be much more
difficult to derive them.

First, Theorem 1 will be generalized in the following way.

Let I be an interval on I', I = I(¢o, 8). Denote by F s(e, M, I) the class of complex
functions fulfilling 1), i) and vi).

Theorem 5. Given numbers ¢, €(—mn,n), § >0, M > 0 and a compact subset
A of K°, then

limsup sup |[f(z)| =0 where F = Fs(e, M, 1(¢q, 9)).
el0 zed feF

Proof. Choose 1 > a > 0, a < 8. Put f,;5(z) = B fy(z) for 0 < B < « where fu(z)
is the mean value function defined above by

ey = [ ey 3v18).

L4

Since |Re f(z)| < M in K° it is |Re f,*(z)| < BM and

* i@

(5.1) ’6 Re f; (0€™)
o¢

Choose three numbers 3 < { < A <y < 1 such that 4 < K7.
Put S, ={z:z=0€e% 0<g<1, {(p — (Po‘ < 6 — a}. The Cauchy - Riemann
relations and (5,1) imply [0 Im £,*[dg| < Mg in K° so that

(52) [Im £,(2)| = [Im f5'(ee™)| <

< lim sup |:|Imf,,*(we"“’)| + }W (a- y)] e+ M(1-y)y
otl

<M in K°.

&

where o < o<1, zeS,—K,.

Since Re f,*(z) is a harmonic function,

0 Re f;(0e™ 1 (" i 2r[ —2r0 + (r* + @° -0
5 (ee )= 1 Re f;¥(re”) r . :Q (r Q_) cos (¢ . 2)] do
do 2n)_, [r? — 2rgcos (¢ — 0) + ¢7]
14y

where o <7y, r 5
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and since |Ref,(z)] < BM < aM it is
|0 Re f5*(z)/de| < 128« M[(1 — y)* in K, .
By the Cauchy - Riemann relations again

o Im f,;*(z)
oo

(53)

Since

< 128« M(1 — y)* in K, .

Im f*(ye*®) = Im f,"(ye*°) + J * M a“.

inequalities (5,2) and (5,3) yield
[Im f(2)| < & + M(1 — 9)[y + 128an MJ(1 — y)* = M* on T,.

Since Im f;(z) is a harmonic function in K° the last inequality and (5,2) imply
[Im f5(z)] £ M* on K, U S,. This means that f;(z) is bounded by Ma + M*
in K, u S,. If the region K, U S, is conformly mapped onto K° and then Theorem 1’
is used we obtain

(5.4 lim sup sup sup |f;(z)] = 0 where F = Fy(e, M,I).
el0 zeK, B=a feF

In virtue of the Cauchy formula
dff(z)[dz = (2”)_1,[ fi(w) (w — 2)"2 dw
r,
so that

(5.5) lim sup sup sup |df;(z)/dz]| = 0 where F = F4e, M,I).

el0 p=<a zeK; feF

Relations (5,4) and (5,5) have the meaning
ota .

(5,6) J flee®)dy -0 for &—0
o—a

uniformly with respect to

0<¢0=<4i, goe(-mmn), feF = Fse,M,1I)

and f(ge*?) — f(0e'®P) - 0 for ¢ — 0 uniformly with respect to 0 < f < a,
002 oe(—mm), feFs.

The last statement can be modified to
(5,7) |f(ee™®*) — f(ce'?)| » 0 for &—0
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uniformly with respect to

0<¢=<¢(, ¢ 0e(-m,ny, feFs.
Since

69 1) = [ see) anies) + | (lee) - rlee)) 01)

and since with respect to (5,6) and (5,7) both terms of the right-hand side converge
to 0 for ¢ — 0 uniformly with respect to 0 < ¢ < ¢, ¢ € (—m, ), f € F 5 the statement
of Theorem 5 is proved.

Remark 4. It may be easily seen by the reader of the proof that f,(z) is bounded
uniformly on every compact subset 4 = K°, fe Fs(e, M, I) for every ¢, ie., also
for e = M.

The next theorem is a generalization of Theorem 3. In this case the same class
of functions is needed as in Theorem 5. Just for the reason of preserving the cor-
respondence between the classes of functions and theorems the notation % (e, M, I) =
= Fs(e, M, I) is used.

Theorem 6. Let numbers (poé(—n, ny, 6 >0, M >0 and o > 0 be given. If
f(z) e Fo(e, M, I), I = 1(@q, 8), then the mean value function f,(z) is continuously
extensible onto K and

lim sup sup |f(z)| = 0 where F = F4(e, M,I).
el0 zel feF |

Proof. Choose a number 0 < { < 1 and a positive integer s such that oc/s < 9.
Denote B = «fs. With respect to the definition of fy(z) it is

[Re f4(z)| = M, |0 Ref)(z)[09| < M|B in K°
and
lim sup |f4(z)| S & for zoels=I(py, 6 — B).

z—zo

The Cauchy - Riemann relations imply

1) ‘a Im f,(2)

< M in ko .
do

Be

On the other hand, applying Theorem 5 to f4(2) (Put A = K, and cf. Remark 4)
we obtain that fy(z) is bounded uniformly with respect to z € K, and fe &, i.e.,
there exists a constant M* such that

(6,2) [fs(2)| £ M* for zeK;, feF(e, M,I).
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Let z = @e'® be an arbitrary point from K°. Since

[tm /()| = [tm fy(Ge*)] + o — ¢ lglm—’;’ﬁu

where ¢* is a number between ¢ and {, inequalities (6,1), (6,2) yield |Im f,(z)| <
< M* + o — ¢| MJ(BC). Hence the imaginary part of fy(z) is bounded as well.

If 6 > 0 is sufficiently small, then (fy); is continuously extensible onto K (Theo-
rem 3). Re fy(wz) fulfils v) with 0 < o < 1, p(x) = Mx[B and I, = I' which follows

from
i [J\(Pz*‘/’f(wew) dw _ J“Pl'*ﬂf(weilﬁ) dl//] —
Zﬁ <P2—ﬁl ¢1—B
1 02+ B . 02— B X
-1 [ J Fwe*) dy — j Fwe®) d.//] .
2ﬁ ¢1+B Jo1—B

With respct to this (5,8) implies that Re fy(z) is continuously extensible onto K.
Theorem 6 now follows directly from Theorems 2 and 4 since Re fy(z) is Lipschitz
continuous on I" with the coefficient M/p.

The proof of Theorem 6 suggests that if Re f(z) or Im f(z) are bounded, then
Re f,(z) and Im f,(z) are bounded simultaneously for every o« > 0. This can be used
for some generalizations of Theorem 4 which will be presented without proof.

Denote by F (e, M, p(n),1,,1,) the class of complex functions which fulfil
i), ii), v) and vi).

Theorem 7. Given numbers @, ¢,, @5 from (—n, ny, 6; >0, 6, >0, §; >0,
M >0 and a continuous function u(n) such that ¢, — 5, < @3 — 83 < @3 +
+ 83 < @y + 8, u(0) =0, pu(n) =0 for n > 0, then

lim sup sup |Re f(z)| = 0 where I, =I(¢, 3,), k=123
el0 zels feF
and F = F(e, M, p(n), I, I,).

There are more possibilities how to generalize Theorem 4. For example in Theorem 7
condition vi) can be changed by substituting Im f for Re f. Even in v) Re f can be
replaced by Im f but in this case the same must be done also in the statement of
Theorem 7.

Theorem 2 can be also generalized. Denote by Fg4(e, M, N,1,,1,) the class of
functions which fulfil i), ii), iv) and vi).

Theorem 8. Given numbers ¢, ¢,, ¢35 from (—m,n), 6, >0, 6, >0, 55 > 0,
M >0, N > 050 that ¢, — 8, < @3 — 03 < @3 + 03 < @, + 8, is fulfilled, then

lim sup sup |Im f(z)| = 0 where I, =I(¢p6), k=1,2,3
el0 zelz feF
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and

F = 98(8, M,N,II,IZ) .
The proof would be the same as that of Theorem 2, only Theorem 5 is applied instead
of Theorem 1.

All the previous theorems remain valid if in the definitions of & ; a weight function
d(z) is introduced. The weight function g(z) can be any holomorphic function in K°
which is continuously extensible onto I, and g(z) # 0 on I, (in the case of Theorem 1
and 5 it is sufficient that g(z) is not identically equal to zero).

Conditions i) ... vi) are then changed in the following manner:
ai) f(z) is holomorphic on K° (this condition is unchanged),

aii) lim sup |g(z) f(2)| < &, zo €1},

220
aiii) |f(z) g(z)] £ M on K°,
aiv) Re g(z) f(z) is continuously extensible onto I, and

- |d Re g(e®) f(e'*)[dp| < N on I,
av) Reg(z) f(z) is continuously extensible onto I, and

[Re g(e) f(e'®) — Re g(e") f(e")] < u(le — ¥|) for e®el,, e el,,

avi) |Re g(z) f(z)] £ M on K°.

The “exterior” condition ii) (or aii)) can be replaced by the “interior” condition:

There exists an infinite sequence of points z,, z,€K, 0 <{ <1 so that
|9(z,) f(z,)] S & for n=1,2,...

Let #1(e, M) be the class of complex functions which fulfil i), iii) and the last
“interior” condition. Evidently Theorem 1’ can be modified:

Theorem 1”. Let A be a compact subset of K°, then

limsup sup |f(z)| =0 where F = Fi(e, M).

el0 zed feF
By means of Theorem 1” the conclusion can be derived that all previous theorems
remain valid if only the condition ii) (aii)) is replaced by the “interior” condition.

Acknowledgement. The problems considered have their origin in some practical
problems of the S-matrix theory of elementary particles. According to this theory
the interaction of two elementary particles can be described by means of one analytic
multivariable function defined in some domain. Values of the function on the
boundary (or on its part) are determined from some measurable quantities and are
given with experimental errors. Some theoretical or model-dependent assumptions
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impose certain conditions on the values of the function on the remaining part of the
boundary.

Many authors [2, 4 to 7] dealt with the problem to determine an analytic
(holomorphic) function fulfilling almost exactly the given boundary values and
satisfying some other assumptions, especially to determine the value of such analytic
function at some inner point of the domain, or to investigate the dependence of the
error of this value on the errors of the given boundary values etc.

In the course of discussions with J. FIscHER"), J. FORMANEK?), P. KoLAk '), M. BED-
NAi‘)the importance of determining the values of the analytic (holomorphic) function
at some point of the boundary (e.g. if the measurements at this point are subject
to big errors or are unrealizable) was formulated and pointed out for the first time.
This problem and the corresponding results were thoroughly discussed not only
from the mathematical but also from the physical point of view.
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