Czechoslovak Mathematical Journal

Jéan Jakubik
Homogeneous lattice ordered groups
Czechoslovak Mathematical Journal, Vol. 22 (1972), No. 2, 325-337

Persistent URL: http://dml.cz/dmlcz/101101

Terms of use:

© Institute of Mathematics AS CR, 1972

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/101101
http://dml.cz

Czechoslovak Mathematical Journal, 22 (1972), Praha

HOMOGENEOUS LATTICE ORDERED GROUPS

JAN JakuBik, Kosice

(Received June 23, 1971)

Let G be an [-group. We denote by vG the least cardinal « such that card 4 < «
for each bounded disjoint subset of G. The case when vG is finite has been extensively
studied (CoNRAD and CLIFFORD [3], CONRAD [2], KOKORIN and CHISAMIEV [7],
KoKORIN and Kozrov [8]). G will be said to be v-homogeneous if vH = vG for any
convex I-subgroup H # {0} of the I-group G. In this note we show that any complete
I-group G can be represented as a complete subdirect product of v-homogeneous
I-groups.

PiErCE [9] studied some types of homogeneous Boolean algebras. A Boolean al-
gebra B is called homogeneous if it satisfies one of the following equivalent conditions:
(i) for any 0 =% b, € B (i = 1, 2) the convex sublattices B; of B generated by b; (i =
= 1, 2) are isomorphic; (ii)if B, is a convex sublattice of B such that B, is a Boolean
algebra then B, is isomorphic to B. Let us consider analogous conditions (i) and (ii,)
for a lattice ordered group G:

(i;) For any 0 = g;€ G (i = 1, 2) the convex I-subgroups of G generated by g;
(i = 1, 2) are isomorphic.
(ii;) If G; + {0} is a convex I-subgroup of G, then G, is isomorphic to G.

If G satisfies (i,) or (ii,), then it will be called respectively homogeneous or strongly
homogeneous. We prove that v G = 1 for any strongly homogeneous I-group G # {0}
and that vG = 1 or v G = ¥, for any homogeneous I-group G =+ {0}. Moreover,
for any infinite cardinal o there exists a homogeneous /-group G with v G = a.

Let H be a convex [-subgroup of G such that sup X € H whenever X < H and sup X
does exist in G. Then H is said to be a c-subgroup of G. The closure ¢ 4 of a subset
A < G is the intersection of all ¢-subgroups B of G with 4 = B. An [-group G, is
called totally inhomogeneous if for any 0 < g, € G, there is 0 < g, € G, such that
(a) g, belongs to the convex I-subgroup 4, of G that is generated by g,, and (b) the
convex [-subgroup A, of G generated by g, is not isomorphic to 4;. The zero I-group
{0} is homogeneous and, at the same time, totally inhomogeneous. In each [-group G
there exists a greatest convex totally inhomogeneous [-subgroup. Let G be a complete
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I-group. We prove that there is a system {Ag, A;} (i €I) of convex [-subgroups of G
such that (i) 4, is totally inhomogeneous, (ii) each A4; is homogeneous, and (i) G is
a complete subdirect product of [-groups Ay, cA4; (i € I).

1. PRELIMINARIES

We use the standard notation for lattices and lattice ordered groups, cf. [1], [4].
The lattice operations are denoted by A, v. The group operation is written additively
(though it need not be commutative). Let P be a partially ordered set, a, be P,
a < b; the interval [a, b] is the set {xe P :a < x < b}. A subset Q = P is convex
if [a, b] = Q whenever a, be Q and a < b.

Let 4 be a sublattice of a lattice L such that sup a, € 4 whenever {a,} = 4 and
sup a, does exist in L, and dually; then A4 is said to be a o-sublattice of L. Isomorphisms
of lattices and [-groups are denoted by ~ and =z, respectively. Let L be a lattice,
0+ Q = L. A set Q is said to be a d-set if there is x € Lsuch that ¢, A g, = x for
any pair of distinct elements of Q and g > x for each g € Q. For any interval [a, b]
of L, we denote by w[a, b] the least cardinal « such that card Q < a for each d-set Q
of [a, b]; further we put wo[a, b] = max {N,, w[a, b]}.

Throughout the whole paper G is an [-group, G = {0}. A subset 0 = G, Q = 0 is
disjoint if Q is a d-set and g, A ¢, = O for any pair of distinct elements ¢q,, g, of Q.
Let A be a subgroup of G, x € G. The element x is said to be disjoint to A4 if Ix] A lal =

= 0 for each ae A. For any X < G we denote X° = {geG:|g| A |x| =0 for
each x € X}. For g € G, [g] is the convex [-subgroup of G that is generated by g.
We denote by C(G) the system of all convex I-subgroups of G; C(G) is partially ordered
by inclusion. An element 0 < ee G is a weak unit in G if e A x > 0 for each 0 <
<xeG.

Let I + 0 be a set and for each i € I let A, be a lattice ordered group. The complete
direct product of [-groups A; will be denoted by I1A4; (i € I). Let A be an [-subgroup
of TTA; (i e I) with the property that for each iy €I and each x € 4;, there is a € 4
such that a(iy) = x and a(i) = 0 for each i € I \ {i,}. Then A is said to be a complete
subdirect product of I-groups 4; (cf. [10]). If I is a linearly ordered set, we denote
by T'4; (i I) the lexicographic product of I-groups A; (cf. [4]).

We denote respectively by E or R the additive I-group of all integers (all reals)
with the natural order.

2. INTERVALS IN DISTRIBUTIVE LATTICES
Let Lbe a distributive lattice and let [a, b] be a nontrivial interval of L(an interval
is nontrivial if it has more than one element). Obviously w is increasing on Lin the

following sense: if [a, b] = [¢, d] = L, then w[a, b] < w[c, d].
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2.1. Let a,b,ceL,a < b < c. Then wla, c] £ w[a, b] + w[b, c].

Proof. If w[a,c] =1 (i, if [a, c] is linearly ordered), then the assertion is
obvious. Assume that w[a, ¢] > 1; hence there is a d-set D < [a, ¢] withcard D > 1.
Denote inf D = d. Forany x € [a, ¢] let x;, = x A b, x, = x v b. Further put

D, ={d{:d'eD, d <dj}, D,={dy:deD\D,}.
For any d; € D, we have d, < d} because in the opposite case we should have
bad=bnad, bvd=bvd,

thus d' = d, which is impossible. If x and y are distinct elements of the set D,, then
X A y = d,, therefore either D; = @ or D, is a d-set (i = 1, 2). We have w[a, b] =
= card Dy, w[b, c] = card D, and card D = card D; + card D,; thus w[a, ¢] <

< wla, b] + w[b, c]
As a corollary, we obtain:

2.2. Leta, b, ¢ be the same as in 2.1. If w[a, b] and w[b, c] are finite, then w[a, c]
is finite as well. Moreover, wo[a, c| = wola, b] + wo[b, c].

2.3. Let a,be L. Then wla A b, av b] <w[a A b,a]+ w[an b, b] and
wola A b, a v b] = wo[a A b,a] + wo[a A b, b].

Proof. The interval [a,a v b] being isomorphic to [a A b, b] we have
wla, a v b] = w[a A b, b]. Now it suffices to apply 2.1 and 2.2.

Let o be an infinite cardinal, x € L. Denote

V(x,a) ={yeL:w[x Ay, xvy]<a},

Vo(x,0) = {yeL:w[x Ay, x v y] <a}.
24. V(x, a) is a convex sublattice of L.
Proof. Let y,, y, € V(x, o). Denote

L=xVy vy, L=xvy)a(xvy,).
According to the assumption, all cardinals
wlx, 1], wlte,x vy}, wthx v oy,]

are equal or less than «, thus by 2.3 w[t,, t,] < « and so by 2.1 w[x, ;] < «. Dually
we can prove that w[ts, x] < o where t; = x A y; A y,. By 2.1, w(ts, 1] £ a
Since

[x A (,Vl V Y X Vv ()’1 v yz)] < [t 1],

the element y, Vv y, belongs to V(x, o). In a dual way we show that y; A », belongs
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to V(x, «), Thus V(x, a) is a sublattice of L. If y1 = z £ y,, then x A y;and x v y,
are elements of V(x, «), thus w[x A y;, x v y2] S @andclearly [z A x,z v x] =
= [x A yi, xv y,]. Therefore w[z A x,zv X] <aandso zeV(x, OC)

2.5. Vy(x, a) is a convex sublattice of L.

The proof is analogous to that of 2.4.

26. If x, ye L, V(x, ) n V(y, a) # 0, then V(x, o) = V(y, a).

Proof. Let teV(x,a)nV(y,«) and zeV(t, o). According to the definition of
V(t, o) we have x € V(t, o); hence by 2.4 [x A z, x v z] = V(t, ). As a consequence
we easily get w[x A z, x v z] < «, thus z € V(x, o). Therefore t€V(x, «) implies
V(t,a) = V(x, ). Since xeV(t,a), we have V(x,a) = V(t,a) and so V(x,a) =
= V(t, «). Similarly V(, «) = V(y, o) and consequently V(x, o) = V(y, «).

Since x € V(x, o), we obtain:

2.7. The system {V(x, «)} (x € L) is a partition of the set L.

The equivalence relation on L corresponding to this partition will be denoted
by R(x). Analogously we define the equivalence Ro(«) by taking the sets Vy(x, o)
instead of V(x, «).

2.8. R(x) and Ry(«) are congruence relations on the lattice L.

Proof. Let x, y,ze L, x = y(R(2)). By 25 x A y = x v ¥(R(a)). Put x A y =
=u,x v y = v.Theinterval [u v z,v v z]is transposed to the interval [(u v z) A
A v,v] = [u, v]. Therefore the intervals [u v z, v v z] and [(u v z) A v, v] are
isomorphic, hence w[u v z, v v z] £ a. Clearly x v z, y v z belong to [u v z,
vvz], thus wi(x vz)a(yvz), (xvz)v(yvz)]=<a Hence we obtain
x Vv z=yvV z(R(x). The relation x A z =y A z(R(x)) can be proved dually.
Hence R(«) is a congruence relation on L. The proof for Ro(a) is analogous.

29. Let {x,} = L(n =0,1,2,...),Xg £ x; £ X3 £ ..., VX, = y, wo[x;_, x;] <
<o (i =1,2,...). Assume that the lattice L is infinitely distributive. Then
Wol[ X0, ¥] £ o

Proof. If the interval [xo, y] is linearly ordered, then the assertion is obvious.
Assume that [x,, y] is not linearly ordered; then there is a d-set D = [x,, y] with
card D > 1. Denote inf D = d. For ze[xq, y] and i = 1,2,... put z/ = z A x,,
Di={z':zeD, d < z'}. For each z € D there is i€ {1,2,...} such that z'e D'.
For, if not, then i

d=dAy=dan(Vx)=V(dArx)=V(EzAx)=zna(Vx)=z,
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a contradiction. Let Dy = {ze D :z'e D'}. We have D = UD; (i = 1,2,...) and
for each i € {1, 2, ...} either card D' < 1 or D'is a d-set and D' = [x,, x;]. From 2.1
we obtain by induction card D' < o. If z,te D}, then z' A t' = d' # 2%, d' + 1,
hence z' = t'; therefore card D' = card D) and it follows card D < «. Therefore
wo[Xps V] £ o

2.10. Let xe L and let A be a convex sublattice of L such that x € A and
wlay, a,] < o whenever ay, a, € A, a; < a,. Then A < V[x, a].

Proof. Let y € A. According to the assumption we have w[x A y, x v y] < a,
hence y e V(x, a).

A similar assertion is valid for Vy(x, «).

Summarizing, we have the following result:

2.11. Theorem. Let L be a distributive lattice and let o be an infinite cardinal.
Then for each x € Lthere are convex sublattices V(x, «) and V,(x, «) of Lsuch that
x € Vy(x, ) = V(x, o) and

(i) if I is an interval of V(x, o) (Vo(x, @), then wI < a(wl < a),

(i) if A is a convex sublattice of L fulfilling wl < a(wl < «) for each interval
I Aandxe A, then A = V(x, a) (4 < Vy(x, a)),

(iii) the systems {V(x, a)} (x € L) and {V,(x, a)} (x € L) are partitions of L and the
corresponding equivalences R(a), Ro(«) are congruence relations on L;

(iv) if Lis infinitely distributive, then each set V(x, «) is a o-sublattice of L.

3. w-HOMOGENEOUS LATTICE ORDERED GROUPS

A cardinal property f on the class of all lattices is a rule that assigns to each
bounded lattice 4 a cardinal f A such that f B = f A whenever B is isomorphic to A.
A cardinal property is increasing if f C < f A for any lattices 4 and C such that A
is bounded and C is isomorphic to an interval of the lattice 4 (cf. [7]). A lattice L
is f-homogeneousif f B; = f B, for any two nontrivial intervals B,, B, of the lattice L.

Let G be a lattice ordered group and let f be a cardinal property on the class of all
lattices. The following conditions on f were considered in [6]:

() If 0<t,€G (i =1,2), f[0,1,] = f[0,t,] and if [0, ¢,] and [0, 1t,] are
f-homogeneous, then f[0, 1, + 1,] = f[0. t,].

() If1;€G,0<t; £t, ..., f[0,1,] = f[0, t;], Vt; = t and if the intervals

[0, t;] are f~homogeneous (i = 1,2, ...), then [0, t] = /[0, #].

3.1. The cardinal property w, fulfils (c,) and (c,).

Proof. Since 0 < t; < t; + t, and the interval [t,, ¢, + 1,] is isomorphic to
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[0, 1,]. it follows form 2.2 that (c,) is valid. It is known that any lattice ordered group
is infinitely distributive. Since w, is increasing, 2.9 implies that (c,) holds.

3.2. The sets V(0, o) and V,(0, o) are I-ideals of G and for any x € G, V(x, o) =
=V(0, «) + x, Vo(x, &) = V,(0, &) + x.

Proof. Let x € G. Since the mapping ¢(g9) = g + x is an automorphism on the
lattice G, from the definition of V(g, a) it follows V(g + x,a) = V(g, ®) + x. In
particular, V(x, o) = V(0, o) + x. Assume that x, g € V(0, «). Then according to 2.6,

V(ix +g,0) = V(x,a) + g = V(0,2) + g =V(g,2) = V(0,0) ,
V(=x,a) = V(0,0) — x = V(x,a) — x = ¥(0, &),
thus V(O, oz) is a subgroup of G. Moreover, for any y € G,
—y+V(0,0) + y =V(=y,a) + y =V(0,q),

hence ¥(0, a) is normal. Since V(0. a) is a convex sublattice of G, it is an I-ideal of G.
The proof for V,(0, o) is similar.
We need the following results:

3.3. ([6], Thm. 1.21.) Let G be a complete I-group and let f be an increasing
cardinal property satisfying (c,) and (c,). Then G is isomorphic to a complete
subdirect product of f-homogeneous I-groups. If G is also laterally complete, then
it is isomorphic to a complete direct product of f~-homogeneous I-groups.

3.4. Let G be a complete lattice ordered group. Then G is isomorphic to a direct
product A x B such that (i) A is isomorphic to a complete subdirect product of
linearly ordered groups, and (ii) B has no linearly ordered direct factor C # {0}.

Proof. Let {4,} (k € K) be the set of all maximal linearly ordered subgroups of G,
B = {UA,}°, A = B°. According to the Riesz-Birkhoff Theorem (cf. [1], Chap.
XIV) G = A x B and clearly B has no linearly ordered factor different from {0}.
Thus it remains to show that A is isomorphic to a complete subdirect product of
linearly ordered groups. By [5], Thm. 1 each 4, is a direct factor in G. Hence there
exist components x(A4,) for each x € A and x(A4,) = sup {a, € 4, : a, < x} whenever
x = 0. Consider the mapping ¢(x) = (..., x(4,),...) of A into T4, (keK). If
o(x) = 0, then ¢(|x|) = 0 hence x is disjoint with each A4, (k € K) and so |x| e B; this
implies x = 0. Hence ¢ is an isomorphism of 4 onto ¢(A4). Let ko € K, feI14,,
f(k) = 0 for each k € K\ {ko}. Put f(ko) = x. Then x(4,) = 0 for each k + k, and
x(A,,) = x, hence ¢(A) is a complete subdirect product of linearly ordered groups
(/)(Ak) (k € K) K

Let B be the same as in 3.4 and assume that B + {0}. Clearly B is a complete I-group
and hence B is Archimedean. From [5], Thm. 1 it follows that B has no basic element.
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Hence w[a, b] is infinite for any nontrivial interval of B and so w[a, b] = wo[a, b].
Any linearly ordered group is w-homogeneous, thus by 3.4 4 is a complete subdirect
product of w-homogeneous I-groups. According to 3.1 and 3.3 B is isomorphic to
a complete subdirect product of wy-homogeneous I-groups B, (k € K), B, =+ {0};
but B, are isomorphic to some convex [-subgroups of B and so wyl = wl for any
nontrivial interval of B,, therefore B, are w-homogeneous. We arrive at

3.5. Theorem. Any complete I-group is a complete subdirect product of w-homo-
geneous l-groups.

3.6. An I-group is v-homogeneous if and only if it is w-homogeneous.

Proof. If G is linearly ordered, then the assertion is trivial; assume that G is
not linearly ordered. Let [a, b] be an interval of G. Since [a, b] is isomorphic to
10, b — a], we have w[a, b] = w[0, b — a]. Assume that G is w-homogeneous and
that wl = « for any nontrivial interval I of G. Let M be a bounded disjoint subset
of G. Since M is a d-set, we have card M < o, thus vG £ «. On the other hand, if M
is a bounded d-set of G with card M > 1, inf M = m, then the set M’ = {x — m:
: x € M} is disjoint and therefore vG = a.

From 3.5 and 3.6 we obtain

3.7. Theorem. Any complete I-group is a complete subdirect product of v-homo-
geneous l-groups. :
4. STRONGLY HOMOGENEOUS LATTICE ORDERED GROUPS
Let G + {0} be a lattice ordered group. The following assertion is easy to verify:

4.1. Forany 0 < g€G, [g] =U[—ng,ng] (n =1,2,...).
From 4.1 we obtain immediately:

4.2. If 0 < g € G, then g is a strong unit of the lattice ordered group [g].

4.3. Let 0 < g € G and assume that the interval [0, g] is a chain. Then [g] is
linearly ordered.
This follows from 4.1 and [5], 17.2 by using induction. .

4.4. Let G be homogeneous and not linearly ordered. Then G contains a bounded
infinite disjoint subset.

Proof. Since G is not linearly ordered there are incomparable elements a, b € G.
Puta, =a —(a A b),b; =b—(a A b),g=a, vby Theset{a,,b,} is disjoint
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and the I-group [g] is not linearly ordered. Since G is homogeneous, the I-group [b, ]
is not linearly ordered, thus by 4.3 [0, b,] is not a chain. Hence there is a disjoint
subset {a,, b,} = [0, b,] and clearly {a,, a,} is a disjoint set. Analogously we
construct disjoint sets {ay, a,, ..., a,; (n = 1,2,...). Then the set {a,},~, is disjoint
as well and it is a subset of [0, g].

4.5. Let {ay, a,, ...} be a disjoint subset of G and let A, = [a,] (n =1,2,...).
Denote by A the system of all elements g € G that can be written in the form g =
=b, + ...+ b, withb, €A, Then A is a convex l-subgroup of G.

Proof. Since |b,,x_‘ A [b,,j’ = 0 for i # j we infer that the elements b, and b,, are
permutable, therefore A is a subgroup of G. Clearly A is a directed subset of G.
If xeG, ge 4,0 < x < g, then there are elements b,, > 0, b,, € 4; such that g =
= b, + ... + b, hence it follows that x = ¢, + ... + ¢, for some 0 < ¢,, < b,,

(i=1,.. k) Thus A4 is a convex subgroup of G and, being directed, it is an [-sub-
group of G.

4.6. Let A be the same as in 4.5. Then A has no weak unit.

Proof. Let g, b,, (i = 1,..., k) be as in 4.5. Choose n > max {n,, ..., n;}; we
have a, A b,, = 0, therefore a, A g = 0. This shows that 4 has no weak unit.

4.7. If G is strongly homogeneous, then G is linearly ordered.

Proof. Assume on the contrary that G is strongly homogeneous and that it
is not linearly ordered. By 4.4, G contains an infinite disjoint subset {a;. a,, as, ...}.
Let Abeasin4.5and 0 < g € G. According to 4.2 [g] has a weak unit and thus by 4.6
the [-subgroups [g] and 4 of G are not isomorphic, which is a contradiction.

As a corollary, we obtain

4.7.1. If G is strongly homogeneous, then C(G) is linearly ordered.

If ¢ is an isomorphism of a lattice ordered group G, onto G,, then ¢ induces an
isomorphism ¢, of the partially ordered set C(G,) onto C(G,).

4.8. Let G be strongly homogeneous, {0} + A e C(G). Then there is A, € C(G)
such that A, is covered by A in C(G).

Proof. Choose 0 < g € G. From the Zorn Lemma it follows that there is a convex
I-subgroup B of G that is maximal with respect to not containing the element g;
since C(G) is linearly ordered by 4.7, the I-group B is uniquely determined. There is
an isomorphism ¢ of [g] onto A4; then the I-group 4, = ¢,(B) is covered by 4 in
C(A), thus clearly A, is covered by 4 in C(G).
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Denote A; = f(4) for any A + {0} and {0} = f({0}); further define inductively
f*(A) for any ordinal number 1 as follows: for a non-limit ordinal 2 = A, + 1 we

put f4(A) = f(f*(4)) and if A is a limit ordinal, we set f4(4) = ) f*(A). Then

v<i

A> ..o (4> ... > fHA4) > ...

whenever v < A and for any 2 either f%(4) = f**'(4) = {0} or f2*1(4) is covered
by f4(A).
In 4.9 —4.14 we assume that G is strongly homogeneous.

4.9. For any ordinal 2, f*(G) is an l-ideal of G.

Proof. According to 4.8, ¢(f(G)) = f(G) for any automorphism of the I-group G;
by transfinite induction we get ¢(f*(G)) = f*(G). Thus f4(G) is an I-ideal of G.

4.10. If fX(G) + {0}, then the factor I-group f*(G)[f**(G) is isomorphic to an
I-subgroup of R.

Proof. From the assumption it follows that f**!(G) is covered by f*(G), the
factor I-group f4(G)/f***(G) = F + {0} has no convex subgroups distinct from {0}
and F, thus F is Archimedean; being linearly ordered F is isomorphic to an [-subgroup
of R (cf. [1], Chap. XIV).

By the definition of f, for any 4 either f%(G) = {0} or f***(G) is a proper subset
of f4(G); hence we obtain

4.11. There is an ordinal Ao such that f(G) = {0} if and only if 2 = Ao.

4.12. Let A be a convex l-subgroup of G, {0} + A £ G. Then there is an ordinal
Ay < Ao such that A = f*(G).

Proof. From 4.11 it follows that the set 4 = {1 < A, : f%(G) = A} is non-empty;
let A, be the first element of the set A. If 1, is a limit ordinal, then f*(G) = Nf*G)
(A < 4,), and for each such A we have f%(G) > A, therefore f*(G) = A; this implies
f“(G) = A. Assume that A, is nonlimit, A; = A, + 1. Then A is a proper subset
of f*%(G) and since *'(G) = A is covered by f*(G) we obtain f*(G) = A.

If o, B are ordinals, o < f, we denote by [«, f] the system of all ordinals A with
a<AZ P .

4.13. For any A < Ay, [, Ao] is isomorphic to [, X,].

Proof. According to 4.11 and 4.12, [1, 4] and [4, 4,] is the order type of the
chain C(G) and C(f*(G)), respectively. Since G is isomorphic to f*G), C(G) is iso-
morphic to C(f*(G)).
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4.14. For any ). < Ao, the l-groups G[f(G) and f*(G)[f**'(G) are isomorphic.

Proof. There exists an isomorphism ¢ of G onto f*(G) and o(f(G)) = f**1(G);
therefore G/f(G) is isomorphic to f%(G)/f*+(G).

Denote h(G) = G[f(G). Let us remark that if G, and G, are strongly homogeneous
I-groups such that C(G,) is isomorphic to C(G,) and h(G,) is isomorphic to h(G,),
then G, and G, need not be isomorphic. Moreover, we have:

4.15. Let G be strongly homogeneous and assume that card C(G) > 2. Then
there exists a strongly homogeneous I-group G, such that C(G) ~ C(G,), h(G) ~
~ h(G,) and G is not isomorphic to G,.

Proof. Let I be the order type isomorphic to C(G). For each i €1 let H; = h(G).
Put H = TH;(iel). Let A + {0} be a convex [-subgroup of H and let i, be the least
element of I such that there exists a € A with a(ip) + 0. Then A = TH;(iel :i = i,).
Since according to 4.13 the linearly ordered set {i el : i = iy} is isomorphic to I, 4
is isomorphic to H and therefore H is strongly homogeneous. Clearly h(H) ~ h(G)
and C(H) ~ C(G). If H is not isomorphic to G, we put G, = H. Assume that H is
isomorphic to G. For any x € H let s(x) be the support of x. Let X be the set of all
x € H such that s(x) is finite. It is easy to verify that X is strongly homogeneous,
C(X) ~ C(H), h(X) ~ h(H) and X is not isomorphic to G; we put G; = X.

4.16. Let o be an infinite cardinal. There exists a strongly homogeneous I-group G
with card G = «.

Proof. Let w, be the first ordinal such that the power of the set of all ordinals less
than o, equals a. Let A < w,. Since card [1, 4] < o, we have card [4, »,] = «
and so the order type of [1, ,] is isomorphic to [1, w,]. Hence it follows that the
l-group

A=TA4, ()< w,)

with 4, = E for each 1 < w, is strongly homogeneous. Let G be the set of all a e 4
with a finite support. Then G is strongly homogeneous as well and card G = «.

4.17. An I-group G will be said to be totally inhomogeneous if foreach 0 < ge G
there exists g, € G such that 0 < g, € [¢g] and the I-groups [g,], [¢] are not iso-
morphic. The following example shows that there exist totally inhomogeneous
l-groups: Let I = {1,2,...} and let p be a prime. Put G, = T'4; (i e I), where

A, =E if i=p° (k=0,1,2,..),
and

A; = R otherwise .

i

Then it is easy to verify that G is totally inhomogeneous. If p;, P> are distinct primes,
then G,, and G, are not isomorphic.
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5. HOMOGENEOUS /-GROUPS
Let G be an [-group.

5.1. If {G,} (i €I) is a chain of the lattice C(G) such that each G, is homogeneous,
then H = G, is homogeneous.

Proof. If 0 < h e H (k = 1, 2), then hy, h, € G, for some i, hence [h,] = [h,].

By using the Zorn Lemma, we obtain from 5.1:

5.2. If H, is a homogeneous convex l-subgroup of G, then there is a maximal
convex homogeneous l-subgroup H of G such that Hy, < H.

Moreover, from 5.2 and from the Axiom of Choice we infer:

5.3. There exists a system o = {A,} (keK) of convex l-subgroups of G such
that:

(i) Each A, € o is a maximal homogeneous I-subgroup of G.
(i) The system </ is disjoint.

(iii) If 0 < x € G and x is disjoint with each A, € 57, then [x] is not homogeneous.

5.4. Let o/ be the same as in 5.3 and 0 < x € G. Then the following conditions
are equivalent: (iii;) x is disjoint with each A, € oZ; (iv) [x] is totally inhomogeneous.

Proof. Assume that (iii;) holds and let 0 < y e [x]. Then y is disjoint with each
A € o and thus by 5.3 the I-group [y] is not homogeneous. Hence there is 0 < z €
€ [y] such that [z] is not isomorphic to [y] and so [x] is totally inhomogeneous.
Conversely, assume that [x] is totally inhomogeneous. If x A a, = y for some
0 < a, € A, € o, then the I-group [y] is homogeneous since y € 4, and at the same
time [y] is totally inhomogeneous because [y] = [x]: thus [y] = {0} and therefore
(iiiy) holds.

5.5. Theorem. In any l-group G there is a greatest convex totally inhomogeneous
l-subgroup.

Proof. Denote X = (U4,)’ (k € K). Then X is a convex [-subgroup of G. From 5.4
it follows that X is totally inhomogeneous and that any totally inhomogeneous convex
I-subgroup of G is a subset of X.

If P is a direct factor of G and g € G, then we denote by g(P) the component
(= projection) of g in P; for any 0 < g € G we have 0 < g(P) < g. Each c-subgroup
of a complete I-group G is a direct factor of G and for any Z = G. Z° is a closed I-
subgroup of G (cf. Riesz-Birkhoff Thm., [1], Chap. XIV).
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5.6. Let X and A, be the same as in 5.5. Assume that G is a complete I-group,
0<geG. Then

9 = 9(X) v (Vg(cay) -

Proof. Since X and cA, are c-subgroups of G, the projections g(X), g(c4,) exist
in G and belong to the interval [0, g]. Hence y = Vg(cA,) does exist in G and 0 <
< y £ x. According to the definition of X we have g(c4,) € X°, thus y € X® and so
g(X) A y =0, whence g(X) v y = g(X) + y. Denote t = —g(X) — y + g. Then
(X) = —g(X) (X) — ¥(X) + g(X) = —g(X) + g(X) = 0 since y(X) = 0, thus ¢ is
disjoint to X. Similarly we can show that ¢ is disjoint to each cA,. According to the
definition of X we have ¢ = 0, hence g = g(X) v (Vg(cAy)).

5.7. Theorem. Let G be a complete l-group. Then there exists a system of convex
I-subgroups {X, Ay} (k € K) in G such that

(i) X is the greatest convex I-subgroup of G that is totally inhomogeneous;
(ii) each A, is homogeneous;

(iii) the I-group G is isomorphic to the complete subdirect product of the l-groups
X, cd, (k e K).

Proof. The assertions (i) and (ii) were already proved. Let ko ¢ K, K' = K U {ko},
Ay, = X and consider the mapping ¢(g) = (..., g, - .. Jkex- of G into the direct product
of I-groups A,,, cA, (k € K) such that g, = g(4,,), g, = g(cA4,) for ke K. Since X
and cA, are direct factors of G the mapping ¢ is a homomorphism. Denote ¢(G) =
= G,. If ge X, then g,, = g and g, = 0 for each k € K; similarly, if g € c4,, for
k,eK, then g, =g and g, =0, g, = 0 for each keK\{k,}. Therefore G, is
a complete subdirect product of I-groups X and ¢4, (k e K). If 0 + g, € G, ¢(g,) = 0,
then for g = |g,| we have g > 0, ¢(g) = 0, thus g(X) = 0 and g(cA,) = 0 for each
k € A,. Hence according to 5.6 g = 0, a contradiction. This implies that ¢ is an
isomorphism of G onto G;.

Let B be a Boolean algebra and let X(B) be the Stone space of B. Then B is iso-
morphic to the system B* consisting of the subsets of X(B) that are simultancously
closed and open. Let F,(B) be the system of all real functions defined on X(B) with
the following property: for each f € F,(B) there is a system A, ..., 4, € B* such that

UA4; = X(B), 4;,n A;, =0 fordistinct iy, i,e{l,...,n}

and f is a constant on each subset A; (i = 1, ..., n). Then F(B) is an additive group
and it is an I-group if we put f < g whenever f(x) < g(x) for each x € X(B). It is
easy to verify that v(G) = w(B). If 0 < fe F,(B), let s(f) = {x € X(B) : f(x) * 0}.
The set S = s(f) belongs to B*. Denote B, = [0, S| = B*; then B, is a Boolean
algebra and F,(B,) is isomorphic to [f]. Therefore the I-group F,(B) is homo-
geneous whenever the Boolean algebra B is homogeneous. For any infinite cardinal o
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there is a homogeneous Boolean algebra B with wB = o (cf. [9], Thm. 3.5 and Lemma
3.12). Thus for any infinite cardinal « there exists an [-group G = F,(B) such that G
is homogeneous and vG = a.
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