Czechoslovak Mathematical Journal

S. Mrowka; H. P. Tan
Sequences of disjoint open sets
Czechoslovak Mathematical Journal, Vol. 22 (1972), No. 4, 517-521

Persistent URL: http://dml.cz/dmlcz/101122

Terms of use:

© Institute of Mathematics AS CR, 1972

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/101122
http://dml.cz

Czechoslovak Mathematical Journal, 22 (97) 1972, Praha

SEQUENCES OF DISJOINT OPEN SETS
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The purpose of this paper is to discuss the validity of the statement:

(S): Given an infinite subset A of a space X, there exists an infinite sequence
Gy, G,, ... of mutually disjoint open subsets of X each of which intersects A.

It is known that (S) holds in arbitrary regular T;-space (see the proof of Theorem 2
in [7]). It also holds whenever X is Hausdorff and A has at least one accumulation
point (see the proof of 5.2.4 in [3] or 27.A.12 in [4]). On the other hand, (S), in its
full generality, fails for Hausdorff spaces; an example can be found in [5]. In this
paper — in addition to extending (S) to other classes of spaces — we shall give an
example similar to Frolik’s [5], but simpler (our example is countable and second
countable). We shall also indicate examples showing that a space satisfying (S) need
not to be Urysohn; the question, however, if every Urysohn space satisfies (S) remains
open.

Denote by S(A) the part of the statement (S) following the first coma. Denote by
S’(A) the following statement:

S'(A): There exists a nonempty class R of subsets of A and a function ¢ defined
on R such that for each B in R, ¢(B) is a pair (p, B') where pe B, B < B, B’ e R
and p and B’ can be separated by open sets.

Proposition 1. Statements S(A) and S'(A) are equivalent.

Proof. Assame S(4), let G4, G,, ... be a sequence of mutually disjoint open sets
with G, n A = 0 for each n. Let p,€ G, n A and A’ = {p;, p2, ...}. Let R be the
collection of all infinite subsets of A’. For each Be R, define ¢(B) = (pi» B\ {Pi}),
where k is the smallest integer such that p, € B. Then B\ {p;} € R and p, and B\ {p;}
can be separated by open sets.

Conversely, assume S’(4), let Be ®. Then ¢(B) = (py, By) for some p, € B,
B, < B, B, € Rand p, and B, can be separated by open sets, say G, and Hy, p; € Gy,
B, < H,. Now, B, € R implies ¢(B;) = (p,, B,) for some p, € By, B, < By, B, e R
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and p, and B, can be separated by open sets, say G, and H,, p, € G,, B, =< H,. We
may assume G,, H, < H,. By induction, suppose we have p,_, € G,_y, B,_1 S
< H,_y, B,_; e R with G,_,, H,_, disjoint open and G,_, H,_; < H,_,. Then
¢(B,—1) = (py» B,) for some p, e B,_; and p, and B, can be separated by open sets,
say G, and H,, p, € G,, B, = H,. We may again assume G,, H, < H,_;. In this way,
we obtain a sequence G4, G, ... of mutually disjoint open sets each of which inter-
sects 4; in fact, p, € G, n A for each n.

Note that members of Rin S'(4) have to be infinite sets. Thus, if for every infinite
subset 4 of X, S’(A) holds, then every infinite subset has a point and an infinite
subset which can be separated by open sets. Conversely, if the last statement holds,
then we can define a function ¢ which works for every infinite subset of 4. Hence,
from Proposition 1, we obtain:

Proposition 2. (S) is equivalent to

(S'): Given an infinite subset A of X, there exist a point p in A and an infinite
subset S of A such that p and S can be separated by open sets.

We shall now examine spaces which satisfy (S).

Proposition 3. If f: X — Y is a continuous function from a Hausdorff space X
into a space Y satisfying (S) such that f~'(y) is countably compact for each y €Y,
then X satisfies (S).

Proof. Let 4 be an infinite subset of X, we shall show that S(4) holds. If f(4) is
infinite, then S(4) is derived from the fact that S(f(A4)) holds. If f(A) is finite, then 4
is contained in a countably compact set, by the result of Cech quoted in the introduc-
tion, S(A4) holds.

Corollary 1. If X can be mapped into a regular T,-space by a one-to-one conti-
nuous function, then X satisfies (S).

Corollary 2. Every functionally Hausdorff space satisfies (S)

Proof. Since a space is functionally Hausdorff iff it admits a continuous one-to-one
function onto a completely regular space (see, e.g., [6], 3.20 with E =1 = [0, 1]),
it suffices to apply the preceding corollary.

Proposition 4. If X can be embedded in a Hausdorff space Y so that X is countably
compact relative to Y (i.e. every infinite subset of X has an accumulation point in Y),
then X satisfies (S).

Proof. This is immediate from the result of Cech quoted in the introduction.

The following example is a Hausdorff space which does not satisfy (S).
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Example. Let I, = {(x, 1/k) } x rational, x > 0}, k = 1,2, ... be subsets of the
plane and let X = (U ) U {(n,0)| n = 1,2, ...}. Define a topology on X by taking
k=1

all points (a, b) e X with b > 0 to be isolated. Neighborhoods of (n, 0) € X are of

the form {T, n (U 1,)} U {almost all points on I,} for some positive integer Kk,
m2k

where T, is the equilateral triangle with vertex at (n, 0) and base on I;.

The space X thus obtained is Hasudorff. It does not satisfy (S). To see this, it
suffices to show, by Proposition 2, that every point of the infinite set 4 = {(n, 0) | n =
=1,2, } and every infinite subset of 4 cannot be separated by open sets. Indeed,
if G is open in X such that G n A4 is infinite, then A = G. From this, it follows that
if Hy, H, are open sets containing a point p € 4 and an infinite subset F < A respec-
tively, then H, and H, cannot be disjoint.

We give some remarks.

1. We have not been able to decide whether Urysohn spaces satisfy (S). But
a space can satisfy (S) without being Urysohn. As an example, we take the space
constructed by Bing ([2], Example 1) which we will denote by B. It is well-known
that B is not Urysohn. To show that B satisfies (S), we shall show that it satisfies (S’).
Given a point p = (x, y) € B, we denote by I(p) and r(p) the points (x — y//3, 0)
and (x + y/{/3, 0) respectively. (S’) is shown by selecting from an infinite set A < B
a sequence of distinct points py, p,, ... such that both sequences I(p;), I(ps), ...
and r(p,), r(p,), ... are convergent (to a number or to =+ o).

Another example of a non-Urysohn space satisfying (S) can be obtained as follows:
write the set S(Q) of all countable ordinals as the union of two disjoint cofinal sub-
sets A; and 4,. Add two new points a; and a, to S(Q). Define a topology on X =
= S(2) u {a,, a,} by taking neighborhoods of a; to be all sets of the form {a;} U
U [(& Q) n 4], i = 1,2, where £ e S(Q); neighbourhoods of points of S(Q) are the
usual ones. X is a Hausdorff extension of S(Q) and obviously X is countably com-
pact; consequently X satisfies (S). On the other hand, X is not Urysohn; in fact, it
can be shown that every Urysohn extension of S(Q) is either S(Q) or S(Q) L {@}.
(Note also that the above X is absolutely closed — we can produce, in a similar way,
other absolutely closed extensions X’ of S(®) so that X'\ S(Q) has more than two
points; indeed, the Kat&tov extension »xS(Q) is of this type.)

Note that a space which can be mapped into a Urysohn (in particular, regular)
space by a one-to-one continuous function is also Urysohn. Hence, any non-Urysohn
space satisfying (S) can serve as an example showing that the converse of Corollary 1
to Proposition 3 need not hold.

2. The converse of Proposition 4 need not hold. Indeed, as an example, we can
take any non-countably compact, absolutely closed, functionally Hausdorff space.
Such a space can be found, for example, in [1] (5; 1°; p. 5). The verification that this
space is functionally Hausdorff and absolutely closed will follow from the following
remarks.
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Let us observe that the construction used in [1] (5; 1% p. 5) as well as in [1]
(55 2°; p. 5) can be generalized as follows. Let X be a Hausdorff space, let 4 < X
and assume that for every pe A, we have a closed nowhere dense subset F, of X.
Enlarge the topology of X by adding to it all sets of the form (U \ F,) u {p} where p
is an arbitrary point of A and U is an arbitrary open subset of X containing p. Denote
the space so obtained by X’. The identity map f, from X’ onto X is continuous.
Hence X' is Hausdorff (respectively functionally Hausdorff) if X is such. We can
show that

(i) Inty. (cly. U) is open in X for every U open in X'.

Furthermore, f, has the following property.

(ii) For every x € X and every open set U of X’ with f5'(x) < U, there exists an
open set V of X with xeVand f5'(cly V) < clx. U.

Indeed, we may take V = Inty. (cly. U).

Observe that if pecly (F,\ {p}) for at least one p e A, then X’ is not compact.
Furthermore, if we start with a Hausdorff compact X, then X’ is absolutely closed.
In fact, we have a stronger result.

(iii) If X is Hausdorff and absolutely closed, then X' is absolutely closed.
(iii) follows from (i) and the following lemma.

Lemma. Let S and T be Hausdorff spaces, T absolutely closed. If there is a func-
tion f from S onto T with the following two properties

(a) f~Y(t) is compact for every te T,

(b) for every t e T and every U open in S with f ~*(t) < U, there exists an open
setVof TwithteVand f~'(V) = U, then S is absolutely closed.

Proof. Let W = {U,| e E} be an cover of S. For each te T, W f7!(t) =
={U.nf'(t)| £€ 5} is an open cover of f~X(r). There exist &1y L2000 -+ Enny
in Z such that

7)) € U, v U, V... 0 U, -

By (b), there exists ¥, open in T'such that ¢t e V, aud
f—l(V’) = U{l(:) Y Uofz(:) V.. v Ufn(:) :

Now {V,},er is an open cover for T; hence there exist ¢, t,, ..., t, in T such that
VouV,u...uV, =T Then

S =f—1(T) =f—1( I71‘.) = ylf—l(vl.) s 'L=)1(U§1(t,) Y UéZ(tl) Y. U‘fn(t,»)) :

i

ics

To conclude this remark, we observe that absolutely closed Hausdorff spaces need
not satisfy (S). Indeed, we can take an absolutely closed extension of any Hausdorff
space which does not satisfy (S).
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