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THE SORGENFREY TOPOLOGY IS A JOIN
OF ORDERABLE TOPOLOGIES

PauL R. MEYER, New Yorkl)
(Received February 17, 1972)

The Sorgenfrey half open interval topology on the real line R is shown to be the
join (in the lattice of all topologies on R) of two orderable topologies. This is in con-
trast with a result of Lutzer [3] who showed that this topology is not orderable.

To prove the result in the title, let X = (J0, 1[ x{0, 1}) U {(1, 0)}. We construct
order topologies ¢; and ¢, on X such that (X, ¢) is homeomorphic to the Sorgenfrey
line, where t = t; v t,. Let t; be the lexicographic order topology and ¢, the usual
euclidean topology, which is orderable. Since t-neighborhoods are formed by inter-
secting t;-neighborhoods, we see that, locally, ¢ is the Sorgenfrey topology. Since X
contains the point (1, 0) but not (1, 1), the two intervals can be fitted together to form
a single interval with the desired topology.

The Sorgenfrey topology is known to be a generalized order topology (GO topology)
in the sense of Cech [1, page 245]. A join of orderable topologies need not be a GO
topology; in fact an example in [4] shows that it need not even be a chain net topology.
It is still an open question whether or not there exists a GO topology which is not
a join of orderable topologies.

For connected spaces, it is known that the concepts of orderable and GO topologies
are equivalent; the following proposition shows that the notion of a join of orderable
topologies is also equivalent. Furthermore, this proposition extends the uniqueness
criterion for possible orderings of connected orderable spaces [1, Corollary c,
page 361]. (This uniqueness criterion can be used [1, page 844] to show that certain
(GO) subspaces of the real line suchas Y = ]0, 1] U {2} are not orderable. However,
it is easy to construct two orderable topologies on Y whose join is the usual topology.)

Proposition. If (X, t) is connected and t is the join of orderable topologies t, and t,,
thent =t, =t,.
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1) The author is grateful to Westfield College, University of London, for their hospitality
during the preparation of this note.
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Proof. Fori = 1, 2,let £, denote an ordering of X which induces ¢;. Since t o ¢,,
t; is connected. It suffices to show <, = <, or <, = <;'. If not, we may assume
there are distinct points x, y, and z with x <, y <, zand x <, z <, y. Since each
t;-separation is a t-separation, we can t-separate these three distinct points in more
than one way. This is a contradiction [2, Lemma 3].

Note added in proof. The dual question has also been answered: the Sorgenfrey topology is
not a finite intersection of orderable topologies, although it is the intersection of infinitely many
orderable topologies. These follow from more general results to appear in: Lattice operations on
metric and order topologies, Proceedings of 1973 topology conference, Blacksburg, Virginia.
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