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1. INTRODUCTION

The object of this paper is to generalize a theorem due to E. LurT [2], and then
to apply it to strengthen a topological h-cobordism theorem of E. H. CoNNELL [1].
Our techniques and arguments apply equally well to the piecewise linear and smooth
categories of manifolds, but we shall state our theorems in terms of topological
manifolds, since it is in the topological category that all of our results are believed to
be new. Our generalization of Luft’s theorem is:

Theorem 1. Let M be a t0pological n-manifold, and let Uy, ...,U, be open
subsets of M such that U; = U ;,j» Where V, ; is open in M, C1V;; <V, .,
(M = ClV, ;, Vi1 — ClV”) xs k -connected, k; <n —3 if k;>0,j=1, 1<
<i<m,and oM < UV,,I‘ Then, ifk; + ... + k,, + m = n + 1, there are homeo-

i=1

morphisms h; of M onto itself such that

H/\

i<m, and M= Uh(U,).
i=1

hi‘ClV.-,luéM = idClV,—_,u&M’ 1
When applied to noncompact h-cobordisms, this gives:

Corollary 1. Let M be a connected topological n-manifold, n = 5, with two
boundary components N, and N, such that the inclusion of N; into M is a homotopy
equivalence, i = 1, 2. Then there are homeomorphisms f; of N; x [0, ) into M
such that f(x,0) = x for allxe N;, i = 1,2, and M = f,(N, x [0, o)) ufz(N2
x [0, 0)).

This was proved by E. H. Connell with the condition that N; and N, be compact
A repeated application of Corollary 1 gives:
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Theorem 2. Under the hypotheses of Corollary 1, there is a homeomorphism f
of Ny x [0, o0) onto M — N, such that f(x, 0) = x for all xe N,.

This was proved by E. H. Connell for M compact. Of course these theorems are
also true in the piecewise linear and smooth categories, but in the compact case there
are much stronger results available: the well known h-cobordism theorem of Smale
states that M is a product of N, with [0, 1], so N, is homeomorphic to N,, if M has
no Whitehead torsion [4].

2. PRELIMINARIES

By a topological manifold M we mean a separable Hausdorff space such that each
point of M has an open neighborhood homeomorphic to an open subset of the
half-open subspace H" = {(xy, ..., x,) € R" : x, = 0} of R".

The image f(R") of R", where f : R* - M is a homeomorphism into the topological
n-manifold M, is called an open topological n-cell in M. Let

Co={(xp, ..o x)eR :|x;| Sa, L i<},
where « = 0.

A topological space (X, A) is said to be k-connected, k = 0, if 7,(X, A) =0,
0<i<k '

We shall need the following version of M. H. A. Newman’s Engulfing Theorem:

Let M be a topological n-manifold, and let q : R® - M be a homeomorphism.
Let P be a k-dimensional subpolyhedron of R", not necessarily compact, such that
g(P) is closed, and let U = M be an open set such that g(P) — U is compact. Let
E o 0M be a closed set such that E = U, and (M — E, U — E) is k-connected. If
k < n — 3, there is a compact set C = M — E, and a homeomorphism h of M
onto itself, such that h(U) = g(P), and h(x) = x if x ¢ C.

Note that hjz = idg, and in particular, that h is the identity on a neighborhood
of 0M.

This theorem is an immediate consequence of Theorem 4 of [5] when stated in
terms of relative homotopy. The introduction of relative homotopy causes no new
complications. Another version, in the differentiable case, appears in the author’s
thesis.

We shall also need the following “stretching theorem”: Let K be a simplicial
complex in R", L a full finite subcomplex of K, and If = {A eK:4AnL= (0} the
subcomplex of K complementary to L. Let U and V be open sets in R" such that
|L| = U and || = V. Let F = R" be a closed set such that F n |K| < |L| U |L].
Then there is a compact set C = R" — F and a homeomorphism S of R" onto itself
~ such that:

1) S(x) = xif x¢ C, and |K| = S(U) U V.
2) S(4) = Aforall e K.
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An outline of the proof may be found in [6]. A proof for the differentiable case
appears in [3].

3. PROOF OF THEOREM 1

We shall need the following lemma:

Lemma 1. Let M be a topological n-manifold, let Uy, ..., U,, Vi, ..., V,, be open
subsets of M such that C1V; = U; and (M — C1V;, U; — C1V,) is k;-connected,
where k; <n —3ifk; > 0,1 <i < m. Let Eq, ..., E, be closed subsets of M such

that E; = V; and 0M < \JE;. Let g : R" - M be a homeomorphism and let 0 <
i=1

<a<1l.Ifky+ ...+ k,+ m=n+1, there are compact sets Cy, ...,C, in M
such that C;n(E;udM) =0, 1 <i < m and homeomorphisms h; of M onto

itself such that h(x) = x if x¢ C;, 1 £ i £ m, and g(C;) = U h(U)).
i=1

Proof. Let G be the simplicial complex determined by a simplicial subdivision of R"
such that Cj is the set of points of a subcomplex K of G, |N(K, G)| = Int C}, and
for any simplex 4 € G such that g(4) n E; + 0, we have g(4) = V,,i.e.: g(|[N(g~(E)),
G)cV,1zism

Let L, = K. We construct inductively two sequences L, ..., L,_;, and Ky, ...
..., K,_, of simplicial complexes as follows: suppose L,_; is defined. Let K;
= B(L¥Y,), and let L, be the complementary complex of K; in B(L;—,), 1 £ i
<m-—1. Then dmL;=n—i—(k,+ ... +k). Thus dimL, ,=n—-m
+ 1 —(ky + ... + kp—y) < k. Let K, = L,,_,.

We now apply the Engulfing Theorem with respect to each K;. Let P;
= g '(g(|Ki] — C1V;)). Then P, is a ki-dimensional polyhedron in Int Cj —
— g~ (C1V), g(P)) is closed in M — ClV;, and g(P;) — U, is compact, so there
are homeomorphisms h; of M onto itself and compact sets C;, 1 < i < m, such that
hi(x) = x if x e C}, and g(P;) = hj(U)).

Let W; = g~ '(hi(U))), 1 £ i £ m. Then |K;| = W,. The barycentric subdivisions
used in the definitions of the K; and L, imply that K; and L; are full subcomplexes
of B(L;—4), 1 £i < m — 1. Applying the “stretching theorem”, we construct in-
ductively a sequence of homeomorphisms S,,_; : C] — C] such that S,,_; is the iden-
tity on C] — |N(K, G)| U [N(g™*(E)), G)|, L i <m — 1, and

+ A I

It

|L —ZI < Sm*l(Wm—l) v Wm’
|Lp-s| © Spe2(Win=2) U Sy s(Wi—v) © Wy,

K| = |Lo| = $:(W2) U ... U Spes(Win1) © W
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For example, we construct S,,_,. In the notation of the “stretching theorem”, let
U=W,_,V= Ws

L=K,_- v{p(d):4€L,_, and g(4) N E,_, * 0},
L'={Aep(L,-;):4nL=0}, F=(R"—|NK,G)|)vg "(En-)-

Note that |L| = W, Lis full in f(L,,-,), and Fr |f(L,_,)| = |L| v || Let S, be
the homeomorphism S obtained in the “stretching theorem”.

We lift the homeomorphisms S; onto M: let S;: M — M be defined by S,(p) =
=goS;og '(p), if peg(CY), and S(p) = p, otherwise, 1 < i < m. It follows that

9(C) = g(K)) = 8, o h{(U) U ... U Sy o hpy ((Up—y) U hp(U,,) -
Let h; = S;ohl, 1 <i<m— 1, and let h, = h],. Let C; = C; U Clg(|N(K, G) —
— N(g™(E)), G)]).
Proof of Theorem 1. Let g; : R" - M, j =1,2,..., be a sequence of homeo-
morphisms such that Int M = Dlg /C%)2)- Suppose we have constructed m sequences
j=

{fio0 ...,f,.,k}, 1i<mof homeomorphisms of M onto itself such that

k
_Ulgj(c /2) < Uf; k( 2k) and fi,le.',zj—z :fi,i—lth.zj-z ’
j=

1<j=£k wheref; o =idy, 1 i < m.
We apply Lemma 1 with E; = C1V, 54, Vi = Vi 2k4 15 Ui = Vigks2o and g = Gperq
to get homeomorphisms f; ;. 4, 1 < i < m, of M onto itself such that

k+1

U g;(Cl/z) < Ufz e+ 1(V. 2k+2) and f; K+11V i, 2k fi,k|V,,2k .

Let hy(x) = lim f; ,(x) for all x € M.
k— o

4. PROOF OF THEOREM 2

Let gj ‘R"> M, j=1,2,..., be a sequence of homeomorphisms such that
IntM = U g J(C 1 ,2) Let f, be the h, of Corollary 1. We construct inductively a se-
quence fo; f 1> f25 ... of homeomorphisms of N; x [0 oo) into M such that for each
izl iijlgi(qn) < SNy x [0,j +1]), and fjw,x0,1 = fj-1iwixpo.n- Let h:
:N, x [0, 0) > M be a collaring such that h(N, x [0, 0)) N (g;+,(Cl,.) v
Uf{Ny x [0,j +2])) = 0. Let M; =M — f(N, x [0,j + 1)). By Theorem 1,
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there are homeomorphisms ¥; and V, of M; onto itself which are the identity on
a neighborhood of the boundary of M; such that M; = V,(f{(N, x [j + 1,j + 2)) u

UV, (h(N, x [0, o0))). Let fis1in,x0,+13 = fiivixpo,i+11 Jit1iNixti+1,m) = Vile
o Vi o fiNixtj+1,m) Then M-= f; (N, x [O ] + 2)) U h(N, x [0, c0)). Since

9;+1(C12) 0 h(N; x [0, 0)) = 0, we have Ug( 12) < fi+1(Ny x [0,) + 2)).
Let f = limf;. Then M — N, —_f(N1 x [0, oo))

Jo o
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