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In this article we shall study the structure of the attainable sets corresponding to
the control problem

(1) % = A(u) x
where

(a) x is a (column) vector in n-dimensional space R",

(b) u = (uy,...,u,), where 0 S u; < 1fori=1,..,m,
and

(c) A(u)is an n x n matrix-valued polynomial in the u,’s.

For each multiindex o = (iy, ..., i,,), where the i; are nonnegative integers, we let

(2) ut = ult ul . ulm

With this notation, assumption (c) can be restated as follows: we have

3 A(u) = Y,

where the A4, are constant n x n matrices, and where A, = 0 except for finitely many
multiindices a.

We will associate with the system (1) a family F of connected submanifolds of R”
with the property that through every x € R" there passes a unique submanifold F(x)
belonging to F. The members of F will be defined as the maximal integral manifolds
of a certain involutive family D of vector fields. Let A(x, t) denote, for x e R", t > 0,
the set of all points that can be reached from x in no more than t units of time. We
will prove:

*) This work was performed while the author was at the Division of Engineering and Applied
Physics, Harvard University, Cambridge, Massachusetts, U.S.A. The author’s current address is:
Department of Mathematics, University of Chicago, Chicago, Illinois 60637, U.S.A.
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Theorem 1. The set A(x, t) is contained in F(x). Moreover, in the topology of F(x),
A(x, 1) is contained in the closure of its interior.

We will also define an involutive family Dy, with which a family F, of connected
submanifolds will be associated. We use Ay(x, t) to denote the set of all y € R" that
can be reached from x in exactly ¢ units of time. We will prove:

Theorem 2. The set A(x, 1) is contained in Fo(y), where y is any element of A(x, t).
Moreover, in the topology of Fo(y), Ao(x, t) is contained in the closure of its interior.

Our results are a generalization of those of KUCERA [3], which correspond to the
case m = 1, A(u) = C + Bu. As we explained in [5], a new proof of these results,
based on different techniques, is of interest even for the case considered in [3]. The
proof given here is based on the results of [6] We remark that all our results, except
for the remark at the end of Section 3, are valid if assumption (c) is weakened and
A(u) is taken to be an arbitrary real-analytic function of the u;’s (not necessarily
a polynomial).

The organization of the paper is as follows: in Section 1 we give the basic defini-
tions; in Section 2 we prove Theorems 1 and 2, and in Section 3 we apply these
results to the study of the accessibility problem.

1. DEFINITIONS

We shall assume that the reader is familiar with the concepts of vector field, Lie
bracket ([X,Y] = XY — YX) and submanifold (cf. HELGASON [2]). A vector field
in R" is viewed either as a derivation in the algebra of C® functions in R", or as
a mapping from R" into R" (therefore, if X is a vector field in R, and x € R", the
notation X(x) has an obvious meaning).

If S is any set of vector fields in R", we shall write, for each x € R":
(4) S(x) = {X(x) : X €S} .

An integral submanifold of S is a connected submanifold S of R” with the property
that, for every x € S, the tangent space S, to S at x is the linear hull of §(x).
The set S is called involutive if

(5) XeS, YeS=[X,Y]eS.

The following fundamental result is classical (Frobenius’ theorem) if rank $(x) is
constant (cf. [1]), and is proved without this assumption in [4].

Lemma 1. Let S be an involutive family of analytic vector fields in R". Then,
through every point of R" there passes a unique maximal (with respect to inclusion)

integral submanifold of S.
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With the control problem (1) we associate the following sets of matrices: B is the
set of all matrices A,; B’ is the set of all “iterated Lie brackets” of elements of B.
Precisely, B’ is the smallest set of matrices that contain all the brackets [M, N]
(M, N elements of B) and that satisfies the condition

(6) MeB, NeB =[M,N]ebB’

(the bracket [ M, N of the matrices M and N is, by definition, the matrix MN — NM).
We let B, denote the set of all matrices 4,, where « is any multiindex other than
(0,0, ..., 0). Finally, we let

@) E = linear hullof B U B’,
and
(3) E, = linear hull of B, U B’ .

Using the formulas [M,N] = —[N,M] and [M,[N, P]] =[[M,N], P] +
+ [N, [M, P]] (Jacobi identity) it is easily shown that both E and E, are Lie algebras
of matrices (in fact, E, is an ideal of E).

With every n x n matrix M we can associate a vector field M* on R" defined by

) M*(x) = Mx, xeR".
The correspondence M — M* is linear. Moreover
(10) [M* N*] = [N, M]*.

We define D = {M* : M e E} and D, = {M* : M € E,}. It is clear that D and D,
are involutive spaces of vector fields. We let F (resp. F,) be the family of all maximal
integral manifolds of D (resp. Dy). As in the introduction, the unique maximal
integral submanifold of D (resp. D,) through a point x € R" is denoted by F(x)
(resp. Fo(x)).

We now define the main controllability concepts. A control is an m-tuple u =
= (uy, ..., u,) of piecewise continuous functions defined on an interval [0, 1,],
and such that 0 S u(f) < 1 for 0 <t <t, i=1,...,m If u is a control, and if
X, € R", there is a unique solution ¢ — x(f) of the system

an - x(1) = Au(1) x(1)

which satisfies the initial condition x(0) = x,, and is defined for 0 < t < ¢,. The
value at ¢ of this solution is denoted by n(x,, u; t).

If x and y are vectors in R", we say that y is attainable from x in t units of time if
there exists a control u such that n(x, u, t) = y. The set of all y that are attainable
from x in ¢ units of time will be denoted by Ao(x, ). The union of the sets Ay(x, s)
for 0 < s < tis denoted by A(x, 1).
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2. PROOF OF THE MAIN RESULTS

We shall apply to the system (1) the results of [6]. We must consider the family D
of all vector fields of the form A(u)*, where u belongs to the cube

C={(uy..oup):0=5u; <1 fori=1,..m}.
We want to apply Theorem 4.4 of [6]. We must therefore determine #(D).
Lemma 2. #(D) = D.

Proof. In view of the definition of D, and of the fact that #(D) is the smallest
involutive subspace that contains D, our results will follow if we prove: the linear
hull of the matrices A(u), u € C coincides with the linear hull of B. But this is imme-
diate: every A(u) is a linear combination of the A,’s; conversely, every A, can be
obtained as a derivative (of a sufficiently high order) of the function u — A(u),
at u = (0, ..., 0). Therefore, A, belongs to the linear hull of the A(u), u € C, and our
lemma is proved.

Theorem 1 now follows from Theorem 4.4 of [6].

In order to prove Theorem 2, we want to apply Theorem 4.5 of [6]. This requires
that we compute #4(D).

Lemma 3. (D) = D,.

Proof. Recall that (D) is the set of all vector fields X + Y, where Ye #'(D)
(the derived algebra of #(D)), and where X € D, (the set of all linear combinations
=2;X; such that the X;s belong to D and that £1; = 0). Now, it is easy to see that
J'(D) is precisely the linear hull of the vector fields M*, M € B'. It follows that it is
sufficient to prove that the linear hull of the vector fields M*, M € B,, coincides
with Dy, But D, is the linear hull of the differences X — Y, X € D, Y € D. Therefore,
it is sufficient to prove that the linear hull L, of the matrices A(u) — A(v), u € C,
v e C, coincides with L,, the linear hull of B,. First, every A(u) — A(v) is a linear
combination of the A, with « =+ (0, e 0). This shows that L, is contained in L,.
To prove the converse let, for each ue C, A'(u) = A(u) — Ag... o) Then A'(u) =
= A(u) — A(v), where v = (0, ..., 0). It follows that A'(u)e L, for every ueC.
By repeated partial differentiation, we conclude that 4, € L, for each o + (0, ..., 0).
Thus L, = L;, and the proof is complete.

Theorem 2 is now an immediate consequence of Theorem 4.5 of [6].

3. ACCESSIBILITY

Recall that a control system is said to have the accessibility property from x if the
set A(x, t) has a nonempty interior for some ¢ > 0 (cf. [6]). In this case, the interior

of A(x, t) will be nonempty for every t > 0 (provided an analyticity condition is
satisfied).
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Our results yield the following criterion for accessibility:

Corollary 1. The system (1) has the accessibility property from x if and only if
the set of all vectors Mx, M € B U B’, has rank n.

The strong accessibility property is defined in a similar way, with A(x, r) replaced
by Ay(x, 1) (cf. [6]). We have:

Corollary 2. The system (1) has the strong accessibility property from x if and
only if the set of all vectors Mx, M € B, u B’, has rank n.

We remark that our previous results imply that the accessibility and strong ac-
cessibility properties depend only on the set of coefficients of A(u). As an illustration,
assume that the system % = (u;A4; + u,4, + u3As)x 0<u; <1,i=1,23), in
which there are three controls that can be varied independently, has the accessibility
property from a certain point x, € R". It follows immediately from Cor. 1 that the
system % = (A, + uA, + u®4;)x (0 < u < 1), in which only one control is avail-
able, will also have the accessibility property from x,.

Finally, we observe that the criteria of Cors. 1 and 2 are “effective” in the following
sense: given the matrices A,, one can determine in a finite number of steps whether
the condition of Cor. 1 or Cor. 2 holds. For instance, one can check whether or not
the condition of Cor. 1 holds as follows: let n(k) be the rank of the set vectors Mx,
where M ranges over all the brackets of k or less elements of B. One can successively
compute n(0), n(1), ... (each computation requires finitely many steps). Eventually
a k will be reached such that n(k) = n(k + 1). It is easy to show that this implies
n(k + 1) = n(k + 2) = ..., and, therefore, the condition of Cor. 1 holds if and only
if n(k) = n.
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