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Let an fto equation and a region be given. A class of all Ito equations which have
“smaller”” diffusion coefficients than the given equation is considered. If moreover
an initial value is given, then the probabilities that the solutions of the individual
equations of the class leave the region can be compared. Conditions on coefficients
of the given equation are established in order that the probability should be the
greatest for the solution of the given equation. These conditions do not depend on
the initial values.

The precise definitions connected with the problem (i.e. of maximal and strongly
maximal matrix functions) were formulated for the first time in [1] (Def. 5, 6) and
[2] (Def. 1). For the convenience of the reader they are reformulated here as Defini-
tions 1, 2 (in the sense of article [2]). In paper [1], necessary and sufficient conditions
for maximality and strong maximality of a matrix function are formulated. (These
Theorems are reformulated here as Theorems 2 and 3.)

Since the conditions include a requirement that a solution of a parabolic equation
is (for example) convex in spatial variables, more explicit conditions were derived
in the one-dimensional case. Only the coefficients of the given Ito equation (or the
corresponding parabolic equation) occur in these more explicit conditions. The
purpose of this paper is to derive explicit conditions in the multi-dimensional case.

Theorems 2 and 3 imply that the investigation of maximality and strong maximality
of a matrix function is equivalent to the investigation of the corresponding partial
equation (1,2). Therefore the theorems of this paper will be mostly formulated for
parabolic equations of several variables and only the remarks will refer to the
significance of the theorems for our problem.

The method of the article is quite different from that used in [2]. With respect to
Theorem 2 it is necessary to show that d%u/dx; = 0 where u(t, x) is the bounded
solution of (1,2) fulfilling (1,3), (1,4). First it is shown that 8*u/dx] = 0 in the whole
region for the parabolic equations of the type (2,1) if this is fulfilled on the boundary.
Immediately a new problem arises: under what conditions the solution u(t, x) is
convex near the boundary surface? This new problem is solved for sufficiently small ¢
(see Theorem 5) and for sufficiently small right-hand sides of the given Ito (or
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corresponding parabolic) equations (see Theorem 6). Finally equations for du/dv
and 0%u/dv ol are derived. The values du/dv and *u[ov 0l on the boundary may be
used for the solution of the problem.

1. Definitions and notations

Let R, denote the n-dimensional Euclidean space with a norm |.|. Let D be a given
regionin R,and Q = (0, L) x D aregionin R, , (Lis a positive number). D denotes
the closure of D and D the boundary of D. Let a(t, x) be a vector function (which
has values in R,) and B(t, x) an n x n matrix function defined in Q. Wiener process
is denoted by w(r) (i.e. w(t), i = 1,..., n are continuous and stochastically inde-
pendent processes with stochastically independent increments fulfilling Ew(f) = 0,
E|w(1)]* = t where E is the mathematical expectation. The concept of a solution x(t) of

(1,1) dx = a(t, x) dt + B(t, x) dw(r)

with an adhesive barrier {0, LY x D is the following: first the domain of definition
of a(t, x) and B(t, x) is extended onto the whole <0, L) x R, so that, there exists
the solution x*(f) of the extended equation fulfilling x*(0) = x(0).x(0) is usually
assumed to be nonstochastic in this article. Otherwise it is assumed that x(0) is
independent of the increments of w(f). Put x(r) = x*(t) for ¢+ < r and x(t) = x*(z)
for t > 7 where 7 is the Markovian moment of the first exit of x*() from D. In [1]
it was proved that under certain conditions (which are fulfilled in the present paper)
this definition determines x() uniquely for the equivalence. Let a nonnegative function
f(x) be defined on D and [, f(x)dx = 1. If P(x(0) e A) = [,f(x)dx for every
Borel subset A of D, then the solution x(t) has the initial density f(x). Such solution
will be denoted by x (f). If x(0) = x, is nonstochastic, then instead of f we shall
write 8(x,). Let
P(B, a,f, Q) = P{3{¢: x(¢) ¢ D, £ <0, Ly}}

be the probability that the solution x /(t) of (1,1) leaves the region D during the time
interval {0, LY. A region D is regular if it is bounded and if it has the outside strong
sphere property [3]. We say that a region D fulfils condition (B) if it is bounded and
if to every point X € D there exists a ball K with the centre at X and a system of
orthogonal coordinates xy, ..., x, where x, has the direction of the inward normal
to D with respect to D at the point X such that the boundary D can be expressed in
the ball as a function x, = h(x,, ..., x,—;) for [x{, ..., x,_;] € K* = K* with Holder
continuous second derivatives. The set K* is defined by K* = {[x;, ..., X,—{] :
‘[*ts .- X4—1, 0] €K} and K™ is an open subset of K* containing the origin of
X{, .-+ X,_1 — coordinate system.

This definition slightly differs from that in [1] (Definition 2) since there the axis x,
has the direction of the outward normal. This new definition is advantageous since
convex regions are treated.
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Now, a theorem proved in [2] will be reformulated:

Theorem 1. Let a vector function a(t, x) and an n x n matrix function B(t, x) be
defined on Q (Q = (0, L) x D), Lipschitz continuous in x and Hélder continuous
in 1. Let the matrix function A(t, x) = B(t, x) B'(t, x) (B"(t, x) is the transposed
matrix) be positively definite in Q. If the region D is regular, then:

i) fto equation (1,1) has the unique solution with the adhesive barrier 0, Ly x D

for every initial density in D and for every nonstochastic initial value from D.

ii) The parabolic equation

ou 1 0%u ou
1,2 — ==Y A;(L—tx + Ya(L—1t x)—
(1.2) ot 2; A )8xi6x- Z. ( )8

j X;
has the unique bounded solution fulfilling

(1,3) u(0,x) =0 for xeD,

(1,4) u(t,x) =1 for t>0, xeD.

iii) The bounded solution u(t, x) fulfils
P(B,a,f, Q) = J f(x) u(L, x) dx

for every density f in D and also for f = §(x), x € D:
P(B, a, §(x), Q) = u(L, x) .
Now the precise meaning to the notions of the maximal and strongly maximal

matrix functions will be given.

Definition 1. A matrix function B(t, x) is maximal with respect to a vector
function a(t, x) and to a region Q (Q = (0, L) x D) if i) a, B, D fulfil conditions
of Theorem 1, ii) A(t, x) = B(t, x) B'(t, x) is a diagonal matrix in Q, iii)

P(B, a,f, Q) = max P(B', a, f, Q)

for all densities f in D where the maximum is taken over the set of matrix functions
B'(1, x) fulfilling conditions i) ii) and Aj(t, X) < A,;(t, x) where A} (1, x), A;{(t, x) are
the diagonal elements of the matrix A'(t, x) = B'(z, x) B'(t, x) and A(t, x), respec-
tively.

Definition 2. A matrix function B(t, x) is strongly maximal with respect to a vector
function a(t, x) and to a region Q if condition i) from Definition 1 is fulfilled and if

P(B, a,f, Q) = max P(B', a, f, Q)
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for all densities f in D where the maximum is taken over the set of matrix functions
B'(t, x) fulfilling conditions of Theorem 1 and A(t, x) — A'(t, x) is a positively semi-
definite matrix for every [, x] € Q (A'(t, x), A(t, x) are defined in the same manner
as in Definition 1).

The following terms are introduced for the sake of brevity of further formulations.

Definition 3. Let a function f(x, ..., x,) be defined in D such that the partial deriva-
tives of the second order exist (on the boundary they are defined as limits). The
function is convex or sharply convex at a point [Xy,...,X,] €D if the matrix
{0*f|ox; 0x(X,, ..., X,)}:,;is positively semi-definite or positively definite, respectively.
The convexity of f in D is defined as usual. The function f is convex or sharply
convex along the axes x,, ..., x, at a point [X,, ..., X,] € D if 8*f/ox] = 0 or if
0*f|ox? > 0, respectively. The function f is convex along the axes in D if it is
convex along the axes at any point from D. Let D fulfil condition (B) and X e D.
Region D is convex or sharply convex at X if the function h(x, ..., X,_;) ex-
pressing the boundary D in K is convex or sharply convex at 0, respectively.

If the function f has continuous partial derivatives of the second order, then the
convexity in D implies the convexity at every point of D. The converse statement holds
for convex regions D and similar statement is valid for the convexity along axes.

Now, the main results from [1] and [2] can be reformulated.

Theorem 2. Let a(t, x), B(t, x) and D fulfil conditions of Theorem 1. The matrix
Sunction B(t, x) fulfilling ii) from Definition 1 is maximal with respect to the vector
function a(t,x) and to the region Q = (0,L) x D if and only if the bounded solution
of (1,2) fulfilling (1,3) and (1,4) is convex along the spatial axes (i.e. Xy, ..., X,)
in Q.

Theorem 3. Let a(t, x), B(t, x) and D fulfil conditions of Theorem 1. The matrix
function B(t, x) is strongly maximal with respect to the vector function a(t, x) and
to the region Q = (0, L) x D if and only if the bounded solution of (1,2) fulfilling
(1,3) and (1,4) is convex with respect to the spatial variables x in Q.

2.

The method developed in the paper can be applied only to a certain class of fto
stochastic equations (or corresponding parabolic equations). In the following theorem
the class of parabolic equations is shown whose solutions (given by (1,3) and (1,4))
are convex along the spatial axes if they are sharply convex at every point of the
boundary (0, L) x D. The problem under what conditions such solutions are
sharply convex at every point of the boundary (0, L) x D is studied in further
sectiones.
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Theorem 4. Let a(t), B{(t) be Hilder continuous functions on {0, L). Let A,(t, x)
be defined on Q and form a symmetric positively definite matrix at every point of Q.
Assume that A;; depends only on t, x;, x; and it is a linear function of x; and x;
fori % j, A;; depends only on t and x; such that 62A,-,-/8xf is Holder continuous and
let the region D be regular. Denote by u(t, x) the bounded solution of

ou
(2.1 P ,z; Aty x4, x;) 5——— + Z( (1) + x; B1) ém,
fulfilling
(2,2) u(0,x) =0 for xeD,
(2,3) u(t,x) =1 for t>0, xeD.

If u(t, x) is sharply convex along the spatial axes at every point of (0, Ly x D,
then u(t, x) is convex along the spatial axes in Q.

Remark 1. Theorem 4 is applicable to a system of fto equations
(2,4) dx; = (a(t) + x; Bi(1)) dt + Y B, (1, x) dw (1)
J

where the matrix function A(t, x) = B(t, x) B'(t, x) fulfils the conditions of the
Theorem. (For example B;j(t, x) = y;(t) + x; n;(t) and B(t, x) is a regular matrix
at every point in Q) With respect to Theorem 1 the corresponding parabolic equation
is (2,1) if only the variable ¢ is substituted by L — t. Theorem 2 then implies that
under the conditions of Theorem 4 the matrix function B(t, x) is maximal with
respect to ayt, x) = at) + x; Bt) and to the region Q = (0, L) x D

A necessary condition for the region D is that the intersections of the straight lines
parallel to the spatial axes xy, ..., X, with D are intervals only.

Remark 2. Let the solution u(t, x) of (2,1) fulfilling (2,2) and (2,3) be sharply convex
at every point of (0, Ly x D. Let x7, ..., x; be any orthogonal system of coordinates.
Denote by (2,1)* ((2,4)*) the parabolic (or Ito) equation transformed to the coordinate
system x¥, ..., xy. If (2,1)* (or (2,4)*) is of the type (2,1) (or (2,4)) again, then the
matrix function B(t, x) is strongly maximal with respect to a,(t, x) = a(t) + x; B{?)
and with respect to the region Q.

Proof of Theorem 4. Put v, = %u/dx;. With respect to (2,1) and to the assump-
tions of Theorem 4

1% A,

(2ﬂ"()+2 ox?

9y
0x;

(2.5)

5vk
0

) i (“‘(’) £ xB1) + 2 ﬂ)

Gmy+mmm+a“§“* —z” o

0 0y 0x; 0x;
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The initial condition (2,2) implies v,(0, x) = 0 for x € D and the condition about
the behaviour of u near to the boundary surface implies lim inf v,(t, x) > 0 for
t>0and [xq,...,x,] = [%, ..., X,] € D. Denote { = max (2B, + 3(6*A,,[0xz)) for
[t, x, .... x,] € O. By means of the transformation v, = w exp ({f), (2,5) changes to

ow 1 %Ay, 0, ow
— = (2B + ' — o+ xf + 2 —%) — +
py <ﬂk C>w+z< p 3 )

a 2
2 Ox; Tk x; /] 0x;

0Ak\ 0 2
+<ak+xkﬁk+ kk>—w +’%ZAU“‘6_W—3

0x;, ) 0x; 0x; 0x;

the initial and boundary value conditions remaining unchanged. The principle of
maximum yields w(t, x) = 0 and thus 8*u/dx; = v,(t, x) = 0.

3.

This section will be devoted to the investigation of the behaviour of the solution
u(t, x) near to the boundary surface (0, L) x D. Let a region D fulfil condition (B),
let P be a point on the boundary D and x,, ..., x, a local orthogonal system at the
point P with respect to D. Suppose that u(t, x) is the bounded solution of

ou %u ou
3.1 — =1YA,(t,x + 2alt,x) —
(3.1) o ; i(t:%) 0x; 0x; z;: (t%) 0x;
fulfilling ,
(3,2) u(0,x) =0 for xeD,
(3,3) u(t,x)=1 for t>0, xeD.

With respect to condition (B) the boundary D can be locally expressed by means of
a function x, = h(x,, ..., x,_;). Due to (3,3) the equality u(t, Xy, ..., X,—1, h(xy, ...
.« Xy—1)) = 1 holds. With respect to Theorem 10.1 Chap. 4 [4] the second deriva-
tives of u(t, x) are continuous including the boundary D for ¢ > 0. The last equality
yields

(3.4) ;—u(t,P)=0 for 150, i=l,.un—1,
X
2 2
T P+ )T py=0 for 130, ij=1.an—1.
0x; 0x; ’ 0x, 0x; 0x;

With regard to Theorem 14, Chap. II [3] the derivative du/ox,(t, P) is negative.
Let H be an (n — 1) x (n — 1) matrix with elements 0%h/0x; 0x;(P), i,j =1, ...
..on—1, U an n x n matrix with elements 0%u[ox; 0x,(t,P) for i,j =1,...n
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and V an n x n matrix with elements V;; = 0*h[ox; ox(P) for i,j =1,..,n — 1,
Vie = Voo = 0*uféx; 0x,(t, P) for i=1,...n— 1 and V,, = (0’u/ox}(1, P)).
. (—0u/ox,(t, P)). Equations (3,4) imply det U = (—du[ox,(t, P))"~* det Vand similar
relations for all main subdeterminants. It means that the matrix U is positively semi-
definite (positively definite) if and only if the matrix V is positively semi-definite
(positively definite). Considering Silvester Theorem we can conclude that the solution
u(t, x) is sharply convex at the point [#, P] if and only if the matrix H is positively
definite (i.e. the boundary D is sharply convex at P) and the determinant det V is
positive. Since the solution u(t, x) has the first and the second derivatives on the

boundary D for t > 0, equation (3,1) gives with respect to (3,4)

ou 1 0*u
a,(t,P)—(t, P) + = ) A;(t, P t,P)=0.

(7). P) 4 DA ) 1)

Denote by ]H[ the determinant of the matrix H and by H'"/ its subdeterminants. The

condition det V' = 0 is equivalent to the inequality

(3.9) [H}[zan(t, P) —:j_z:lA,.j(z, P) &h (P)]< M, P)>2+

0x; 0x; 0x,,

o%u

n—1
+ 2|H]| jl,(z, P) Y. Au(t. P) (1. P) —
X i=1

i 0Xp
n—1 2 2
— At P) Y (=) T (o, p) ‘3;‘ (. P)20.

ij=1 X; 0X, 0x; 0x

Remark 3. If the solution u(t, x) is convex at the point [1, P], then the region D is
convex at the point P and (3,5) holds. These conditions are also sufficient.

If the solution u(t, x) is sharply convex at the point [1, P], then the region D is
sharply convex at the point P and (3,5) holds as a sharp inequality. These conditions
are also sufficient conditions.

From (3,5) it follows for any real number &

(3.6) |H| [2%(;, P) —:jz—;lAij(t, P) 0*h (P) + @‘2} (ﬁ)z

v

0x; 0x; 0x,

J

n—1 L . aZu alu
2 AL, P — 1)t g L -
2 Au ).;1( ) 0x; 0x, 0x; 0x,
n—1 aZu 2
— O@%H Aty P .
1] <i; (- F) 0x; 6x,)

Since H is a positively definite matrix also the matrix of elements (—1)'*/ H"J is
positively definite. Choosing @ as the least positive solution of

(3.7) det [A,,(t, P) (= 1) H" — @*|H| A,(t, P) A;,(t, P)] = 0,
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then
(3.8) 2a,(t, P) — Z At P) O (P)+ 07220

ij=1 X; 0X;

holds since the matrix in (3,7) is symmetric. The result is worth formulate as a lemma.

Lemma 1. If u(t, x) is convex at the point [t, P], then (3,8) holds where © is the
least positive solution of (3,7). If A,(t, P) = 0 for i = 1,...,n — 1, then necessary
condition (3,8) becomes

n—1 62h
2a,(1, P) = Y Ayt, P)
i,j=1 0x; 0

Remark 4. With regard to Lemma 3 [1] it is £A4,;4(0%h/0x; 0x;) = 0 so that the
necessary condition (3,8) is a refinement of the necessary condition following from
Remark 7 [1].

The following lemma will be useful in further considerations.

(P)20.

j

Lemma 2. Let the region D fulfil condition (B), PeD and x,, ..., x, be the local
coordinate system at P with respect to D. For every t, = 0 there exists a linear
regular transformation z = Lx, u(t, x) = w(t, z) such that L,; =0 for i =1, ...

n — 1, L, > 0 and such that (3,1) is transformed onto

*w ow
3,9 — == 2 + Ya*(t, z) —
(3:9) ot z J 2) 0z; 0z; zz (t.2) 0z;

2 i

where a}(t, z) = La(t, L"'z) and A}{(t, z) are elements of the matrix LA(t, L™'z) L"
and A* (to, P) forms the unit matrix. If the region D can be locally expressed by
means of x, = h(xy, ..., X,_1), then D* can be locally expressed by means of z, =
= h*(zy, ..., z,_,) where 0h*[0z(P) = 0 and 0*°h*[0z; 0z (P) fori,j = 1,...,n — 1
are elements of a matrix L,(L™")T HL™*. The matrix H is defined as follows:
H,; = &*h)(0x; 0x;) (P) for i,j = 1,...,n — 1 while all other H,; equal zero.

If a point PeD and a positive number &, are given, there exist a number

5,(8,) > 0 (which converges to zero for §; — 0) and a function h°(xy, ..., X,—{)
defined on the whole R, _, such that the function h° and its partial derivatives of
the first and the second order are Holder continuous, h°(xy, ..., X,—;) = h(xy, ...

oo Xg—q) for {x:|x| < 8,} and h° =0 for {x:|x| > 8,} and the transformation
xi=ypi=1L..,n—1,x,=y,+h(yg, ..., yu-1)s u(t, x) = v(t, y) maps (3,1) onto

o ov ot 1" %h° 7 v
3,100 — =) aj(t,y) —— ty—+~ i
(3.10) ot igl ( )6yi l::g ai(t.y) oy; 2112 ity )6 a)’,] 0y,
1 o 1 v ok° 0% 0h°
+ - Y A )———*Z A3t y) + +
221 dy; dy;  2ij=1 3y; 0y, Oy;  0y; 0y, dy;

[ZA( NI Y e 2] 2

i,j=1 i 0yj
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where a3(t, y) = a1, x), A3t, y) = A;{t, x) and

ij

lim sup max [0h°[/dy;| = 0, lim sup max |0%h°[0y; oy;| < oo .

3120 y i 41-0 y  i,j
The region D is transformed onto a region D° so that the boundary of D° in the
&,-neighbourhood of P is given by y, = 0.

Proof. It can be assumed that L,; = O for i + n and L,, > 0 which means that
the half-space x, > 0 is transformed onto the half-space z, > 0. Let C be the matrix
with elements C;; = A,(t, P) — Au(to, P) Aj(to, P)[Awlto, P), i,j=1,...,n — 1.
With respect to a well-known theorem there is a regular (n — 1) x (n — 1) matrix L")
such that I'VCILVYT is a diagonal matrix and the diagonal elements are plus one,
minus one or zero. Let L;; be the elements of V) for i,j=1,..,n—1, L, =

n—1
= — ) L;jjA;(to, P)|A,,(to, P)fori < nand L, = A,,'"*(to, P). Lis a regular matrix
i=1

of the type n x n since IV is regular (4,, > 0 holds since (3,1) is parabolic). It can
be easily verified that z = Lx maps (3,1) onto (3,9). As Lis regular and A is positively
definite, the matrix LALT has to be also positively definite which implies that the
diagonal elements of ICIVT equal to one. Since the elements of this matrix are
simultaneously elements of LALT this last matrix is the unit matrix.

The second statement of Lemma can be obtained if h is multiplied by a function
¢(x) where

o(x) =1 for |x| <6,

I x| -6 n? 3.\ & 3
(p(x) = 5{1 + COSL%TC bt 6—f|:<|xi - 551) - Il] <{x| - 5&)}

for &, < |x| <24,,
o(x) =0 for |x| = 26,.

Remark 5. The second derivatives 0>h*[0z; 0z (P) are the clements of the matrix
L, (EV)")~* H(LV) ™! where the matrix ) was introduced in the proof of Lemma 2.
The previous lemmas give immediately an interesting result.

Lemma 3. Let the assumptions of Lemma 1 and 2 be fulfilled. A necessary con-
dition for the convexity of the bounded solution u(t, x) fulfilling (3,1) and (3,2),
(3,3) at a point [t, P], t 2 0, P e D is 2a,(t, P) > trace (L'V)~*)T H(LV)~*.

Provided the region D is a sphere in the n-dimensional Euclidean space with
a radius r and A the unit matrix, Lemma 3 gives the neccesary condition 2a,,(t, P) =
> (n — 1)/r (a, is the coefficient if the equation is expressed in the local coordinate
system in P). On the other hand the investigation of Example 3 in [1] shows that in
the case n = 2, D is a circle with radius » = 1, the matrix A is the unit matrix and
a; = —x[2, a, = —y[2 (see (15,16) in [1]) that the solution u(t, x4, x,) is convex
in Xy, X,. In this case the last necessary condition is valid even for this equation.
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4.

In this section the behaviour of the solution u(f, x) on the boundary surface
(0,Ly x D will be investigated for small ¢. The coefficients of (3,1) can satisfy weaker
conditions than those of Theorem 1, on the other hand, the region D has to fulfil
stronger conditions.

Theorem 5. Let the region D fulfil condition (B), Pe D, x, ..., x, be the local
coordinate system at the point P with respect to D. Assume that the coefficients
of (3,1) are Hélder continuous and

At x) = Ay(t, P) + ;%_ (0 P) (5 = P2) + s = P (1. )

where A;j(t, P) are Hélder continuous with an exponent greater than %, 0A,;0x,(t, P)
and @(t, x) are Hélder continuous, (0, P) = 0. Denote by u(t, x) the bounded
solution of (3,1) fulfilling (3,2) and (3,3). Let I' be an n x n matrix defined as
follows: I';; are the elements of the matrix (LV)™")" H(LV)™! for i,j =1, ...

n—1
coon =1, Ty =T, =1y 04,,[0x,0, P) (LV);;* (A4,,(0, P))"* for i<n and I',,=
n—1 s=1
= 2a,(0,P) — Y. I'y;. If H is a positively definite matrix and detI’ > 0, then
=i

u(t, x) is sharply convex at the points [t, P] for small t. If u(t, x) is convex at all
[, P] for sufficiently small t, then the region D is convex at P and detI = 0
for small t.

Remark 6. The matrix (" is defined in the proof of Lemma 2. If the matrix A(0, P)
is diagonal, then also I{!) is diagonal.

Remark 7. If 6/1,,,,/8x,-(0, P)=0fori=1,...,n — 1and the matrix H is positively
definite, then the inequality from Lemma 3 is a sufficient condition for the sharp
convexity of u(t, x) at the points [¢, P] for small ¢ if only the inequality is valid as
a sharp inequality.

Proof of Theorem 5. Assume from the beginning that equation (3,1) is defined in
a region Q = (0, L) x D where D is an unbounded region in R, defined by x, >
> h(xy, ..., x,—;). The function h and the partial derivatives 0h/dx;, 0*h[ox;0x;
are assumed to be uniformly Holder continuous, the second partial derivatives
0%h[ox; 0x; bounded and the first partial derivatives so small that equation (3,10)
with h° = h is uniformly parabolic. The coefficients of (3,1) are assumed to be
uniformly Holder continuous, bounded and such that (3,1) is uniformly parabolic.
Without any loss of generality put P = 0. When the first transformation from Lemma
2 for t, = 0 and P = 0 is applied the transformed equation of (3,1) will satisfy ~

(4,1) A0,0) =1, A,0,00=0, i=*j,ij=1,..n.
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Since the convexity of u(, x) is preserved by linear transformation it will be assumed
that (4,1) is valid from the beginning. With respect to the assumption about the
convexity of D at 0 it is sufficient to prove that (3,5) is valid as a sharp inequality for
small t. Denote I; = lim 0%u/dx; dx,(t, 0)/(—du[ox,(t, 0)) for ¢ — 0. (The existence
of the limit will be proved later.) With regard to the assumptions about coefficients
of (3,1) it is sufficient to show

(4,2) |H| [2(1"(0,0) iﬂ )] Uzl( 1)+ HYL,

The second transformation of Lemma 2 maps equation (3,1) onto (3,10) and this
equation will be written in the form

(4.3) 7 WO 0o ot 2 X)-

211

since the transformation does not affect the limits /;. The region D is transformed onto
the half-space x, > 0 so that the boundary value condition for »(t, x) will be now

(4,4) v(0,x) =0 for x,>0,

(4,5) ot,x) =1 for t>0, x,=0.

n

Let A be a positive number. Consider a transformation t = A1, x = f\/l, v(t,x):
= v,(7, ). Equation (4,3) passes to

(4.6) ZAU(AT :f\/).) + Z a$(4z, f\/l)\/l av).

<§
with the same initial and boundary value conditions. Evidently
2
@) Lo =L g, T ge - T ).
0x; \/(,1) 0&; ox; 0x; A 0¢; 66

For A = 0 equation (4,6) assumes the form

(4.8)

i

i

(see (4,1)). Denote vy(t, ) the bounded solution of (4,8) fulfilling (4,4) and (4,5).
The solution v, depends only on t and &,. This implies that v, is a solution of a one-
dimensional heat equation for which the explicit formulas give

avo__ i __5_,2. 62”0=é i _érzi}
(49) 6—6,, - \/<m) exp{ 21} Tooel T \/<m> exp{ 2f
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Put 4,(t, &) = (v4(7, &) — vo(, €))/\/4 for every 2 > 0. The function A, is then the
bounded solution of

@) 2= Y Ay ey

+ ¥ aslin, € VA) A f% +

PINE ac azg =
+ a (A.[ é //1) avO A""(AT, 5 \//1) - A:,,(O, 0) @
é,. 2.,/4 ok

fulfilling the initial condition 4,(0, &) = 0 for &, > 0 and the boundary value con-
dition A,l(t, &) =0fort >0, ¢, = 0. First some estimates of 4; are necessary. Let
G,(t, &; o, n) be the Green function of (4,10) in the half-space &, > 0. Since the coef-
ficients of (4,3) are uniformly Hélder continuous, bounded and since the equation is
uniformly parabolic, Theorem 16.3 [4] may be applied yielding

in the whole region <0, L) x R: x <0, Ly x R, (where R, is the half-space £, > 0)
and c,, ¢, are independent of A for 0 < 1 < 1,

2
(EZ' é# exp _c4u s
(v = o)in¥ V2 T—o0

o¢;
C3 _ If - "llz
s (‘r _ U)(n+2)/2 exp{ Ca T —o

%G,
0¢; 9%;

in every compact subset of <0, LY x R} x <0, L) x R, and c;, ¢, are independent

of ,0 < A < 1. Put

(413) Ajzj'r r 'f:cl(f,g;a,,,)[ (Aan\/l) 0(6,11)+

0J — —©

" Aml20, 1 \/2) — 43,(0,0) ¢ Y dn,dn,-,...dn, do.
2/4 oG

Inequalities (4,9) and (4,11) give an estimate

(4,14)
|43| £ ¢5 max |a;| exp {—— Co %} J@) + s [max An(Aa, 71\2/1(,:')\/1/1 (10, 0)
Ap(Ao, 0) — 4,,(0,0)

o hern {-ec .

where the constants cs, cs depend only on ¢y, c,. (4,14) implies

(4.11) |Gy =

(4,12)

+ max

(4,15) lim 43(t, &) = 0 for t— 0 uniformly with respect to 1,
0<A=Z1, foragivené, £,>0.
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Let a point [1°% &°], <® > 0, ¢, = 0 be given. Due to (4,9) there exists a number
N > 0 such that

(4.16) Lo et ) =
60 2
e = TR e S (e - - ),
a a 0 2 2 2
o (44 = S () S N - 2 ey - )

if the points [7!, £}], [% 2] are in the two-dimensional region
Dy ={[t,&]:t> 4%l = ¢&), >0, & > 0}.

Let vg be an extension of v, from D such that (4,16) is fulfilled for vg on the whole
<0, Ly x R,. Put 9, = vy — vg. Define 43¥, 4% by means of (4,13) where v, is
substituted by vg or d,, respectively. The function 45 is evidently a solution of (4,10)
where v, is replaced by vg and by Theorem 4, Chap IV. [3] it can be concluded that

2%43*
0¢; 0%,

ok
45| _
0%;

=M

H

(4.17) |43 < M,

in the region
S={[r&]:| - 10] < 119, lrf =& < 1% ¢, > 0},

where the constant M does not depend on A but may depend on 1°. Since G, is the
Green function it holds

(4,18) 4551, &) =0 for ¢,=0.
Let D, be a two-dimensional region defined by
D, ={[r,&]: 1<l =¢&), t>0, & >0}.

If [0, ,] € D, and [1, £] € S, then 1°/2 < 7 — ¢ < 57°/4 and

(c = o) exp {— Lﬁ;ﬂf}

IIA

(4,19) c7 exp {—cgl — 1|}
T—0
where ¢, ¢g are independent of 1. With respect to (4,11), (4,12), (4,19), the fact

that , = 0 on D, and that the integrals

f d¢, dr, f
D> D.

b, 62‘

o0&,

dé, dt

o D2 n
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converge absolutely, the function A% is also a solution of (4,10) if only v, is sub-
stituted by ,. With respect to (4,12) inequality (4,17) holds also for A} in the region S
and since G, is the Green function, (4,18) holds as well. Hence it follows that v, +
+ A} /A is the solution of (4,6) fulfilling (4,4) and (4,5). This solution fulfils the esti-
mate (4,14). According to [5] the equation v = vy + 4} (/A is proved which means
4, = A},

Let 4, be a sequence of positive numbers which converge to zero. With respect
to (4,14) and Theorem 15, Chap. 1II [3] it is possible to choose a subsequence 4,
such that 4. converge to a certain solution 4, of

o4 1L . ov R aA°(0 0) , 9%,
420) — = — °(0, 0) —2(x, -y 2 T E =2,
(4.20) ot 2 ; + ax(0. 0) ¢, (v.8) + 2 ox; ¢ o&: (=€)

fulfilling (4,14). With regard to (4,15) it is 44(0, &) = 0 for &, > 0 and (4,17), (4,18)
imply 4,(t, &) = 0 for t > 0, £, = 0. Due to Theorem 2 [5] there exists only one
such solution fulfilling (4,14). This yields that also the original sequence 4, con-

verges to the same 4, such that lim 4, = 4, at every point of the half-space £, > 0
=0
and the limit is uniform in the S-region of every point [7°, £°], 7 > 0, & =o0.

For V, =4, — 4, it is

v v
— == Y A3tk E/2) oA, £ JA) JA—
o 2§ ek eV é,as Rl VDAL E
1 %4 o4
-~ p! 2) — A3(0,0 I, & JA) JA—2
+2 = u(Tf\/) u( ))5§ 6éj+za(1'£ )\/ af,
o o A2
A1, € J2) — A5(0,0) — Z " (0 0) ¢ \//1
+ i Uo +
2./ bl
v

+ (ay(th, /%) — a3(0,0)) =2

0,

with the initial and boundary value conditions: V,(0, &) = 0 for £, > 0, V,(t, &) = 0
fort >0, ¢, =0.

The functions 04,/0¢;, 8*44[0¢; O, Ove[0E,, 0%ve[0¢; are Holder continuous in

the region S of the point [1, 0]. If Theorem 4, Chap. IV [3] is applied to the region

0<¢é,<1,—1<¢ < 1,7 > 1/2and to the region S of the point [1, 0], it implies

. o4 oA %4 %4
lim =2 (1,0 010 Z ° (1,0
im0 0, (1.0) = = (1.0). faf( 0= 3 6s,( )

with respect to the assumptions about A,,. Considering the definition of 4, and
(4,7), (3,4) we can easily calculate
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(4.20)  lim £ (¢, 0) |/t = lim K (t,0) /t = lim 22 v, (1,0) = v (1,0),
1~0 0x, -0 0X,, -0 0&, ¢,

Iim

im P00 (= 2 0) =m0 f(- Zqo)) -

= e 0520 0) 0o (- 5 e0)

with the exception i = n. This implies

104

4,22 li 0 t,0 0,0) = - —"(0,0),
(4.22) ,Ln;ax (t )/< 3 )> 6x,~( ) 26xi( )
since

%4, 1 a4, Jvg 2

= —= (0, 0 =

0&; 9¢, (+.0) J(@2nt) ox; ©.9) o, (- 0) = \/ nt

(see (4.9)) and o
%m0, 0) = 2m (0, 0).
0x; 0x;

Let the region D be bounded. Let P = 0 and let it be possible to express the bound-
ary locally by x, = h(x,, ..., x,_;). First the coefficients of (3,1) can be extended
onto the whole half-space x,, = 0 so that the assumptions from the beginning of this
proof are fulfilled. Since 0h/0x,(0) = 0, Lemma 2 implies that there exists a function
h°(x, ..., x,—1) defined on the whole R, _, and a positive number &, such that h = h°
in the é,-neighbourhood of 0, the first and second partial derivatives of h° being
bounded and uniformly Hélder continuous and equation (3,10) being uniformly
parabolic in a region D* = {x; x, > h°(x, ..., x,—{)}, D = D*. These assumptions
imply that D and D* have the same boundary in a §,-neighbourhood of 0. Let
u4(1, x) be the bounded solution of (3,1) fulfilling (3,2) and (3,3). Denote by u,(t, x)
the solution fulfilling the same conditions with D" instead of D. The application of
Theorem 4, Chap. IV [3] to z = u, — u, yields

tim | %2 (1, 0) — %11, 0) =1im§.(z,o)=0
ox, 0x

t=0 n t=0 6x
and
lim 2 — t,0)| = lim ,0)=0.
-0 l:ax, (t.0) 0x; ax,( )] -0 0X; 0X; ( )
(4,20) implies
11m Y2 (t,0) =
t=0 6x

so that

lim 242, 0)/(21‘ (t, o)) —1 and lim (1, 0) =

10 0X,, -0 0X,
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This means

ou ou
lim t M1 (1,0)) = lim 222 (1,0 —2(1,0
-0 0x; 0x; o )/< 0x,, . ( )> -0 0x; 0X; ( /( 0x, ( )>

so that (4,21) is valid also for bounded regions.

If equation (3,1) does not fulfil (4,1), then by means of Lemma 2 this relations can
be achieved by a linear transformation. Substituting (4,22) into (4,2) for I, and recal-
ling the considerations which proved Remark 3 we obtain easily the statement of
Theorem.

Remark 8. For the derivative of the solution u(t, x) with respect to the inward
normal the formula
. ou 2
holds.
The remark immediately follows from (4,21), (4,9) and from the fact that L,, =
= (A,,(0,0))~"/? where Lis the transformation matrix given in Lemma 2.

5.

This section will be devoted to the case when the time ¢ is fixed but the right-hand
side of the differential equation is assumed to be small. Let a differential equation

+sZa(t X, s)——

ou 1

(5.) LT Aeng

be given where coefficients a1, x, ), A,-j(t, X, e) can depend on ¢ in a region Q, =
= (0, L) x D, where the region D, may also depend on &. The expression u(t, x, &)
denotes the bounded solution of (5,1) fulfilling conditions

(5,2) u(0,x,¢) =0 for xeD,,
(5.3) u(t,x,g) =1 for t>0, xeD,.

Theorem 6. Let points P,, P,e D, and a number t, > 0 be given. Assume that
there exist numbers 8,7,8 > 0 such that the boundaries D, in the J¢'-neigh-
bourhood of P, can be expressed by means of x, = h(x,, ..., X,_;) where x, ..., x,,
is the local coordinate system in P, (the dependence on ¢ need not be indicated).
Further assume that |¢7 0*h,[(0x; 0x;)| £ M and
oh,
0x

ah n—1
.y xn—l) - a_xt (619 LR én—l)l é K; |xi - éilz,

(X1r oo Xuey) —

0x; ax 0x;

s Enm ,)‘ Z |x: — &
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in the d¢’-neighbourhood of P,, lim &'0*h,[(dx; 0x;) (P,) = h;; where h;; form a posi-
£=0

tively definite matrix and M is independent of €. The coefficients a,.(t, X, e), A,.j(t, X, €)
are uniformly Hélder continuous with respect to ¢ with an exponent &, o > 0,

la(t, P, &) — aft, P, 0)| < Ke*, |A;(t, P,,&) — A1, P, 0)] < Ke*

and A;; are uniformly positively definite with respect to t, x, & on Q,. Let there
exist a number f, B = 0 so that a,(ty, P, e)e ¥ - A > 0. Assume that the fol-
lowing inequalities are valid

(54) 2e+y—B>1, a+2y<2, p<1—y (0O<a=1, f20).

If B <1 -y in the last inequality, then there exists a number ¢, > 0 so that
u(t, x, €) are convex at the points [to, P,] for 0 < & < &y. If p = 1 — vy in the last
inequality of (5,4) and 24 — trace (L')™" HL™' > 0 (where the matrix H consists
of elements H;; = hy; for i,j=1,..,n—1, H,, = H;,, = 0), then there exists
a number g, > 0 so that u(t, x, &) is again convex at the point [to, P,] for 0 < & < &,.

If the solution u(t, x, €) is convex at [to, P,] for all sufficently small ¢ and f =
=1 —y, then 24 — trace (L")"* HL™' = 0.

Proof. Without any loss of generality it can be assumed that P, = 0 and, with
respect to Lemma 2

(5,5) Aifte, 0.8) = 1, A;(t5,0,8) =0, i%j.

By means of the transformation x = ey, u(t, x) = u(t, y) equation (5,1) becomes

ou 0% ot
5,6 — = At ey, e + Ya(t, ey, &) —
(56) ot %'Z; it er. o) dy; 0 Xz: ( )Byi

Yi0);j

the regions being transformed onto D,. The de’~ '-neighbourhood of 0 is the image
of the de’-neighbourhood of 0. The boundary of D, can be then described by the
function y, = h(y;, ..o Ya=1) = (1/€) hy(xy, ..., X,—;). As it was shown in the
proof of Remark 3 it is necessary and sufficient to prove that the determinant of the
matrix V is positive (or nonnegative) where the matrix is defined as follows: V;; =
= 0%h,(0y; 0y;) (0) = & 0°h,(0x; 0x;) (0), V,; = V;, = 0%i1[(0y; 0y,) (15, 0), i =1, ...
con — 1 and V,, = 0%i[dy2(to, 0) (—0ii[dy,(t,, 0)). Define a matrix W, so that

Il

W,; = € 0*h,J(dx; 0x;) (0) for i,j=1,..,n—1,
Wein = Weni = 0%[(0y; 0y,) (to, 0)(—0i[0y,(10, 0)) for i< n
n—1
W = 2a,(10,0,€) — & Y, 62h[ox3(0) .
i=1
Immediately it follows that det V = (—0ii/dy,)* det W. Hence the necessary and suf-
ficient condition for the convexity of i(t, x, €) at [14, 0] is the positivity of the
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determinant of W,. Put Wy, = hyj, Wo, = W, = lim 7 7#71/2 32[dy, 0y,(to, 0) :

ij>

e—=0 n—1

:(—0i1/dy,(ty, 0)) for i + n and Wy, = 24 — lim &' 77"# 3 h;,. Obviously
e—=0 i=1
lim g #+(=DA=N det W, = det W, .

&0

This yields that the positivity of det W, is a sufficient condition for the convexity
of ii(ty, x, €) at [to, 0] for small ¢ and the nonnegativity of det W, is a necessary
condition. The next part of the proof will be devoted to the fact that W,;, equals
zero. Under such condition the statement of the Theorem is obvious.

First the coefficients a1, x, ¢€), 4;,(t, x, €) can be extended onto the whole <0, L) x
x R, so that they are Holder continuous, bounded and the extended equation is
uniformly parabolic (with respect to all variables ¢, x, ¢). According to Lemma 2
there exists a function h(y,, ..., y,—) defined on the whole R,_; such that s, = h;
in the 6"~ *-neighbourhood of 0, h{ and the first and second partial derivatives being
uniformly bounded and uniformly Hélder continuous and such that equation
(3,10) is uniformly positively definite. With respect to the assumptions about h{ it is
|0>h:[(9y; dy;)| < Me'™7 in the 8¢’ '-neighbourhood of 0 and 0hZ[dy,(0) = 0.
Hence |0h;[dy;| < M6 in the ¢’ '-neighbourhood of 0. Using the second transfor-
mation defined in Lemma 2,ie. y; = z,i = 1,...,n — 1, y, = z, + hi(zy, ..., Z,—y),
u(t, y) = ot, z), equation (5,6) is transformed onto

o*v
0z; 0z;

(5,7) o _ 1Y A3t 2, €) + Yai(t, z, ) o s
ot i i 0z;

regions D, are transformed onto Dg such that conditions (5,2) and (5,3) are trans-
formed onto

(5.8) v(0,z) =0 for zeD;,

(5,9 ut,z) =1 for t>0, zeD?.

Certainly there exists a number J,, §; > 0 such that the §,&"~!-neighbourhood of 0
is a subset of the image of the d¢” ™ !-neighbourhood of 0.

Let B(t, x,¢)) be a Holder continuous matrix function such that BBT = A°.
According to Theorem 1, the fto equation

(5,10) dz = aO(L —t, z, s) dt + B(L — t, z, z—:) dq

corresponds to (5,7) where g(t) is an n-dimensional Wiener process. With respect to
the Holder continuity it holds

(5.11)  |a’(t, z, z—:)l <K (1 + Iz') ., |B(t, z, e)] <K (1 + {zl) , ted0,L)

where K, is independent of e. It is possible to approximate a, B by Lipschitz conti-
nuous (in z) vector and matrix functions a,(t, z, &), B,(t, z, ). Denote by z,(f) the
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solution of the corresponding Ito equations
dz =a,(L—t,z¢edt + B,(L—t z¢dg

which have the initial value z,. Due to (5,11), (4,7) and further inequalities from [6]
it holds
VE sup |z,(7)]* £ VE |z,(0)]> + Kt +
<0t

+ K, J“\/E sup |z,(&)]> dr + 2K, /(nt) +
0 {0,t>

+ 2K, \/n /(f;Ef:g[zm(f)lz dr> .

By Lemma 2 [6] /E sup |z,(t)]> < N(1 + |z,|) where N depends only on K, and
<0,L)
on the dimension n. This yields
(512)  P{3{r:7€0, L), |z,(v)| > 6,877 '}} < N*(1 + |z0])? 67> 2 <
< N*(1 + |zo])? 67 %

(the second inequality from (5,4) is used and ¢ < 1 is assumed). By Theorem 1
iii) the probability P{3{t € <0, t), z,(t) ¢ D7}} equals v,(1, z) where v,(t, z) is the
bounded solution of

%

ov
5,13 LY At 2,6
&13) ot ZZ, inl )6z,é?zj

i

+ Ya(t z, ¢ ?)—

(A,, = B,By,) fulfilling (5,8) and (5,9). Let w,(#, z) be the bounded solution of (5,13)
fulfilling w,,(0, z) = 0 for z, > 0 and w,(t, z) = 1 for ¢t > 0, z, = 0. By Theorem 1
iii) again

wa(t, 2o) = P{3{r : 1€ <0, ), (z,(7)), = 0}}

where z,(t) is the same solution of the to equation as in (5,12). (z,(t)), is the n-th
coordinate of the solution z,(t). Obviously

vu(t, 2) — wy(t, 2) S 2P(3{r : 1 €40, 1), |z,(7)| > 6,67 1}} <
S ANP(1 + |zo])? 67 %"

The last inequality holds due to (5,12). Since the coefficients on the right-hand side
do not depend on the Lipschitz coefficients of a,,, B,, it follows that

(5,14) [o(t, ) — w(t, 2)] < 2N?(1 + |zo|)? 67 %"

The function w(t, z) is the bounded solution of (5,7) fulfilling w(0, z) = 0 for z, > 0,
w(t, z) =1for t >0, z,= 0. Since w dep2nds actually on ¢ it will be written as w(t, z, ¢).
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Let w(t, z, 0) be the bounded solution of

(5.15) %‘” = 124300 0)
t

+ Yad(t, 0,002
z; 0z; i 0z;

fulfilling w(0, z, 0) = 0 for z, > 0, w(t, z,0) = 1 for ¢t > 0, z, = 0. The difference
A(t, z, €) = w(t, z, s) — w(t, z, 0) is then the bounded solution of

o4
5,16 At z, € + Yai(t,z,e) — +
(5.16) or 2.2, i ) ; Z ( )6zi
R R 0 w(t z, 0) ow(t, z, 0)
+ A1, z, 8) — An(t, 0,0)) —="— + (a;(t, z, &) — ay(1, 0, 0)) —

fulfilling 4(0, z, &) = Ofor z, > 0, A(t, z, &) = Ofort 2 0, z, = 0. The corresponding
Tto equation to (5,15) is now a scalar equation
d{ = ag(L — 1,0,0)dt + ({/45,(L— t,0,0))dg
which has the solution
t t
o) =¢o + j ay(L—1,0,0)dt + ¢ (I Ap(L — 7,0, 0) dr> .
0 o

Since w(t, Lo, 0) = P{3{t : 1 € €0, 1), {(1) = 0}} there exist constants K, ¢ such that
2

(5.17) [w(t, z,0)] < K, exp {—c z—"} .
t

According to Theorem 6 Chap. 1II [3] and to the fact that the coefficients of (5,15)
do not depend on z there exists a constant K5 such that

(5,18)
ow

<

t

n

2
(1, =, 0)1 < K;t™ 12 exp {—c —Zl} ,

62 zZ
v: (t, z,0)| < K5t~ 'exp {—c —"}
0z, t

Let G(t, z; 7, n) be the Green function of (5,16) in the half-space z, = 0. Since the
coefficients are uniformly Holder continuous and the equation is uniformly parabolic,
Theorem 16.3 [4] can be used to show that G, fulfils inequalites (4,11) and (4,12).
By the same method as in the proof of Theorem 5 it can be proved

(519)  A(tze) = j 0 J : f : j :Ge(t, z 1) {[(aﬁ(t, ne) —

0
— a3(x, 0,0)] 5;‘1 (t, 1, 0) + 3[4z, 1, &) — A, 0, 0)] x

0w
x P (z, m, 0)} dn,dn,-, ... dn, dz.

n
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By means of (4,11), (5,17) and
(5,20) lan(t, z, €) — a;(1,0,0)| < K,e*(1 + |z]), 1e0, L),
|[45(t, 2, 8) — A3, 0,0)] < KyeX(1 + |2]), 1€<0, L)

the following inequality is easily proved
2
(5.21) |42, z, &)] < Kse™exp {—c I—Zrl—}(l + |z])

where the constants K5, ¢ do not depend on e. (5,14) and (5,21) give the estimate
(5,22) [v(t, z) — w(t, 2, 0)] £ Ke&* for |z| < 8,2, te0,L)

(inequalities (5,4) imply y < 1). The difference V(t, z, &) = v(t, z, &) — w(1, z, 0) is
again the bounded solution of (5,16) fulfilling V(0, z, &) = 0 for z, > 0, V(1, z,¢) = 0
for t 20, z, =0, |z < 8,"" and |V(t, z,€)| £ 1 everywhere. An application of
Theorem 4, Chap. 1V, [3] to equation (5,16) yields

o*v

z

(5,23) iaiV« (t0, 0, 8)| < Kq¢*, (t0,0,¢)| < Kq¢”
Z’l

i0Zy,

with respect to (5,20) and (5,22). The constant K, is independent of ¢. (5,23) implies
that dv[dz,(t, 0, €) converges to dw[dz,(t, 0, 0) for ¢ — 0 and this value is nonzero
according to Theorem 14 [3]. The second inequality from (5,23) gives

|0%0/(0z; 0z,) (1,0, €)| < Kq&* for i+ n

and since 0%i/(0y; 0y,) (1o, 0) = 8°v/(0z; 0z,) (1o, 0), it holds |6%i/(dy; dy,) (o, 0)] <
< K,¢. This implies |W,,,| < lim e?**7~#~D2K, = 0, the last equality being a
consequence of (5,4).

If (5,5) is not valid, then the first transformation described in Lemma 2 is used and
the statement of the Theorem is easily achieved.

6.

In this section a modification of Theorem 4 for symmetric regions will be given.
In this sense the variety of regions will be more restrictive. On the other hand, the
conditions on a(t, x;) are weaker since they need not be linear in x;.

Definition 4. A region D is symmetric with respect to the axes X, ..., X,, if
[%15 X2s oo Xg— 1> Xp» X 15 -+ X, ] € D implies [Xy, X5 ooy Xpo s = Xpo Xpt 15 -2 Xp ] €

e D forevery index k = 1, ..., n.

413



Let a parabolic differential equation

0%u

(6.1)

6u
At x5 X
ot zzz, i )6

T Yat x) 2 :
i Ox

i 0X; i i

be given. We shall consider bounded solutions fulfilling

(6.2) u(0,x) =0 for xeD,
(6,3) u(t,x) =1 for t>0, xeD.
Theorem 7. Let a region D be symmetric with respect to the axes x4, ..., X, and

Sulfil condition (B). Let at, x;) depend only on t and x; in the way that they are
odd functions in x; and 0*a;|0x}(t, x) = 0. Let A;{(t, x;, x;) be linear odd functions
in x;, x; for i & j and let A;(t, x;) depend only on t and x; in the way that they are
even functions in x;. All coefficients of (6,1) are assumed to be Hélder continuous.
If the bounded solution of (6,1) fulfilling (6,2) and (6,3) is sharply convex along the
axes xi, ..., X, at all points [t, x,,...,x,]€(0, Ly x D, then the solution u(t, x)
is convex along the axes X1, ..., x, in the region Q.

Proof. The symmetry of the region and of the coefficients implies u(t, X1y evns Xg—1s
Xpo Xpt 15 e-os Xy) = U(t, Xg,y ooy Xy, —Xpo Xgq5 - X,,) fOr every k which means
that it is sufficient to investigate u(f, x) in a domain <0, L) x D, where D, =
= {x;x e D, x,, 2 0}. First we shall prove

ou

Xk

(6.4)

—(t,x)20 in (0,L) x D,.

The solution u(t, x) can be approximated by u™(t, x) where u®(t, x) is the bounded
solution of (6,1) fulfilling (6,2) and

(6,5) u™(t, x) = ¢"(t) for xeD
where ¢™(1) = 1 for t 2 1/n, ¢"(t) =0 for t < 1/n% 0 < ¢™(t) < 1 for all ¢

and ¢™(r) has the derivatives of all orders. Put v(")(t x) = 0u[ox,(t, x). The
function v{"(t, x) fulfils

0 A 2
(6,6) 91_)5 oday k+Z(a + 5/1,1(_%5“(5 "">%+12Aij—(3~l)k—-
ot Ox X i 5xk 3xk 6xi 2 i,j axi 6Xj

By Theorem 14, Chap. II [3] it follows du/dv(t, x) < O where y is the inward normal
at the point x € D. This yields

(67) ot x) =

xeD, x> 0.
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The symmetry of the region and of the coefficients gives
(6,8) v(t, x*¥) = 0 where x* are all points for which x; = 0.

Let 5 = max {0a,/dx,(t, x); [t,x]€<0,Ly x D,} and put o{”(t, x) = wi"(t, x) .
. exp {nt}. The function wi"”(t, x) fulfils the equations

a_wk=<%_,,>wk+z<a NI aA,‘,‘>%+1ZA” ﬁa W,

ot 0x,, 0y, Ox; ) 0x; 275  0x;0x;

and the conditions (6,2), (6,7) and (6,8). With regard to the maximum principle this
implies w{"(, x) = 0 as well as v{”(t, x) = 0 in <0, L) x D,. The meaning of this
inequality is that u™(1, x) are nondecreasing in x, in <0, L) x D,. Since u(t, x)
. approximate the solution u(1, x), inequality (6,4) is proved.

Put z,(t, x) = d*u[dx;(t, x). The function z(t, x) fulfils the equation

L P i
ot 0x; 0xy 0x, 2 Oxg

oA, A\ 0z
+ 3 (a; + 2 Y5, M) Oz
“( ox, " oox ) ox; 22 7 ox; ax

With respect to (6,4) and to the assumption of Theorem about 9%a,/dx;,

2
gﬁg(z%_!_la/‘“‘)zk_*.

ot ox, 2 oOx}
+ Z a, + 2 0Ny s 0k 6zk 22 y ___.
0x;, 0x, ) 0x; T 0x; éxj

Now the same method as in the proof of Theorem 4 can be used to complete the
proof of Theorem 7.

7.

Theorems 4 and 7 show that it is sufficient to know the behaviour of u(t, x) near
to the boundary if the question of maximality is solved. In the previous sections the
behaviour of u(t, x) near to the boundary was discussed for small ¢ or for parabolic
differential equations with small right-hand sides. Now the problem will be discussed
under the assumption that the fundamental solution is known. According to Remark 3
it is sufficient to know the behaviour of du/dx, and 0%*u[ox, ox;fori=1,...,n — 1
near to the boundary (0, L) x D. Assume now for the sake of simplicity that a para-
bolic differential equation

ou o%u ou
7,1 Mo Y A )25+ Yaft, x) L
(7.1) ot ; it %) 0x; 0x; ; (t.x) 0x;
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is given in the whole <0, L) x R,. As usually, u(t, x) denotes the bounded solution
of (7,1) fulfilling

(7,2) u(0,x) =0 for xeD,
(7.3) u(t,x) =1 for t>0, xeb

where D is a given region in R,

Theorem 8. Let the coefficients ayt, x), A;{(t, x) and their derivatives da;[0x,,

0A;;[0x;, 0*A;;[0x; 0x; be Holder continuous in Q, the matrix A(t, x) which con-
sists of elements A;{t, x) let be positively definite on Q and let the region D fulfil
condition (B). If u(t, x) is the bounded solution of (7,1) fulfilling (7,2), (7,3) and if
Z(t, x; 7, &) is the fundamental solution of (7,1), then

(7.4) % (%) = _zf 2 (1,x:0,¢)d¢ +
e D

o’
0

12 J dr f O (1 %1, &) S A5, &) cos (v, &) cos (v, &) P (v, &) do
p OV° ij av

for x € D where 0ul0V° is the derivative with respect to the outer normal and with
respect to the variables x4, ..., X,; 6u/6v is the derivative with respect to the outer
normal but with respect to the variables &,, ..., ¢, and do, denotes the elements
of the surface D, (v, x;) being the angle between x; and the normal v at [&,, ..., £,].

Proof. With respect to the well-know Green formula and to (7,3) it holds (¢ > 0)
(1,5) u(t,x) - 1 = J 201, % 2, &) (u(e, &) — 1) dE +
D
' ou
+ f de J 201,37 &) X Ayl ) c05 (1 €) 605 (v £) 2 (. & do.
€ D i,j v

Put ¢(t, &) = Y. A1, &) cos (v, &) cos (v, &;). Since the conditions for (15,9) Chap.
i
IV [4] are fulfilled where n(x,) = cos (v, x;) and

V(t,x) = Jqdrj Z(t, x; 7, &) o(t, &) ou (1, &) doy,
£ D ov
it holds

o(t, x) ou (t x) = o(t, x)f z (t, x; 8 &) (ule, &) — 1) dE +
ov° p O°
¥ j de j ol %) 22 (1,335, €) (. €) 2z, &) dog + Jo(t, %) 2% (1, ).
e D dv av v
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As A(1, x) is positively definite the function ¢(t, x) is positive so that

j“o( )_zj w(t xi6.8) (u(e, &) — 1) dé +

+zjdrj -—(txré) oz, ¢ )Zf'v‘(f,g)daﬁ.

According to Remark 8 (4,22) it is possible to pass to the limit for ¢ - 0. Equation
(7.4) is proved.

8.

In this section a formula for the second derivatives 0%u/(dx; 0x,) on D will be
derived. Since the formula is rather complicated it will be derived and introduced
only under following simplifying assumptions: the origin 0 of the coordinate system
belongs to D, the region D is situated in the half-space x, > 0 and there exists 7 > 0
such that

(8,1 DnS0,14) ={x:x,=0,

<n}

where S(y, n) is the #-neighbourhood of y. It is also assumed that A(Z, 0) is the unit
matrix for the given ¢t > 0. These assumptions can be satisfied by means of Lemma 2.
The existence of the principal value of the integral on the right-hand side of (8,2)
will be proved during the proof of the Theorem.

Theorem 9. Let the assumptions formulated in the beginning of this section and
the assumptions of Theorem 8 be fulfilled. If all first partial derivatives of A;; exist
and 0A;;[0x, are Hélder continuous, then for i + n

(8’2) 0x; 6x( ) o gj axa~2§x (t’ %0 6) d +
jdr(vp)f (t 0; 7, &) o(t, g)—w(r &) do; +
+ é[adetiA( "Elai( t,0) — - 2 (0)]—(1 0).

Since the precise proof of the theorem would need some complicated calculations of
integrals it will be only outlined.
With respect to (11,13), (11,23) [4] it holds

Z(t, x; 1, &) = io(— )™ Z,(t, x; 1, £) where Z,, is defined (see (11,2) [4])

Zo(ts x = &7, &) = (4m)™"2(t — ©) "2 (det A(r, €))7H2 x

X exp {_ 1A%z, &) (xa — &) (x5 — éﬁ)}_

4t — 1)
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A(t, x) being the matrix which consists from the elements 4;(1, x) given in equation
(7,1) and A%(t, x) being elements of the inverse matrix. The function Z,, are given by

1

(83) Z,(t,x;7,8) = J‘dij Zo(t, x = y5 4, y) K4, y3 7, &) dy
T R,

and by (11,24) [4]

t
(8’4) KM(t’ X T é) = J‘d}"[ K(t’ x; A .V) K, - 1(L T 5) dy
T R,

and K; = K where K is given by (11,12) [4]. Inequality (11,25) can be rewritten in
the form

lKrn(t’ x5 T é)l =< cm(t - ‘t)(""’_"—z)/z exp {—c Ii:_élj}

t—

where c,, are positive numbers, Y ¢, < oo. Hence

(8,5) l‘;zm (tx: 7, 5)‘ < Kt — 7)™ D2 exp {—c M} .
X

i t—1
Equality (7,5) implies

%u

2’z
(1.%) =
0x; 0x, p 0x; 0x,

t 2
+ [dr oz
o e D 6X,~ 6x,,
if x € D. Denote

t ZZ
Vo, x) = J e f L (x5 0n ) 2 (n, &) doy
. Jp 0x; 0x, ov

(t, x; ¢ &) (u(e, &) — 1) dE +

(6 xi%.9) 05,9 (5, €) do

and

Valt, x) = fer "'(txtg)(p( (r,ﬁ)da

x

First the limit lim Vy(t, x) will be calculated. Denote D* = D n S(0,({), D* =

x=0
= D — D* (for the sake of brevity, the dependence of D* and D" on { is not indi-
cated). Denote

VAt x) = Jer‘ax (1, %35, &) o, )g_lv‘(f,c)da§

and

Voilt, x) = J‘d‘cJ\ ZO (t x5 7, &) o1, é)—(‘r &) do, .
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Obviously

¢ 2
lim Voi(t, x) = J.dt_[ 9Zo (1, 0; 1, &) o(z, ) SE (v, &) do, .
x=0 . Jos v

0x; 0x,

If { < n, then Vgi(t, x) can be rewritten

V(L x) = Jdrj j”o zx;r,¢)¢(r,¢)g‘vi(r,g)d¢1...dgn_,

where the last component of the vector ¢ equals to zero. Denote further

f(t,x) = LdzL‘.. Jac a" (t, x5 7, &) o(t, é)—(t &) dé, ... dé, -y .

The integration by parts gives
(8.6)
SEN(SES )

f(t.x) = ‘[dfj...J[aZO (& x; 7, &) o1, é)a_u(r’ f)] =1, gt «
e 0x, v R Gt

R0
x A&y ... dE_, A&y ..., —

- fdrj J’a o1, x; 1, é)—— ((p(r RE- (r c)>d§1. dg,_, =
Jdrj J' [.]dE ... &,  dEey ... dEpy +

S, &) (x; - &)
J ‘“J f(zm)"ﬂ( ) (dem(r o

Simultaneously,
(8,7)
St %) + VAL, x) = jdt J o J(4n)_("/2)(t ) (det A(r, )12 x
ZA"’(T O =€) 5 et 4
[‘5?’“‘“ &= &)+ 4 det At &) (7 +
SOAT ~

| gj/l m (xj = &) (xa = &) (x5 — &) )
8 t—1

. exp{_ T A%z, &) SZ: - f)) (x5 — ép)} oz, 5) (T, g)de, ... d¢,_, .
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(8,6) and (8,7) consist of integrals of the type

g(t, x) = Jdrj J(x =)y = &)l &)

t——'c)e

oxp [ TAEE) (50 = 8 (5 = 8|
»{ o bote9az, e,

where numbers yu; are integers from zero to three, the sum u; + pu, + puy equals
either to one or to three and @ is a real number fulfilling ® — %(,ul + uy + u;,) =
= 1(n + 1). It can be shown that the integral defining g(t, 0) exists, since if o(z, &)
is written as o(t, 0) + (a(z, &) — o(t, 0)), then the first integral obviously converges
and the second integral containing o(t, £) — o(t, 0) converges owing to the Holder
continuity of o(z, &) if A*(z, &) are replaced by A*/(1,0). Similarly writing A*(z, &) =
= A"(t, 0) + (A*(x, &) — A*(t, 0)), then the second integral converges owing to the
inequality

exp {_ S A(z, &) (x, — &) (x5 — gﬁ)} ~

4t — 1)

o (A0 0) ( — £ (3~ &)
P { 4(t — 1:) }

2
— A*(t, 0)| exp {—cz ——~|x — él }
t—

and to the Holder continuity of A*(t, x).
Similarly as in § 15, Chap. IV, [4] it can be proved

tim [g(0. %) — 9(4.0] = o(t,0) lim j de f J [(" ) G ) G 1)

< ¢ XA ¢) -

x=0 (t-1)°
wexp = AT X) (5 = &) (x5 — )Y _ (=8)" (=8) (=&)°
"{ 41— ) } (=
X exp { — w—zAuﬂ(t’ 0) &t
p{ P ”}]d&,...dén_l.

(e, x) = f d f - f (xi = &) (?; - g}:z (o= &
X exp {_ 2A(t, x) (%, = &) (xp = éﬂ)}_

4t — 1)

Denote

From the assumptions about y; and from the symmetry of D* it follows h(t,0) = 0.
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It is sufficient to know the limit of h(t, x) for x — O under the assumption that x

converges to 0 so that x; =x, =... =x,_, =0, x,— 0. In this case it can be found
that lim (¢, x) = 0 if all indices i, j, k differ from n, or if k = n, i & j, u; = pp = 1
x=>0

or if ifj=k=np =p =1 o O —Hu + p, + p3) <n+1). In the
casesk=n, i=j+n yu=p, =1, puyy=1ork=mn, uyy=pu,=0, uy3=3itis
lim h(t, x) = 2(4n)"/? and if p; = p, = 0, k = n, py = 1, then lim h(t, x) = (4n)"2.
With respect to (8,6), (8,7) and to the definition of Vi(t, x) it is (the expressions in
the square brackets in (8,6) converge to 0 for { — 0)

. ' *Z, ou
(8.8) lim Vy(t, x) = | de (t, 057, &) o(t, &) — (1, &) dog +
x=0 e Jp+ 0x;0x, v

t 2
+jdr(v.p.) j j o (1,0;%,8) 006, ©) 2 (1) 06y 0y +
& D* x'ax 6v

e L0+ % 20 - ¢ 0] -3 (v2).

X; 0x,

Before we pass to the study of V,(¢, x), some auxiliary inequalities are needed.
Equality (11,12) [4] implies

i

2
< ¢yt — 1) 2 exp {—cz ——~—-|x yl }
Due to (8,4),

+

t—7
t
< |di
0x; 0y; T )

t
+ fdlj K] . K- + ORn=s
T R,

- ‘ at <
_ 2
< 2t — ) Hor2 o exp{-cz b= }

Ky | K, QE_,_@K |K,— | dé +

ox; 0y;

0y;
t—

where ¢, are some positive constants such that ) ¢, < co. This yields

o2 2 27 2
0°Z, | 0°Z, 0°Z, 0°Zy -IKmldf'*‘
0x; 0x, 65 Bx . 10x; 0x, Béi 0x,
dl 6Zo oK, ?53 dt <
oy,
_ 2
< ot — ) HeH T exp {—cz =y ] }
t—-7
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The last inequality means that V,(t, x) (m > 0) can be treated in the same way as
Vo(t, x), but since 0Z,,[0x, has a weaker singularity than 0Z,/0x, no additive terms
appear by the limit procedure so that

limjdﬂj‘b Zm (t x; 7, &) oz, )ﬂ(t,é)dag—

x—0

fdf(vp)J

The last equality together with (8,6) gives relation (8,2).

(1,057, &) o1, é) (‘L‘ &) do, .

Remark 9. Denote more precisely D} = D n S(0, {), D = D — D}. The principal
value in (8,2) is defined by

f —_ (t 0; 7, &) o(t, é) (r &) do; =

0’z
=J axa(tOré(p(TC) U (e, &) doy +
D,*+ 0X;

. 3z 8
+ lim ff = (1,07, 8) (1, ) 2 (z, &) dé, ... dE,_, .
-0+ «_p,+ 0x; Ox, ov
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