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Czechoslovak Mathematical Journal, 22 (1972), Praha 

HOMOGENEOUS LATTICE ORDERED GROUPS 

JÂN JAKUBIK, Kosice 

(Received June 23, 1971) 

Let G be an /-group. We denote by vG the least cardinal a such that card A ^ a 
for each bounded disjoint subset of G. The case when vG is finite has been extensively 
studied (CONRAD and CLIFFORD [3], CONRAD [2], KOKORIN and CHISAMIEV [7], 

KoKORiN and KozLOV [8]). G will be said to be i;-homogeneous if vH = vG for any 
convex /-subgroup H ф {0} of the /-group G. In this note we show that any complete 
/-group G can be represented as a complete subdirect product of i;-homogeneous 
/-groups. 

PIERCE [9] studied some types of homogeneous Boolean algebras. A Boolean al­
gebra В is called homogeneous if it satisfies one of the following equivalent conditions: 
(i) for any 0 Ф bf e Б (i == 1, 2) the convex sublattices J5̂  of В generated by b^ (/ = 
= 1, 2) are isomorphic; (ii) if B^ is a convex sublattice of Б such that B^ is a Boolean 
algebra then B^ is isomorphic to B. Let us consider analogous conditions (ij) and (iii) 
for a lattice ordered group G: 

(ij) For any 0 Ф g,- G G (/ = 1, 2) the convex /-subgroups of G generated by QI 
(/ = 1, 2) are isomorphic. 

(iij) If Gl Ф {0} is a convex /-subgroup of G, then Ĝ  is isomorphic to G. 

If G satisfies (i^) or (ii^), then it will be called respectively homogeneous or strongly 
homogeneous. We prove that v G = 1 for any strongly homogeneous /-group G Ф {0} 
and that i' G = 1 or i; G ^ KQ for any homogeneous /-group G Ф {0}. Moreover, 
for any infinite cardinal a there exists a homogeneous /-group G with v G = a. 

Let Я be a convex /-subgroup of G such that sup X e H whenever X a H and sup X 
does exist in G. Then H is said to be a c-subgroup of G. The closure с Л of a subset 
Л с G is the intersection of all c-subgroups Б of G with Л с Б. An /-group G^ is 
called totally inhomogeneous if for any 0 < g^eG^ there is 0 < ^̂ 2 ̂  ^ i such that 
(a) 02 belongs to the convex /-subgroup A^ of G that is generated by g^, and (b) the 
convex /-subgroup A^ of G generated by 6̂2 is not isomorphic to A^. The zero /-group 
{0} is homogeneous and, at the same time, totally inhomogeneous. In each /-group G 
there exists a greatest convex totally inhomogeneous /-subgroup. Let G be a complete 
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/-group. We prove that there is a system {AQ, Л J (/ e /) of convex /-subgroups of G 
such that (i) A^ is totally inhomogeneous, (ii) each At is homogeneous, and (iii) G is 
a complete subdirect product of /-groups AQ, CA^ (/" e / ) . 

1. PRELIMINARIES 

We use the standard notation for lattices and lattice ordered groups, cf. [1], [4]. 
The lattice operations are denoted by л , v . The group operation is written additively 
(though it need not be commutative). Let P be a partially ordered set, a, b e P, 
a ^ b\ the interval [a, b] is the set {x e P : a ^ x ^ b]. A subset g c: P is convex 
if [a, b] cz Q whenever a, b e Q and a ^ b. 

Let Л. be a sublattice of a lattice L such that sup Ö„ G A whenever {fl„} с A and 
sup a„ does exist in L, and dually; then A is said to be a a-sublattice of L. Isomorphisms 
of lattices and /-groups are denoted by ^ and '^, respectively. Let L be a lattice, 
0 Ф Q cz L. A set Q is said to be a J-set if there is x G Lsuch that qi ^ Qz = ^ for 
any pair of distinct elements of Q and g > x for each q e Q. For any interval [a, b] 
of L, we denote by w[a, b] the least cardinal a such that card ß ^ a for each J-set Q 
of [a, /?]; further we put Wo[a, /?] = max {KQ, w[a, b]}. 

Throughout the whole paper G is an /-group, G ф {0}. A subset Q c: G, g Ф 0 is 
disjoint if Q is a i-set and q^ A q2 = 0 for any pair of distinct elements qi, qz of Q. 
Let Л be a subgroup of G, x G G. The element x is said to be disjoint to A if |x| л \a\ = 
= 0 for each a e A. For any X с G we denote X^ = {g e G : \g\ л |x| = 0 for 
each X EX}. For g e G, [̂ f] is the convex /-subgroup of G that is generated by g. 
We denote by C{G) the system of all convex /-subgroups of G; C{G) is partially ordered 
by inclusion. An element 0 < e G G is a weak unit in G if ^ л x > 0 for each 0 < 
< xeG. 

Let / Ф 0 be a set and for each / G / let 4̂̂  be a lattice ordered group. The complete 
direct product of /-groups A^ will be denoted by ИА^ (/ el). Let A be an /-subgroup 
of TIA I (i G /) with the property that for each i^ e I and each x e Ai^ there h ae A 
such that а[1о) = x and a(i) = 0 for each i el \ {ÎQ}. Then A is said to be a complete 
subdirect product of /-groups A^ (cf. [10]). If/ is a linearly ordered set, we denote 
by TAi (/ el) the lexicographic product of /-groups Ai (cf. [4]). 

We denote respectively by £ or P the additive /-group of all integers (all reals) 
with the natural order. 

2. INTERVALS IN DISTRIBUTIVE LATTICES 

Let Lbe a distributive lattice and let [a, b] be a nontrivial interval of L(an interval 
is nontrivial if it has more than one element). Obviously w is increasing on Lin the 
following sense: if [a, /?] c: [c, dj^ cz L, then w[a, b] g w\^c, J ] . 
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2.1. Let a, b, с e L, a < b < с Then w[a, c] ^ w[a, b] + w[b, c]. 

Proof. If w[a, c] = 1 (i.e., if [a, c] is linearly ordered), then the assertion is 
obvious. Assume that W[Ö, С] > 1 ; hence there is a d-set D c: [a, c] with card D > 1. 
Denote inf D = d. For any x G [a, c] let Xj = x л Ь, X2 = x v Ь. Further put 

D, = {d[ :d'E D, d, < d\] , D2 = { 4 :d^eD\D,} . 

For any d2 e D2 we have ^2 < «̂2 because in the opposite case we should have 

b A d = b A d \ b V d = b V d \ 

thus J ' = d, which is impossible. If x and у are distinct elements of the set D ,̂ then 
X A у = di, therefore either D^ = 0 or D,- is a J-set (/ = 1, 2). We have w[a, b] ^ 
^ card Dj, w[b, c] ^ card D2 and card D = card Dj + card D2; thus w\_a, c] ^ 
^ w[a, b] + w[b, c]. 

As a corollary, we obtain: 

2.2. Let a, b, с be the same as in 2.1. //w[âf, Ь] an J w[b, c] are finite, then w[a, c] 
is finite as well. Moreover, Wç)[^a, с] = Wo[a, Ь] + Wo[b, с]. 

2.3. Le? a, b E L. Then w[a л Ь, a v Ь] ^ w[a л b, a] + w[a л Ь, Ь] anJ 
Wo[a л Ь, a V Ь] = WO[Ö Л Ь, а] + Wo[a л b, Ь]. 

Proof. The interval [a, a v Ь] being isomorphic to [a л Ь, Ь] we have 
w[^a, a V b] = w[a л Ь, Ь]. Now it suffices to apply 2.1 and 2.2. 

Let a be an infinite cardinal, x e L. Denote 

V(x, a) == {y e L : w[x л j , x v y] ^ a} , 
Fo(x, a) = {y e L: w[x л у, x v >̂ ] < a} . 

2.4. F(X, a) /s a convex sublattice of L. 

Proof. Let У1, У2 e V(x, a). Denote 

t^^ X y y^y У2. ?2 = (^ V У1) л (x V J2) • 

According to the assumption, all cardinals 

w[x, ^2] . vv[?2' ^ V У1] , w[r2, X V J2] 

are equal or less than a, thus by 2.3 w[r2' ^1] ^ «̂  ^^^ so by 2.1 w[x, /1] ^ a. Dually 
we can prove that w\t^, ^] ^ ^ where Г3 = x л y^ л у2- By 2.1, >у[Гз, ^ J ^ ĉ. 
Since 

[x л (j î V J2). X V (у1 V J2)] ^ [ b , ^1] . 

the element J i v з;2 belongs to V{x, a). In a dual way we show that Vi л j ; ^ belongs 
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to F(x, a), Thus F(x, a) is a sublattice of L. If Ĵ i ^ z ^ J2, then x л y^ and x v 3̂2 
are elements of F(x, a), thus w[x л j j , x v У2] é « and clearly [z л x, z v x] c: 
с [x л j i , XV J2]. Therefore w[z л x, z v ^] ^ a and so z e F(x, a). 

2.5. Fo(x, a) is a convex sublattice of L. 

The p r o o f is analogous to that of 2.4. 

2.6. / / X, у G L, F(x, a) n F(>', a) ф 0, then F(x, a) = F(>', a). 

Proof. Let f G F(X, a) n F(y, a) and z G F(^ a). According to the definition of 
V{t, a) we have x G V{t, a); hence by 2.4 [x л z, x v z] с F(^, a). As a consequence 
we easily get w[x л z, x v z] ^ a, thus z G F(X, a). Therefore t G F(X, a) implies 
V{t, a) c: F(X, a). Since x G F(r, a), we have F(x, a) c= V{t, a) and so F(x, a) = 
= V{t, a). Similarly F(^, a) = V{y, a) and consequently F(x, a) = F(y, a). 

Since X G F(X, a), we obtain: 

2.7. r/te system {F(X, a)} (x G L ) /5 a partition of the set L. 

The equivalence relation on L corresponding to this partition will be denoted 
by R{a). Analogously we define the equivalence Ro(oc) by taking the sets Fo(x, a) 
instead of F(x, a). 

2.8. R[(X) and Ro{o() ^re congruence relations on the lattice L. 

Proof. Let X, y, z EL, X = y(i^(a)). By 2.5 x л y = x v >'(jR(a)). Put x л >' = 
= u,x у у = V. The interval [w v z, z; v z] is transposed to the interval [(w v z) л 
л v,v\ cz [u, v]. Therefore the intervals [w v z, t; v z] and [(w v z) л г, v] are 
isomorphic, hence w[w v z, f v z] ^ a. Clearly x v z, y v z belong to [м v z, 
Ü V z] , thus w[(x V z) л (y V z), (x v z) v (y v z)] ^ a. Hence we obtain 
X V z = у V z(jR(a)). The relation x л z = >' л z{R{a)) can be proved dually. 
Hence R[a) is a congruence relation on L. The proof for Ro{oc) is analogous. 

2.9. Let { x j с L(?2 = 0, 1, 2, . . . ) , XQ g Xj g X2 ^ ..., V^n = У. ^^o[->^»-i. ^/] ^ 
^ a (/ = 1,2,. . .) . Assume that the lattice L is infinitely distributive. Then 
Wo[xo, y] й Of. 

Proof. If the interval [XQ, >'] is linearly ordered, then the assertion is obvious. 
Assume that [XQ, 3̂ ] is not linearly ordered; then there is a J-set D с [XQ, y] with 
card D > 1. Denote inf D = d. For z G [XQ, j ] and i = 1, 2, . . . put z' = z л x,-, 
/)'• = {z' : ze D, d^ < z'}. For each ze D there is i G {1, 2, ...} such that z^ e D\ 
For, if not, then • 

d = dAy = dA (Vx;) = \/{d A Xf) = V(z л Xi) = z л (VXj) = z , 
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a contradiction. Let D'Q = {z e D : z' e D^]. We have D = [JK (f = 1,2,...) and 
for each i G {1, 2, ...} either card D' g 1 or D'is a J-set and D' с [XQ, X , ] . From 2.1 
we obtain by induction card D' ^ a. If z, f e DQ, then z' A V = d^ ф z\ d' ф t\ 
hence z' Ф r'; therefore card D' = card DQ and it follows card D ^ a. Therefore 
Wo[xo, y] ^ a. 

2.10. Let X e L and let A be a convex sublattice of L such that x e A and 
w[ai, (̂ 2] й ^ whenever a^, «2 e A, a^ ^ 02- T/ié̂ n A a [/[x, a] . 

Proof. Let y E A. According to the assumption we have w[x л j , x v 3̂ ] ̂  a, 
hence у e F(X, a). 

A similar assertion is valid for Fo(x, a). 
Summarizing, we have the following result: 

2.11. Theorem. Let L be a distributive lattice and let a be an infinite cardinal. 
Then for each xe L there are convex sublattices F(x, a) and Vo(x, a) of Lsuch that 
x G VQ(X, a) cz F(X, a) and 

(i) if I is an interval ofV(x, a) {Vo{x, a)), then wl ^ a(w/ < a), 
(ii) if A is a convex sublattice of L fulfilling wl ^ a(w/ < a) for each interval 

I cz A and X G У4, then A с F(x, a) {A a VQ(X, a)), 
(iii) the systems {V(x, a)} (x G L ) and {VQ{X, a)} (x G L ) ar^ partitions of L and the 

corresponding equivalences R(ot), RO{GC) are congruence relations on L; 
(iv) if L is infinitely distributive, then each set V{x, a) is a a-sublattice of L. 

3. w-HOMOGENEOUS LATTICE ORDERED GROUPS 

A cardinal property / on the class of all lattices is a rule that assigns to each 
bounded lattice A a cardinal /Л such t h a t / Б = f A whenever В is isomorphic to A. 
A cardinal property is increasing i f / C S f A for any lattices A and С such that A 
is bounded and С is isomorphic to an interval of the lattice A (cf. [7]). A lattice L 
is/-homogeneous iff B^ = f B2 for any two nontrivial intervals Bj, В 2 of the lattice L. 

Let G be a lattice ordered group and l e t / b e a cardinal property on the class of all 
lattices. The following conditions o n / w e r e considered in [6]: 

(ci) If 0 < r̂ G G (i - 1, 2), / [ 0 , t,] - / [ 0 , ^2] and if [0, t^] and [0, tj] are 
/-homogeneous, t hen / [0 , t^ + ^2] = / [ 0 , ^1]. 

(C2) If î G G, 0 < 1̂ ^ 2̂ ̂  •••, / [ 0 , ^i] = / [ 0 , ti], Vti = t and if the intervals 
[0, ti] are/-homogeneous (/ = 1, 2, . . . ) , t hen / [0 , t] = / [ 0 , r j . 

3.1. The cardinal property WQ fulfils (cj) and (C2). 

Proof. Since 0 < t^ < ti + t2 and the interval [f̂ , t^ + Г2] is isomorphic to 
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[о, (2], it follows form 2.2 that (c^) is valid. It is known that any lattice ordered group 
is infinitely distributive. Since WQ is increasing, 2.9 implies that (сз) holds. 

3.2. The sets К(0, a) and Ko(0, a) are 1-ideals of G and for any x e G, V(x, a) = 
= K(0, a) + X, Ko(x, a) = Ko(0, a) + x. 

Proof. Let xe G. Since the mapping (p[g) = ^ + x is an automorphism on the 
lattice G, from the definition of V(g, a) it follows V{g + x, a) = V{g, a) + x. In 
particular, K(x, a) = F(0, a) + x. Assume that x, g E F ( 0 , a). Then according to 2.6, 

V{x + g,(x) = K(x, a) + g = К(0, a) + ^ = V{g, a) = K(0, a ) , 

^ / ( -x , a) = K(0, a) - X - К(х, ос) - x == К(0, a) , 

thus F ( 0 , a) is a subgroup of G. Moreover, for any у e G, 

-y + F(0, a) + J = V{-y, a) + у = F(0, a) , 

hence F(0, a) is normal. Since F(0, a) is a convex sublattice of G, it is an /-ideal of G. 
The proof for Fo(0, a) is similar. 

We need the following results: 

3.3. ([6], Thm. 1.21.) Let G be a complete l-group and let f be an increasing 
cardinal property satisfying (cj) and (C2). Then G is isomorphic to a complete 
subdirect product of f-homogeneous l-groups. If G is also laterally complete, then 
it is isomorphic to a complete direct product of f-homogeneous l~groups. 

3.4. Let G be a complete lattice ordered group. Then G is isomorphic to a direct 
product A X В such that (i) A is isomorphic to a complete subdirect product of 
linearly ordered groups, and (ji) В has no linearly ordered direct factor С Ф {0}. 

Proof. Let {A,,} {k e K) be the set of all maximal linearly ordered subgroups of G, 
В = {{jAj^y, A = B^. According to the Riesz-Birkhoff Theorem (cf. [1], Chap. 
XIV) G = A X В and clearly В has no linearly ordered factor different from {0}. 
Thus it remains to show that A is isomorphic to a complete subdirect product of 
linearly ordered groups. By [5], Thm. 1 each A^ is a direct factor in G. Hence there 
exist components x{Ai) for each xe A and х(Л^) = sup [a^^e A^. : aj, ^ x} whenever 
X ^ 0. Consider the mapping (p(x) = (..., x{Ai^), ...) of A into ПЛ^ (к e К). If 
(р{х) = О, then (р{\х\) = О hence х is disjoint with each Aj, (к e К) and so |x| e B] this 
implies x = 0. Hence cp is an isomorphism of A onto (p{Ä). Let /CQ E K, feUA,^, 
f{k) = 0 for each keK\{ko}. Put /(A:o) = x. Then х(Д) = 0 for each к =¥ kQ and 
x{Ai^^) = X, hence (p{A) is a complete subdirect product of linearly ordered groups 
ср{А,){кеК). 

Let В be the same as in 3.4 and assume that Б ф {0}. Clearly B i sa complete /-group 
and hence В is Archimedean. From [5], Thm. 1/ it follows that В has no basic element. 
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Hence w[a, b~\ is infinite for any nontrivial interval of В and so \v[a, b] = Wo[a, b~\. 
Any linearly ordered group is w-homogeneous, thus by 3.4 Л is a complete subdirect 
product of w-homogeneous /-groups. According to 3.1 and 3.3 В is isomorphic to 
a complete subdirect product of Wo-homogeneous /-groups Б̂^ {k e K), B^ ф {0}; 
but Bf^ are isomorphic to some convex /-subgroups of В and so WQ/ = W/ for any 
nontrivial interval of Bj,, therefore B^ are w-homogeneous. We arrive at 

3.5. Theorem. Any complete l-group is a complete subdirect product of w-homo­
geneous l-groups. 

3.6. An l-group is v-homogeneous if and only if it is w-homogeneous. 

Proof. If G is linearly ordered, then the assertion is trivial; assume that G is 
not linearly ordered. Let [a, b] be an interval of G. Since [a, b] is isomorphic to 
[0, b — a ] , we have w\^a, b] = w[0, b — a\. Assume that G is w-homogeneous and 
that w/ = a for any nontrivial interval / of G. Let M be a bounded disjoint subset 
of G. Since M is a J-set, we have card M -^ j . , thus vG S ^- On the other hand, if M 
is a bounded J-set of G with card M > 1, inf M = m, then the set M' = {x — m: 
: X E M} is disjoint and therefore vG = a. 

From 3.5 and 3.6 we obtain 

3.7. Theorem. Any complete l-group is a complete subdirect product of v-homo­
geneous l-groups. 

4. STRONGLY HOMOGENEOUS LATTICE ORDERED GROUPS 

Let G Ф {0} be a lattice ordered group. The following assertion is easy to verify: 

4.1. For any 0 < g e G, [g] = \J[-ng, ng] {n - 1,2,...). 
From 4.1 we obtain immediately: 

4.2. If 0 < g e G, then g is a strong unit of the lattice ordered group [g]. 

43. Let 0 < g e G and assume that the interval [0, g^ is a chain. Then [^] /5 
linearly ordered. 

This follows from 4.1 and [5], 17.2 by using induction. , 

4.4. Let G be homogeneous and not linearly ordered. Then G contains a bounded 
infinite disjoint subset. 

Proof. Since G is not linearly ordered there are incomparable elements a, b e G. 
Put a^ = a ~ [a A b), b^ = b — (a A b), g = a^ v b^. The set {a^, b j is disjoint 
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and the /-group [^] is not linearly ordered. Since G is homogeneous, the /-group [bj] 
is not linearly ordered, thus by 4.3 [0, b^] is not a chain. Hence there is a disjoint 
subset {«2, b2} cz [0, bi] and clearly {a^, ^2} is a disjoint set. Analogously we 
construct disjoint sets {a^, ^2, ..., fl„} (n = 1, 2, . . . ) . Then the set [a„}^=i is disjoint 
as well and it is a subset of [0, g~\. 

4.5. Let {üi, «2' •••} ^^ ^ disjoint subset of G and let A„ = [a„] (n = 1, 2, . . . ) . 
Denote by A the system of all elements g e G that can be written in the form g = 
= b„j + ... + b„^ with b„. E Ai. Then A is a convex l-subgroup of G. 

Proof. Since |b„.| л \b„.\ = 0 for i Ф j we infer that the elements b„. and b„j are 
permutable, therefore Л is a subgroup of G. Clearly Л is a directed subset of G. 
UxeG, geA, 0<x^g, then there are elements b„. > 0, b„.e Ai such that g — 
= /7„̂  + .. . + b„^; hence it follows that x = с„̂  + .. . + c„̂  for some 0 ^ c„. ^ b„. 
(/ = 1, ..., /c). Thus Л is a convex subgroup of G and, being directed, it is an /-sub­
group of G. 

4.6. Let A be the same as in 4.5. Then A has no weak unit. 

Proof. Let g, b„. (/ = 1, ..., /c) be as in 4.5. Choose n > т а х { п | , ..., п^^\ we 
have ö„ л Ь„. = О, therefore а„ л gr = 0. This shows that A has no weak unit. 

4.7. / / G is strongly homogeneous, then G is linearly ordered. 

Proof. Assume on the contrary that G is strongly homogeneous and that it 
is not linearly ordered. By 4.4, G contains an infinite disjoint subset (a^, ^2? ^з» •••}• 
Let A be as in 4.5 and 0 < g e G. According to 4.2 [^r] has a weak unit and thus by 4.6 
the /-subgroups [g'j and A of G are not isomorphic, which is a contradiction. 

As a corollary, we obtain 

4.7.1. / / G is strongly homogeneous, then C{G) is linearly ordered. 

If (p is an isomorphism of a lattice ordered group G^ onto G2, then (p induces an 
isomorphism cp^ of the partially ordered set C{Gi) onto C(G2). 

4.8. Let G be strongly homogeneous, {0} ф AEC{G). Then there is A^ e C{G) 
such that AI is covered by A in C{G). 

Proof. Choose 0 < g e G. From the Zorn Lemma it follows that there is a convex 
/-subgroup JB of G that is maximal with respect to not containing the element g; 
since C{G) is linearly ordered by 4.7, the /-group В is uniquely determined. There is 
an isomorphism (p of [g^ onto A; then the /-group A^ = <PI{B) is covered by A in 
C(Ä), thus clearly A^ is covered by A in C{G). 
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Denote A^ = f{A) for any A Ф {0} and {0} =/({0}) ; further define inductively 
f\A) for any ordinal number Я as follows: for a non-limit ordinal Д = Я̂  + 1 we 
put Д Л ) = fif^iA)) and if Я is a limit ordinal, we set f\A) = ПГ{^)- Then 

\ ' < Я 

whenever v < A and for any Я either/^(Л) = / ^ + ' ( / l ) = {0} ог /^+ ' (Л) is covered 
by f\A). 

In 4.9 —4Л4 we assume that G is strongly homogeneous. 

4.9. For any ordinal À,f^{G) is an l-ideal of G. 

Proof. According to 4.8, (p{f{G)) = / (G) for any automorphism of the /-group G; 
by transfinite induction we get (p(f\G)) - f\G). Thus f\G) is an /-ideal of G. 

4.10. Iff\G) Ф {0}, then the factor l-group f\G)lf'^^\G) is isomorphic to an 
l-subgroup of R. 

Proof. From the assumption it follows that / ^ " ^ ^ ( G ) is covered by f\G), the 
factor I'group f\G)lf^^\G) = F ф {0} has no convex subgroups distinct from {0} 
and F, thus F is Archimedean; being linearly ordered F is isomorphic to an /-subgroup 
of R (cf. [1], Chap. XIV). 

By the definition of/, for any Я either/^(G) = {0} or/^"*'^(G) is a proper subset 
of f\G); hence we obtain 

4.11. There is an ordinal ÀQ such that f\G) = {0} if and only ifX'^ IQ. 

4.12. Let Abe a convex l-subgroup of G, {0} Ф Л Ф G. Then there is an ordinal 
Я̂  < Яо such that A = /'^'(G). 

Proof. From 4.11 it follows that the set Л = {Я ^ Яо :f\G) с Л} is non-empty; 
let Я̂  be the first element of the set Л. If À^ is a limit ordinal, then f^'{G) = f)f\G) 
(Я < Я1), and for each such Я we have/^(G) ID Л, therefore/^^(G) =Э Л; this implies 
f^'{G) = A. Assume that Я̂  is nonlimit, Я̂  = Я2 + 1. Then Л is a proper subset 
of/^^(G) and since/^^(G) cz Л is covered by f^^(G) we obtain/^^(G) = Л. 

If a, ß are ordinals, a S ß, we denote by [a, ß] the system of all ordinals Я with 
a ^ 1 ^ ß. 

4.13. For any Я < Яо, [1, Яо] /5 isomorphic to [Я, Яо]. 

Proof. According to 4.11 and 4.12, [1, Яо] and [Я, Яо] is the order type of the 
chain C{G) and C ( / ^ ( G ) ) , respectively. Since G is isomorphic to fHG), C{G) is iso­
morphic to C{f\G)). 
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4.14. For any X < Яо, the l-groups Gj'f{G) and f\G)lf^^^{G) are isomorphic. 

Proof. There exists an isomorphism ф of G onto f\G) and (p(f{G)) = f^'^^(G); 
therefore Glf(G) is isomorphic to/^(G)//^ + i(G). 

Denote h{G) = Glf(G). Let us remark that if Ĝ  and G2 are strongly homogeneous 
/-groups such that C(Gi) is isomorphic to C(G2) and h{Gn) is isomorphic to h(G2), 
then Gl and G2 need not be isomorphic. Moreover, we have: 

4.15. Let G be strongly homogeneous and assume that card C(G) > 2. Then 
there exists a strongly homogeneous I-group G} such that C(G) ^ C(Gi), /?(G) ^ 
Ä /7(GI) and G is not isomorphic to G^, 

Proof. Let / be the order type isomorphic to C{G). For each / el let Я,- = h{G). 
Put Я = ГЯ^ (/ G /) . Let Л ф {0} be а convex /-subgroup of Я and let IQ be the least 
element of/ such that there exists a e A with a{i^ ф 0. Then A = ГЯ,- (i e I : i ^ /Q)-
Since according to 4.13 the linearly ordered set {i G / : /" ^ z'o} is isomorphic to / , A 
is isomorphic to Я and therefore Я is strongly homogeneous. Clearly h{H) ^ h{G) 
and C(H) '^ G(G) . If Я is not isomorphic to G, we put G^ = Я. Assume that Я is 
isomorphic to G. For any x e Я let s(x) be the support of x. Let X be the set of all 
X e H such that s(x) is finite. It is easy to verify that X is strongly homogeneous, 
C{X) - C{H), h(X) ^ /1(Я) and X is not isomorphic to G; we put Ĝ  = X. 

4.16. Le^ a be an infinite cardinal There exists a strongly homogeneous l-group G 
with card G =^ a. 

Proof. Let cô  be the first ordinal such that the power of the set of all ordinals less 
than 0)^ equals a. Let X < œ^. Since card [1, X] < a, we have card [Я, со J = a 
and so the order type of [Я, coj is isomorphic to [1, coj. Hence it follows that the 
/-group 

A = TA^ (X < CO,) 

with A;^ = E for each Я < cô  is strongly homogeneous. Let G be the set of all a G Л 
with a finite support. Then G is strongly homogeneous as well and card G = a. 

4.17. An /-group G will be said to be totally inhomogeneous if for each 0 < g e G 
there exists g^eG such that 0 < ^̂ ^ e [g^ and the /-groups [^j], [g\ are not iso­
morphic. The following example shows that there exist totally inhomogeneous 
/-groups: Let / = (1, 2, ...} and let p be a prime. Put Gj = TA^ (/ EI), where 

A.^^E if / = / (Ic = 0, 1, 2, . . . ) , 
and 

A- = R otherwise . 

Then it is easy to verify that G is totally inhomogeneous. If Pi? Pi are distinct primes, 
then Gp^ and Ĝ ^ are not isomorphic. 
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5. HOMOGENEOUS /-GROUPS 

Let G be an /-group. 

5.1. If {Gj} (/ e /) is a chain of the lattice C(G) such that each Ĝ  is homogeneous, 
then H = \jGi is homogeneous. 

Proof. If 0 < hj, e H (k = 1, 2), then /i^, /12 e Gj for some i, hence [ / Î J Ä [/12]. 

By using the Zorn Lemma, we obtain from 5.1: 

5.2. / / HQ is a homogeneous convex l-subgroup of G, then there is a maximal 
convex homogeneous l-subgroup H of G such that HQ С H. 

Moreover, from 5.2 and from the Axiom of Choice we infer: 

5.3. There exists a system ^ = {^J (k e K) of convex l-subgroups of G such 
that: 

(i) Each Aj^e j ^ is a maximal homogeneous l-subgroup of G. 

(ii) The system se is disjoint. 

(iii) IfO<xEG and x is disjoint with each A^ e j ^ , then [x] /5 not homogeneous. 

5.4. Let se be the same as in 5.3 and 0 < xÇiG. Then the following conditions 
are equivalent: (iiii) x is disjoint with each Aj. e s^\ (iv) [x] is totally inhomogeneous. 

Proof. Assume that (iiii) holds and let 0 < y e [x]. Then y is disjoint with each 
A,. G s^ and thus by 5.3 the /-group [v] is not homogeneous. Hence there is 0 < z e 
e [y] such that [z] is not isomorphic to [y] and so [x] is totally inhomogeneous. 
Conversely, assume that [x] is totally inhomogeneous. If x л a^ = у for some 
0 < a^e Aj^es^, then the /-group [y] is homogeneous since у e Aj^ and at the same 
time [y] is totally inhomogeneous because [y] с [x] ; thus [\'] = {0} and therefore 
(iiij) holds. 

5.5. Theorem. In any l-group G there is a greatest convex totally inhomogeneous 
l-subgroup. 

Proof. Denote X ~ (UA)' ' (^ e K). Then X is a convexi-subgroup of G. From 5.4 
it follows that X is totally inhomogeneous and that any totally inhomogeneous convex 
/-subgroup of G is a subset of X. 

If P is a direct factor of G and g eG, then we denote by g{P) the component 
( = projection) of ^ in P; for any 0 ^ 0̂  G G we have 0 ^ g{P) g д. Each c-subgroup 
of a complete /-group G is a direct factor of G and for any Z cz G. Z^ is a closed /-
subgroup of G (cf. Riesz-BirkhofF Thm., [1], Chap. XIV). 
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5.6. Let X and Af. be the same as in 5.5. Assume that G is a complete l-group, 
0 < g eG. Then 

g = g{X) V {WgicA,)) . 

Proof. Since X and cAf^ are c-subgroups of G, the projections g{X), g{cAi^ exist 
in G and belong to the interval [0, gl^. Hence y = \/g{cAj) does exist in G and 0 g 
^ y g X. According to the definition of X we have g{cAj) e X^, thus y e X^ and so 
g{X) A y = 0, whence g{X) v y = g[X) + y. Denote t = -g(X) - y + д. Then 
t{X) = -g{X) (X) - y(X) + g{X) = ~g{X) + g{X) = 0 since y{X) = 0, thus t is 
disjoint to X. Similarly we can show that t is disjoint to each cAj,. According to the 
definition of X we have ï = 0, hence g = g[X) v (yg^cAj^). 

5.7. Theorem. Let G be a complete l-group. Then there exists a system of convex 
l-subgroups {X, Af^} {k e K) in G such that 

(i) X is the greatest convex Isubgroup of G that is totally inhomogeneous; 

(ii) each A^. is homogeneous; 

(iii) the l-group G is isomorphic to the complete subdirect product of the l-groups 
X, cAj, {k E K). 

Proof. The assertions (i) and (ii) were already proved. Let kg ф K, K' = К u {/CQ}, 
A^^ =-. X and consider the mapping (p{g) = (..., gf^, .. .)f,^j^' of G into the direct product 
of /-groups Af,^, cAj^ (k E K) such that gj^^ = g(Aj,^), g^ = 9{сА^) for /c e X . Since X 
and cAj^ are direct factors of G the mapping cp h a. homomorphism. Denote (p(G) = 
= Gj. и g EX, then g^^^ = g and ^^ = 0 for each kEK; similarly, if g e cAj^^ for 
/ci EK, then gi^^ = g and g,^^ = 0, gf^ = 0 for each kEK\{k^}, Therefore Gj is 
a complete subdirect product of /-groups X and cAj^ (k E K). If 0 ф f̂ J e G, (р{д^) = 0, 
then for g = \g^\ we have ^ > 0, (p{g) = 0, thus g(X) = 0 and g{cAj,) == 0 for each 
к E A^. Hence according to 5.6 ^ = 0, a contradiction. This implies that cp is an 
isomorphism of G onto Gj. 

Let В be a Boolean algebra and let Х{В) be the Stone space of B. Then В is iso­
morphic to the system Б* consisting of the subsets of Х{В) that are simultaneously 
closed and open. Let F^{B) be the system of all real functions defined on Х{В) with 
the following property: for e a c h / e F^{B) there is a system A^, ..., A^.EB'^ such that 

\jAi = X{B), Ai^ n Л^̂  = 0 for distinct / j , /2 G {1, ..., n} 

and / is a constant on each subset A^ (/ = 1, ..., n). Then FI{B) is an additive group 
and it is an /-group if we put f ^ g whenever f(x) ^ g(x) for each x e X(ß). It is 
easy to verify that v{G) = W{B). If 0 < fEF^{B\ let s(/) = (x e Х{В) : / (x) Ф 0}. 
The set S = s{f) belongs to Б*. Denote B^ = [0, S] с Б*; then By is a Boolean 
algebra and Fy{By) is isomorphic to [ / ] . Therefore the /-group FX{B) is homo­
geneous whenever the Boolean algebra В is homogeneous. For any infinite cardinal a 
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there is a homogeneous Boolean algebra В with wB = a (cf. [9], Thm. 3.5 and Lemma 
3.12). Thus for any infinite cardinal a there exists an /-group G = F^(B) such that G 
is homogeneous and vG = a. 
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