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INTRODUCTION

Let & = {(Sy, tv); 0uy; X} be a presheaf of closure spaces over a topological
space X, P its covering space and &' = {Ay; dyy; X} its natural representation. That
is to say, we cnow that every a € Sy can be regarded in a natural way as a section
a(x) over U in P. Denoting the assignement a — a(x) by py, then to the set Sy
there corresponds a set Ay = pU(SU) of sections over U. Moreover, let us denote
by dyy : Ay > Ay the map defined as follows: a(x) e Ay = dyp(a(x)) = a(x)[V =
= [ouy(a)] (x). Then &’ = {Ay; dyp; X} is a presheaf of sets over X. If & satisfies
convenient natural requirements, every py is injective and thus &’ is a’natural repre-
sentation of & with help of the presheaf of certain sets of sections in P. Let us denote
by %(X) the set of all open subsets in X. We say, that a nonempty family & of subsets
of a set Lis cofilter base, if the following holds: K,, K, € # = K, u K, < K; for
some K3 e .

We say, that to the presheaf & = (Sy; gyy; X} there is given a cofiltration » =
= {7, UeB(X),aeSy}, if for every Ue B(X), ae Sy there is given a cofilter
base '] in U such that for Ve #(U) we have: ,,To every K € A, there exists
Le 'Y, such that K = L.

Let be given a closure t in P. Further let for every U € %(X), gy be some method,
which enables us to form a closure gy(t) in Ay from t. Then &' = {(A4y, qu(t));
Buy; X} is a presheaf of sets 4, with the closures gy(t). Now we can try to find a clo-
sure ¢ in P, so that all the natural maps py : (Sy, Tv) = (Ay, qu(t)) would be homeo-
morphisms. Every such closure we call normal. Here we restrict ourselves to the
case, when the method gy, is the closure of uniform convergence on some cofiltration x.
(Briefly u.c. on x).
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In the paper two questions are deald with:

1. If there is given a cofiltration » and if ky(r) is a closure of uniform convergence
on x, we study, when there exists a normal closure ¢ in P.

2. We study, if there exists in P a closure t generating a representation, i.e. for
which the following is satisfied:

(a) There exists a cofiltration s for which ¢ is normal.

(b) If for U e B(X) T(U, 1) is the set of all continuous sections over U, then
(U, t) = Ay for all U e B(X).

That is to say, if ¢ generates such a representation, then &' = {(4y, ky(1)); duv; X}
is not only a set representation, but even a topological representation of & =
= {(Sy, tv); Quy; X}, i.e. & can be represented even topologically using the presheaf
of all continuous sections in its covering space. (ky(t) is the closure of u.c. on x).

In the first chapter we study the case, when & = {(Sy, ny); ouy; X} is a presheaf
of semiuniform spaces and when the stalks x,b‘l(x) in its covering space P are iso-
morphic under the family of maps ¥ = {y,,;x, yeX; ¥, : ¢ '(x) > ¥~ (y)}.
If ¢t is a closure in P such that every induced closure ?, in l//‘l(x) is generated by
a semiuniformity #, and ¥, : (¥ ~*(x), n.) = (¥ ~*(»), n,) are isomorphisms, then for
a given cofiltration » we can define the semiuniformity n(¢) of uniform convergence
on x using the transferring of #, by ¥,,. We try to find a normal closure ¢ in P, i.e.
such a t for which the all natural maps py : (Sy, n1y) = (Ay, n(t)) are isomorphisms.

In 1.3.20,21 we find two necessary, in 1.3.22 a necessary and sufficient condition
for the existence of a normal closure. In §4 we construct a semiuniformity # in P
such that if 1.3.22 holds, the closure ¢, generated by # is normal.

In the second chapter we try to find a closure ¢ in the covering space P of a presheaf
& ={(Su tv); euv; X}, generating a representation, i.e. such a ¢, for which there exists
a cofiltration % such that all the natural maps py : (Sy, ty) = (4y, k(t)) are homeo-
morphisms, and for every U Ay = T(U, t) (k(?) is the closure of uniform convergence
on x, I'(U, 1) is the set of all continuous sections over U in the space (P, t)). Theorem
2.1.7 contains a necessary and sufficient condition for the fulfillment of the inclusion
I'(U, t) = Ay. In §2 we show that every continuous map f : U — (Sy, ty) generates
¢’ e (U, 1) if t = t* (¢t* is the natural closure from [5], (2.6.2)). From this follows
a necessary condition 2.2.4 for the inclusion I'(U, t) = Ay where ¢t = t*, which implies
that even for very reasonable presheaves the inclusion I'(U, t*) = Ay need not be
satisfied. The main results are 2.4.9, 2.5.3, for they are sufficient conditions for the
existence of a closure generating a representation.

The paper is a continuation of my papers ‘‘Representations of presheaves of closure
spaces” [5] and ““Modifications of closure collections” [4]. The notations and some
results from them are used here, therefore it is suitable to have them at hand. Because
we could not avoid a complicated notations, it is necessary before reading to go
through the agreements and notations.
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Agreements and notations

. The set of all open subsets of a topological space X we shall denote by Z(X).

0.1. Definition. A presheaf of the sets over the topological space X is a system
(0.2) & = {Su; ovv; X} ,

where Sy for U e #(X) are sets, and gyy for every U,Ve%B(X), V< U is a map
ouv : Sy = Sy such that the following holds:

(1) For V' = V = U there is gyy+ = Qvv' o Quy-

(2) euv = iy — identity map of Sy onto Sy for all U € #(X).
We say, that the presheaf & in (0.2) is a presheaf of closure spaces (semiuniform
spaces) over X, if in every set Sy, there is given a closure 7y (a semiuniformity '1u) and
the maps gyy are continuous (uniformly continuous) maps of the closure (semi-
uniform) spaces guy : (Sy, 1) = (Sys ©) ((Sv, 10) = (Sy» ny)). Where it is not
important to repeat the all data, we shall speak only about a presheaf. Mostly the
system of maps gyy we shall not distinguish, and we shall write simply & =
= {(Sur70): X}.

If & is a presheaf over X from (0.2), we can to every x, € X assign the system

(0.3) Lo = {Su; 0uv; U, Ve B(X); xoeU,V}.

Because gy satisfies the conditions (1), (2) from (0.1), we can form the set &, =
= lim &, — the inductive limit of & .

0.4. Definition. The set &, will be called fiber over the point x,. For every U e
€ #(X) containing x,, there exists a natural map of the set Sy into & .

0.5. Notation. Let x, € U € #(X). The natural map of Sy into &, will be denoted
by &yx,. If a € Sy, then the element &, (a) € #,, will be called germ of the element a
over the point x,.

Let us set P = |J &,. Further let {y be a map of the set P onto X, constructed in
xeX

this way: If « € P, then there exists the unique x, € X such that « € &, . Let us set

Y(2) = xo.

0.6. Notation. The set P we shall call covering space of the presheaf &. The map ¥
we shall call projection.

0.7. Remark. Clearly there is #,, = Y ~!(x,). Thus for the fiber over x, we shall
more frequently use the symbol ¥ ~!(x,). The capital P will in the next denote only
the covering space of &.
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0.8. Definition. Let U € #(X). Every map r : U — P for which ¢ o r = iy is the
identity map of U onto U we shall call section over U.

If Ue%(X), ae Sy, then we can to every x € U assign an element h,(x) e P as
follows: h,(x) = &y,(a) (see (0.5)).

According to our way of introduction of &y, and ¥, there is (Y o h,) (x) =
= Y(&y,(a)) = x. Thus the map h, is a section over U.

If we assign in this way to every a € Sy the section h, over U, we get a certain set of
sections over U.

0.9. Notation. The map which to every a € Sy assigns the section h, over U we
shall denote by py and we shall call it natural map. The set of sections {py(a); a € Sy}
we shall denote by Ay. Instead of h, we shall write briefly a(x), where x denotes the
variable, taking values from U. Thus a(x) is the section over U such that

(0.10) pola) = a(x).

The element &y, (a) we shall denote with accordance with our agreements by a(x,)
and we shall say that the section a(x) goes through the point a = a(x,). Thus there
is

(0.11) Euxo(@) = a(xo) .

0.12. Remark. If U, Ve #(X), V = U and a(x) € Ay is a section over U from (0.9),
we can to a(x) assign a section from 4, as follows: a(x) — a(x)/V, i.e. the restriction
of a(x) to V. Let us denote this map by @yy. Then gyy(a(x)) € Ay and we have the
commutative diagram

P
Sy——> Ay

(0.13) low N Fw

Sy—— 4y

0.14. Remark. For x, € U there exists a natural map &y, : 4y > ¥ ~*(x,). Namely,
if there is a(x) e Ay, then we set &y.,(a(x)) = a(xo). According to (0.10,11) we have
Euxe(Pu(@)) = Eyxo(a) = a(x,). Thus the following diagram is commutative:

Py

Sy Ay

(0.15) fons
Fo —

X0

foO .

0.16. Remark. The natural map Py from (0.10) need not be injective. This can be
reached by adding this assumption:
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0.17. Assumption. Let U € #(X), a, be Sy and let ¥~ be an open covering of U.
If ouy(a) = guy(b) for allVe ¥, then a = b.

This assumption implies the injectivity of py. In the next we suppose stadily, that
this assumption is satisfied.

0.18. Definition. Let o € P, x, = (). Then there exists U € #(X) such that for
some a € Sy there is &y, (a) = a(x,) = a.

Every such a we shall call generating element for o. Similarly the section a(x) € Ay
will be called generating section for a.

0.19. Notation. Let a € Sy, let A = U be an arbitrary subset. Let us denote
Eva(a@) = U &Euy(a)
yed
and further, more generally, if M < Sy is an a;bitrary subset,
‘fUA(M) =U 504(‘1) .
aeM
Thus &y 4(a) and £y 4(M) are subsets of P. By (0.5) for x, € 4 there is

ua(M) 0 (%) = Lyso(M) -

In the same way (with respect to (0.9,14) we proceed if M = Ay,. Thus, for example,
ifAcU, Mcy (4):

Ega(M) ={a; ae Sy, a(y)eM, ye A},
Ega(M) = {a(x); a(x) € Ay, a(y)e M, y e A} .

0.20. Notation. The set &, ,(a) trom (0.19) we shall denote by gr, a and we shall
call it graph of the section a(x) (resp. of the element a) over A. By (0.9,11) there is
Eva(a) = U a(y), and thus the word graph has the objective meaning.

yed

0.21. Notation. Let (X, ) be a closure space, M its subset.

A. If M < X, then every filter-base of t-neighborhoods of M we shall denote
by A(M; t).

B. By the symbol ind,, t we shall denote the closure in M, induced by restriction
of tto M. If x e M and A(X; t) is a filter-base of t-neighborhoods of x, then the filter
of ind,, t-neighborhoods of x we denote briefly M n A(X;t). The relation ,,the
closure u is finer than v’ we denote briefly by u < v.

C. If & is such a filter in X, that for every F € & there is M < F, we say, that &
is a filter round M. If & and ¢ are two filter-bases and & majorizes ¥, we write
briefly # < 9. If F < 9,9 < F, we write F ~ ¥.
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D. For U e #(X), M < U let us set
B(M;U) = {V;Ve#(U),M c V}.

0.22. Notation. In the set X let us have a nonempty family Q of closures. The
coarsest (finest) closure in X, finer (coarser) then every closure from Q we shall
denote by lim @ (resp. lim Q).

0.23. Remark. Let {(X,; 7,); « € A} be a nonempty family of closure spaces, let X
be a set, and for every ae€ A4 let ¢, be a map ¢, : (X, 1,) > X (resp. ¢,: X —
— (X, 7,))- Then if © = lim 7, (resp. t = lim 7,) is the inductive (resp. projective)
limit of the closures 7,, then (0.22) is in keeping with this notation.

0.24. Remark. The map f: (Q, u) - (X, lim 7,) is continuous iff for every o the
map ¢, o f :(Q, u) = (X,, 7,) is continuous. A similar remark is true for lim 7,

0.25. Notation. If ¢ : M - N is a map, let $: M x M - N x N be the map
defined as follows: (x, y)e M x M - &(x, y) = (¢(x), ¢(¥))-

0.26. Agreement. When speaking about a compact space in a topological space X,
we suppose, that X is Hausdorff space.

0.27. Agreement. Let U € #(X). By the symbol IT,(I1g) we denote the set of all
open coverings (of all finite open coverings) of U.

0.28. Notation. Let X, Y be two sets, let f: X — Y be a map and let & be a filter-
base in X. Then the filter base {f(F); F € #} in Y we denote by f(%).

0.29. Notation. For a semiuniform space (X, 5) let us denote by 2(X; n) the filter
base of n-neighborhoods of the diagonal in X x X.

0.30. Notation. For a set X let us denote by d the discrete topology in X, and by h
the coarsest topology in X, where the only open sets are @ and X.

0.31. Definition. We say that the presheaf & = {(Sy, ty); ouv; X} is projective, if
the following condition holds: ,,If U = UV,, U, V, e #(X), and if there exist the

elements a, € Sy, such that for V, NV, there is oy, v, v,(4) = @v,v.~v,(ap), then
there exists a € Sy such that gyy (a) = a, for all «.
Because we assume, that (0.17) holds, there exists the unique such a e Sy,

0.32. Definition. We say that & is a presheaf with the unique continuation, if the
following conditions are satisfied:
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1. X is locally connected,

2. if UeB(X) is connected, a, be Sy, and Eux,(a) = Eux(b) for some x,€ U,
then a = b.

0.33. Remark. Let P be the covering space of the presheaf & = {Sy, X}. If
U e #(X), then by (0.9) every a(x) € Ay is a section over U. Let us set Q' = {t; ¢ is
a closure in P such that for every U € #(X) every a(x) € Ay is a continuous map of U
into the closure space (P, t)}.

0.34. Definition, notation. The closure lim Q' we call sheaf topology and we denote
it by t,. If t is a closure in P, and U € #(X), then the set of all continuous sections
over U we denote by T'(U, 7).

0.35. Remark. If the presheaf is projective, then T'(U, t,) = Ay (see [4]). ¢, is the
finest of all closures ¢ in P, for which there is Ay < T'(U, t) for all U € #(X).

0.36. Notation. Let (X, u,) be closure spaces. The space (X, u) will be called topo-
logical sum of the spaces (X,, u,) if X = UX, and u = lim u,.
a

0.37. Notation. A nonempty family 2 of subsets of the set L we shall call cofilter
base (resp. cofilter) if the following holds: K, K, € # = K, U K, = K; for some
Kiye oA, resp. K|, K, e ==K, UK, eX.

Chapter 1.

UNIFORM CONVERGENCE ON COFILTRATION.
THE SEMIUNIFORM CASE

Let & = {(Sy,"ny); vy; X} be a presheaf of semiuniform spaces from (0.1)
(euvv : (Sus my) = (Sy; ny) uniformly continuous), P its covering space, t a closure in P.
We introduce the semiuniformity of uniform convergence on the cofiltration » =
= {A']; UeB(X), ae Sy} and we try to find a normal closure in P.

1. Basic assumptions

For every U € #(X) let be given a cofilter #'V of sets in U such that for U, Ve
e B(X), V < U there is

(1.1.1) AV ={K;KeX", K cV}.

In the whole chapter we assume
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1.1.2. Assumption. The presheaf & have the following properties: For U’ eLfJ(X),
x, y € U’ there exists an injective collection of maps V'®,, from the presheaf S,
into S, (see (0.3)) such that

(a) If for U e B(x; U’) and Ve B(y; U’) the map Vo2 € V@, VolY: Sy, — S, is

defined, then to every U, € B(x; U) there exists ¥V, € B(y; V) for which Yo"t is
defined.

(5) Yo% : (Sy, nv) = (Sy, ny) is an isomorphism.

() Vol o Vel = Vel if both maps on the left are defined.

(d) VoYY = i, — identity — if the map on the left is defined.
(¢) The diagram

U’¢UV
Sy —=2—S,

Quu, Qyy,

U’ UiV l

Pxy
SU] SV;

is commutative, if all the maps here are defined. (Notation from (0.25)).
(f) For U, U" e #(X), x, yeU' n U” there is Vol = Yol if both maps here
are defined.

1.1.3. Remark. A. Let G be a topological group with the group operation +,
X e #(G), and & = {(Sy, t); ouv; X} a presheaf over X, where for U € B(X) Sy is
the set of all continuous real functions on U and #y is, for example, the uniformity
of uniform convergence. Let U’ € B(X), Xo, yo € U’. Then there exists U € B(x, U’y
and Ve B(y,; U’) such that

LV=U+ (yo — xo)
2. If f(x) € Sy, then @(y) = f(y — yo + Xo) € Sy-

3. If we assign in this way to every f € Sy a function ¢ € S, we get an injective

map Vo2 : Sy > Sy, which is surjective.

4. The size of the neighborhoods U and V of the points X, and y,, for which V%)
exists, depends on the size of U’ and the location of x, and y, in U’.

5. It can be easily seen, that for the functor V@, = {Vo%} (1.1.2) holds.

B. If there exists Vg2, we may assume the existence of V'Y, since we may put
VYU = (U pUh) 1
(pyx - (ny .

1.1.4. Corollary. If U’ € (X), x, y € U’, then there exists a natural map 'y,
of the stalk y~*(x) onto Y~*(y), generated by the set of maps V'®,,. For U',U"e
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€B(X), x,yeU A U" there is Uy, = Uy, therefore we write briefly y,,
Here Y, is injective and for x, y, z € X we have

(a) ‘/’yzlpxy = l/’,\:z'

(b) Yyx = identity.

Proof. The existence of Y., follows from (1.1.2¢). The property (a) resp. (b)
follows from (1.1.2¢) resp. (1.1.2d). The equality 'y, = YU"y,, follows from (1.1.2f).
We are going to prove the injectivity of y,. Let a, f e ¢ ~!(x) and () = ¥,,(B).
Let a € Sy resp. b € Sy be a generating element for « resp. f. We may assume, that
XY is defined for some Ve B(y, X). Then for some Ve B(y,V) there is
ovy, X0%(a) = ayv, *o% (b). By (1.1.2a), (1.1.3B), ¥¢}:"* is defined for some U, €
€ B(X; U). Hence

(1.1.5) X(D;’;UIQVV‘ X‘Pg;,(a) = X‘P;,;Ulgvl’l Xgog;,(b) .
By (1.1.2¢) we get

X(P;';U'QVV, X‘Pg;,(a) = X‘P;,xlv' X‘Pg;vlé’uul(a) = X‘Pg;:UlQuul(a) = qut(a)~

(1.1.5) implies oyy,(a) = @yy,(b), hence a = B.
1.1.6. Remark. Let us set
(1.1.7) ®={"0, U ehBX),x,yeU}; ¥ ={y, x, veX}.

For the presheaf & there could exist several systems @ and they could generally
give us various systems ¥ of stalk-isomorphisms. Thus we have to take a fixed @,
form the system ¥ corresponding to it, and in the next to study only the system ‘P.
For another system W (for instance if we took another ®) we should get similar
results, depending on our choice of W. Further let ® be fixed and let ¥ be the system
from (1.1.7), corresponding to it. As well we could simply suppose, that we have
a system ¥ of stalk-isomorphisms from (1.1.7), which satisfies (a), (b) from (1.1.4).

1.1.8. Notation. Let ¢ be a closure in P. Let us denote

(1.1.9) _ 2(t) = {n; xe X},
a family of semiuniformities, such that

(a) 7, is a semiuniformity in ¥ ~!(x) for all x € X.
(b) 1, generates the closure ind,, -1y t.
() ¥y (¥~ *(x); ns) = (¢ ~*(); n,) is an isomorphismus.

For the closure ¢ let Z(t) be the set of all systems z(t) from (1.1.8). (For some closures ¢
in P there is Z(t) = 0.)
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2. Introduction of notions

Let t be a closure in P, z(t) € Z(t), xo € X, K = X an arbitrary set and let M €
€ D(xo; Mx,) (see (0.29)). Let us set (notation from (0.25)):

(1.2.1) F(K; M) =yg(!l7xoy(M) ;
(1.2.2) Fr(xo) = {F(K; M); M € D(x0; 1)} -

It is clear, that % (o) is a filter base in ¢ ~*(K) x ¢ ~(K) round the diagonal.
If x;,€X, then Fy(xo) ~ Fx(x,), for (¥~*(xo); ns,) and (¥~ '(x,); ns,) are iso-
morphic under the map V., and (1.1.4a) holds. Thus we may write simply .

For U e B(X), Ke #Y (see (1.1.1)) and F e F let

(1.2.3) P(U,K, F) = (&yx x Eux) ' (F) =
= {(a(x), b(»)); a(x), b(x) € Ay, (a(y), b(y)) € F for all yeK}.
(1.2.4) 2(U) = {P(U,K,F); Ke XY, Fe F} .

1.2.5. Definition. Clearly 2(U) is a filter base in Ay x Ay round diagonal. The
semiuniformity in the sets Ay generated by Q’(U) we call semiuniformity of uniform
convergence on the cofiltration x from (1.1.1) and denote it by n,(f), by which we
express its dependence on t and z(t) € Z(¢). The natural map py : (Sy, 1v) = (Ay, n.(t))
we denote by pir®. The closure ¢ in P we call normal, if Z(t) # 0 and for some z(f) e
€ Z(1) the all p§” are isomorphisms.

3. Normal closure

1.3.1. Notation. Let U € B(X), K € #'V. Every map u:B(K;U) = [] 2(Sy; nv)
B(K,U)
such that for Ve B(K; U) there is (V) = N” € 9(Sy; ny) we shall call choice. The

chain from U to K is the family

(1.3.2) A(U,K,N") = {N";Ve B(K; U), N* = u(v)}.

For xo € X let

(1.3.3) F(RUKN) = U  U¥ulnNY),
K<VeU yek

(1.34) B(K;U) = {&(A(U, K,N)); (U, K, N") is a chain from U to K} .

1.3.5. Proposition. Let U, U' € B(X), Ke #Vn A’V Then B(K, U’), B(K; U) are
equivalent filter bases in (Xo) X W(x,) round the diagonal.
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Proof. If S = #(%(U, K, N")) e #(K; U), let us set for Ve B(K; U’), N¥ =
= 0yyau(NY"Y). Then § = #(R(U", K, N")) e B(K; U’) and § < S.

1.3.6. Corollary. Instead of #(K; U) we can write B(K), and use allways the more
convenient base %(K; U). The semiuniformity, generated in ¥~ *(x,) by the bases

#(K) we denote by ny. Further for #* = U oV let
Ve (X)

(1.3.7) n* = lim g .
Kex'X
Of course, it does not mater, in which stalk ¥ ~*(x,) we form the semiuniformities 7,
and n*, for all the stalks y~*(x), ¥ ~*(y) are isomorphic under the map ¥,,, which we
use for transferring of semiuniformities, and ( 1.1.4) holds.
For the sake of brevity we introduce for the uniform continuity the abbreviation
u.c.

Xy’

1.3.8. Proposition. Let t be a closure in P, z(t) € Z(t). All the maps pi® are u.c.
iff in ™ Y(xo) we have n* < n,,.

Proof. Let all the pjf® be u.c., K € ™ (see (1.3.6)). We shall prove, that ng < 7.
Let U e #(X), Ve B(K; U), M € D(¥ ™~ *(xo); 11xo)-

Then according to (1.2.1) F = F(K; M) e # and by (1.2.3-5) P = P(V;K, F) e
€ 9(Ay; n,(1)). Because pi7” is u.c., we have py(N¥) = P for some N¥ € 9(Sy; ny).
Hence by (1.2.1,3) there is py(N") = (&yx % &g)7! (UlﬁxOy(M)) ie. NV c

c E,,K( U Vx0y(M)). Thus for all y € K we have &,(N") = J,oy(M) Vyxolry(NY) € M

and hence

(1.3.9) Y] Upolr(N") € M.

To every Ve #(U) we find in this way N¥ for which (1.3.9) holds. Then
(1.3.10) S = P(A(U,K,N")) =« M

and S e 2(¥*(xo); nx)- By (1.3.10) we have g < n,,. Because it holds for every
K e A%, we get n* < n,,. Conversely, let n* < 7, . Thus for every K € A’ ¥ we have
Nk < s Let Ue B(X) and P = P(U, K, F) € 9(Ay; u,(t)) for F = F(K; M)e F,
where M € D(y~*(x,); 11,)- By (1.3.6) we can find S = #(#(U, K, N*)) e B(K; U)
such that S = M. By (1.3.3) there is U ¥,,,&uy(NY) = M and therefore
yekK

(L.3.11) Euy(NY) © P0y(M)
for all y € K. By (1.2.1,2) we have F = F(K; M) = {J §,,,(M) e £ and by (1.3.11)

yeK
there is Pu(NY) P(U; K, F), which finishes the proof.
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If K = X is an arbitrary set and D € 2(¢ ™ '(xo0); n*), let

(1.3.12) G(K: M) = U Vrop(M)
(1.3.13) G = {G(K; M); M € D("(x,); n%)},

which is a filter base in y “!(K) x y~!(K) round the diagonal. Here for K = L,
g’( ~ gL N l//_l(K)
For Ue B(X), Ke A'Y, G e Y let

(1.3.14) E(U; K, G) = (&ux * &ux) ™' (G)
(1.3.15) (V) ={E(U;K,G); Ke XY, Ge %} .

1.3.16. Notation. It is clear, that &(U) is a filter base in Ay x Ay, round the dia-
gonal. The semiuniformity generated there by it we shall denote by n. The natural
map py : (Sy, ny) = (Ay, n) we denote by py.

1.3.17. Proposition. A. All the maps py, are u.c.

B. For the closure t in P, and z(t)e Z(t) the all py® are u.c. iff n < n,(t) in
every Ay.

Proof. A. If Ue#(X), E = E(U; K, G) = (&yx x &yk) ™' (G) € D(Ay, n) (where
G = G(K; M) for some M € D(¥~*(x,); n*)), then by (1.3.7,5) S = M for some
S = %(#(U,K,N"))e B(K; U). By (1.3.3) we get u ¥yeoluy(NY) = M. Thus for

all y e K there is &;,(NY) = ¥ ,,(M), hence py(NY) < E which we were to prove.
B. From u.c. of all pg® (by (1.3.8)) follows n* < 5, in § ~*(x,). Therefore for
every K e A% there is ¥y < F (compare (1.3.12,13) and (1.2.1,2)). Thus by

(1.3.14,15) and (1.2.3,4) there is n < n,(¢) in all 4. Conversely, if n < n,(t) in all 4,
A. implies u.c. of all pfr®. From (1.3.17) we get immediately

1.3.18. Proposition. For z(t) € Z(t) let the all (piy®)~" be u.c. Then n(t) < n
in all Ay. If the all pg® are isomorphisms, n(t) = n in all Ay.

1.3.19. Definition. The closure ¢ in P we call polonormal, if there exists z(t) € Z(t)
such that n,(f) = n in all Ay. (1.3.18) implies the following two theorems:

1.3.20. Theorem. The necessary condition for the existence of a normal closure
in P is the u.c. of all (pf)~".

1.3.21. Theorem. The necessary condition for the existence of a normal closure is
the existence of a polonormal closure.
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1.3.22. Theorem. If there exists a polonormal closure t; in P then there exists
a normal closure in P iff all the (py)~" are u.c. If this condition holds, then t, is
normal.

Proof. If ¢ is normal, then by (1.3.18) the all (p})~* are u.c. Conversely, from u.c.
of all (pf;)~* follows, that ¢, is normal.

4. Polonormal closure

1.4.1. Notation. Let ¥ be the base from (1.3.13) for K = X, which is a filter base
in P x P round the diagonal. Thus it generates a semiuniformity v there. For x € X
let v, = ind,-1(v. From (1.3.12—15) follows immediately.

1.4.2. Proposition. (a) For x,yeX, Y., =W~ (x);v,) > @ '(»);v,) is an
isomorphismus. ‘

(b) If t, is the closure generated in P by v, then Z(t,) + 0, because by (a) z, =
= zo(to) = {v,; x € X} € Z(t,).

(¢) n.(to) = nin all Ay.

Thus t, is polynormal.

1.3.22) implies
(1.3.22) imp

1.4.3. Theorem. The necessary and sufficient condition for the existence of
a normal closure t in P is the u.c. of all (p})~". If this condition holds, then t, is
normal.

1.4.4. Remark. Let x, ye X, x + y. From (1.3.12) we get easily, that the stalks
¥~ (x), ¥~ Y(y) are mutually separated under the closure t,. Every stalk ¥ ~(x) is
a clopen (closed and open) set in (P, t,). Therefore there is not 4, < I'(U, t,) (see
(0.34)).

1.4.5. Notation. Let 7, be the sheaf topology from (0.34). Let us denote by ¢, the
topological sum of the closures #, and 7, (see (0.36)). Then ind -1, t, = indy-1¢ fo
for all x € X and thus by (1.4.2) and (0.35) we get.

1.4.6. Theorem. (a) Z(t,) =+ 0, because z; = z,(t,) = {v,; x e X} € Z(ty).
(b) n.,(t,) = n in all Ay. thus t, is polonormal.
(¢) Ay = T(U, t,) for all U € B(X).

Thus the theorem (1.4.3) holds for the closure t.

Now we shall prove the continuity of all (p};)™* in one special case.

1.4.7. Agreement. For x,eX let n,, be a semiuniformity in ¥ ~*(x,). Let Te
€ (¥~ (xo), 7Mx,)» Ue B(X), K = U an arbitrary set. Then the set F = F(K, T)
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resp. P(U;K, F) of the form (1.2.1) resp. (1.2.3) we denote by transfy T resp.
ind transfy T. The set of the form (1.2.2) resp. (1.2.4) we denote by transfy D(xo; 1,)
resp. ind transfy P(x,, #,,). The semiuniformity, which is generated in A4y by these
bases we denote by ind 7.

1.4.8. Proposition. Let & = {(Sy, ny); oyv; X} be a presheaf of some sets of
continuous functions on a topological group X with the group operation +. For &
let be given a cofiltration x = {4'V; U € B(X)} such that every K € 4’V is relatively
compact in U and (1.1.1) holds. Let ny be the semiuniformity of uniform convergence
on #Y. For Ue®(X), x,yeU let the functor "®,, from (1.1.2) be as in (1.1.3).
Let ¥ = {{,,, x, y € X} be the family corresponding by (1.1.4,6) to it. If some A’V
contains a single point x, = Ko € A o, then the all (py)™* are u.c. (n is the closure
from (1.3.16) formed for x).

Proof. If x, = K, € A7, then for 1, from (1.3.6) there is nx, = n,, = lim

Ny
VeB(Xo:U)
Because & satisfies (1.1.2), it can be easily seen, that if #j, = lim 7y, then y,,:
VeB(y;U)

: (Y~ (x); 7ix) = (¥~ *(»); 7i,) is an isomorphismus.

Let zeUe%(X), colyey = {ey;VeB(z;U), & > 0}, N*colye, = {(germ, g},
germ, g%); Ve B(z; U), (g7, 9%) € Sy x Sy, |91(z) — 95(2)| < &}. Then for every
UeB(X) 200~ "(2); fi;) ~ {N*coly ey; coly &y} = Cy. Let U eB(X), KeAY',
x, y € U'. The definition of V'@, implies easily, that if Yol is defined, then
V(N coly gp) = N” col, gp. There exists Vy € B(xo; U’) such that if x € K, then
V.=V, + x — xo€B(x;U’), and Yol%> is defined. Let N, = N*coly,¢p €
€ D(V ™1 (x0); Mxo)s &y = 8o Let

(1.4.9) L(K; &) = {(f. 9); (f 9) € Sy- X Sy, If(x) - g(x)l < &, xeK}.

Then L(K; &) € 2(Sy-; ny-) and py(L(K; &) < ind transfy N, which proves the
u.c. of all maps py : (Sy, ny) = (ty, ind n,,). Because 1., < n* and »* is the finest of
the all semiuniformities 4, for which the all py : (Sy, ny) = (4, ind 1) are u.c., we
get n,, = n*. Now let L(K; &) € 9(Sy:; ny-) be of the form (1.4.9). Let us take Ny =
= N* coly &y € D(Y " '(x,), n*) such that e; < & for all Ve B(xq;V,). Then
(Pv-)~* (ind transfx No) = L(K; &), which proves the u.c. of (p}.)~ 1.

Chapter 2.

SECTIONS IN THE COVERING SPACE
Let & = {(Sy, Tv); ouy; X} be a presheaf of closure spaces, P its covering space,

t a closure in P, (U, 1) the set of all continuous sections over U € #(X), and g some
method, which enables us in every Ay to construct from ¢ a closure q(t). We study,

603



when there exist g and ¢ such that all the natural maps py : (Sy, 7y) = (Ay, q(t)) are
homeomorphisms, and such that 4, = I'(U, t) for every U e #(X). In the whole
chapter let 1* be the natural closure in P from [5], (2.6.2).

1. Relation between I'(U, t) and the set of solvable sections

2.1.1. Definition. Let U € #(X). By collection we shall call every set
(2.1.2) [¢] ={(a.Vs); xe U}

where for every x € U there is ¥, € B(x, U), and a,€ Sy_. A collection [¢] we call
solvable, if there exists a € Sy such that a(x) = a,(x) for all xe U (see (0.9)). The
element a we call solution of the collection [¢]. We say, that a collection [¢'] =
= {(b,, U,); x € X} refines a collection [¢] from (2.1.2), if there is

(a) Uy =V, forallxeU,
(b) ev,u(a.) = by
A collection [¢] from (2.1.2) we call smooth, if there is

(2.1.3) v, (as) = ey, v.av,(a,) forall x,yeU.

2.1.4. Proposition. Let & be a projective presheaf (see (0.31)). A collection [¢]
is solvable iff there exists a smooth collection [¢'], refining [¢].

Proof. Let [¢] from (2.1.2) be solvable, a its colution. Thus a(x) = a,(x) for
all x e U. But it means, that to every x e U there exists U, e B(x;V,) such that
b, = oy uv.(a,) = oyv(a). Then the collection .

(2.1.5) [¢'] = {(b,, U,); xe X}

refines [¢]. Here for x, y € U we have ¢y v, nv,(Px) = 0u,u.nu,(8) =0u,.v.nu,(b))s
thus [¢'] is smooth. For the proof of this implication we did not need the projectivity
of £.

Conversely, if [¢'] from (2.1.5) is smooth, then there exists (as a result of the
projectivity of &) an element a € Sy such that Qu,vx(a) = b, for all x e U. Because
[¢'] refines [¢], [¢] is solvable by a. The proof is finished.

Every section ¢ over U (see (0.8)) determines (not uniquely) some collection. That
is because for every x e U the germ ¢(x) has a representative (i.e. a generating
element) a, € Sy _ for some V, € B(x, U). Then {(a,, V;); x € U} is a collection deter-
mined by ¢.

2.1.6. Notation. Every collection determined by ¢ we call collection of the section ¢

and denote it by [¢]. It is clear, that every collection [¢'], refining [¢] is again
a collection of ¢.
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2.1.7. Proposition. Let t be a closure in P, U € B(X). Then T(U, t) = Ay iff every
@ e(U, t) has a solvable collection.

Proof. Let ¢ e I'(U, 1). If its collection [¢] is solvable by a, then a(x) = ¢(x)
for all x e U, hence py(a) = ¢ € Ay. The converse implication is trivial.

2.1.8. Remark. According to (2.1.4) we can see, that the solvability of a collection
depends only on the inner structure of the sets Ay, and not on the way of defining the
closures 1, in Sy, or on the closure ¢ in P. Thus the set of all solvable collections is
given in advance.

2. Relation between I'(U, t) and S(U, S)

2.2.1. Notation. If U € 2(X), let u be the topology in U induced from X. Let S(U, Sy)
denote the set of all continuous maps f : (U, u) - (Sy, ). If f : U — Sy, is any (not
necessary continuous) map, we denote by V, : U — S, x U the map constructed as
follows: x € U = V/(x) = (f(x), x). Let 6, be the natural map from [5], (2.6.1),
i.e. the map Jy:Sy x U — P defined as follows: ae Sy, xoeU = y(a, xo) =
= a(x,). Then we denote

(2.2.2) ¢ =0y0V,:U—>P.
Every map f: U — Sy is determined by the set
(2.2.2A) f={asxeU, a, =f(x)},

where for every x € U there is a, € Sy. Thus every such f is uniquely determined by
the collection {(a,,V,), x € U} of the form (2.1.2), where V, = U for all x € U. This
collection we shall call collection corresponding to f, but we shall write it in the form
(2.2.2A), regarding, that it is the collection {(a,; U), x e U} from (2.1.1). We say,
thatf: U — Sy is solvable, if it has a solvable collection.

2.2.3. Proposition. Let the closure t in P be coarser than the natural closure t*,
U e #B(X). The necessary condition for the inclusion T(U, t) = Ay is the solvability
of all fe S(U, Sy).

Proof. Let f:(U,u)— (Sy, ty) be continuous. Then the map V,:(U,u) -
- (Sy x U, 1ty x u) from (2.2.1) is also continuous. Because t* < 1, the natural
map dy : (Sy X U, 1y x u) > (P, t) is continuous (see [5], (2.6.2)). Hence the map
¢’ =6y0V;:U - P from (2.2.2) is also continuous. Thus ¢’ e (U, t). We can
see, that the collection (2.2.2A) corresponding to f is as well the collection [¢’] of
the section ¢ (see (2.1.6)). Now the assertion follows from (2.1.7).

2.2.4. Remark. Let & be with the unique continuation (see (0.32)), U € #(X)
connected, f € S(U, Sy), f = {(a,, U); x € U}. It can be easily seen, that f is solvable
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iff a, = a, for all x, y e U. Thus if there exists a nonconstant f e S(U, 1y), there is
not F(U t) < Ay for any t = t*. It implies, that there is not I(U, ) = Ay in both
examples (2.2.8).

2.2.5. Remark. From (2.1.4) we can see, that the solvability of the collection (2.2.2A)
corresponding to f, depends only on the inner structure of Sy. It does not depend on
the particular closure in Sy. Thus the set of all solvable collections of type (2.2.24) is
given in advance. If 7y is such a closure, that some f € S(U, Sy) is not solvable, then
there is not (by (2.2.3)) I'(U, t) = Ay for any closure t, t > t*.

2.2.6. Remark. If every f € S(U, Sy) is solvable, it does not mean yet, that (U, t) <
< Ay, because every ¢ e I'(U, ) need not be represented by the map fe S(U, Sy)
such that ¢ = ¢’ (see (2.2.2)). If ¢ e I(U, t), then ¢ is represented only by its collec-
tion [¢] of the form (2.2.1). So us to decide whether ¢ € Ay, we have (2.1.7). The
proposition (2.2.3) often shows, when there is not F(U, t) < Ay, as we shall see in
examples. The proposition (2.1.7) says much more, but it is qualified by the continuity
of the section ¢ € I'(U, f) whereas (2.2.3) is qualified by the continuity of f : U — S,
And it is more difficult to verify the solvability of the collection [¢], than the solvabili-
ty of f from the continuity of f : U — Sy, not regarding the difficulties when deciding,
if ¢ is continuous or not.

2.2.7. Remark. Let U € #(X) and let us assume: “If Ve #(U), b € S, then there
exists a € Sy such that gyy(a) = b”. Then every section ¢ over U has a collection
[¢] = {(a,, U); x e X}. The assignement x — a, is a map f:U — Sy. But if ¢ is
continuous, the map f, corresponding to it in this way, need not be continuous.

2.2.8. Examples. (1) Let & = {(Sy, Tv); uy; E;} be the presheaf of all constant
functions over E,, 1y the closure of pointwise convergence. We can easily find, that
(P, t*) and E, are homeomorphic under the identity map. To every a € Sy there
corresponds a constant section a(x) = a € I'(U, t*). The section ¢(x) = x e I'(U, t*)
corresponds to the non-solvable map fe S(U, Sy), where f(x) = x e Sy for x e U.
Thus @(x) = ¢’(x) and ¢’ ¢ Ay. Hence Ay & T'(U, *). Every continuous function
on U, which is not constant on any component of U represents a non-solvable con-
tinuous map f of U into (Sy, Ty) and the corresponding ¢’ does not lie in Ay. It can
be seen, that I'(U, r*) is (under the map f — ¢') isomorphic to the set of all continuous
functions on U.

(2) Let & = {(Sy, 1v), uv; E,} be the presheaf of all polynomials, 7y the topology
of locally uniform convergence. For U € #(X) let us define f: U — Sy as follows:

(2.2.9) f(x) = 2xt — x*,

thus to every x e U we assign the polynomial 2xt — x? of the variable t. First, if
Xy Xo € U, X, = X, then f(x,) = 2x,t — x2 — 2xot — x5 locally uniformly. Thus
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fe€S(U, Sy) and therefore ¢’ € I (U, 1*). The map f is not solvable, because ¢/(x) =
= germ, (2xt — x?) is the germ of the polynomial 2xt — x? of the variable ¢ at the
point x. If for some a € Sy there were a = ¢/, then a would coincide with 2xt — x2
on a neighborhood of every x € U, i.e. particulary a(x) = 2x*> — x?> = x?. Thus a
is necessary the polynomial x2. But 2xt — x? does not coincide with ¢? in any neigh-
borhood. Thus ¢/ € I'(U, t*) — Ay. Similarly, if we set f(x) = aq(x) " + ... + a,(x),
we get a map f: U — Sy. If the all a;(x) are continuous functions, f is continuous
and ¢f e (U, t*). If there were ¢’ = py(a)e Ay, then there would be a =
= ao(x) x" + ... + a,(x). If such element does not lie in Sy, i.e. if any a; is not
constant on any component of U, then ¢ ¢ 4.

The presheafs in the both previous examples have the unique continuation (see
(0.32)) and their closure collections are projective (see [4], (1.1.4)) in spite of 4y &

& (U, r*).
3. The case when the closures ¢(t) are jointly continuous

Now we are going to try to find a closure ¢ in P and a method g such that
(2.3.1) pu : (Sus ty) = (Aus q(1)) are homeomorphisms ,

(2.3.2) jy:(A4y x U, q(t) x u) > (P, t) are continuous, i.e. the all g(t) are jointly
continuous,

(2.3.3) Ay =T(U, 1) forall UeB(X).

A.1f (2.3.1,2) holds, then the all natural maps (see (2.2.1)) 8y : (Sy X U, 1y X ) -
— (P, t) are continuous. By the definition of #* in [5], (2.6.2) we have t* < 1.

B. Let X be locally compact. If (2.3.2) holds, then ¢(t) < I(t) in every Ay, where I(t)
is the closure of uniform convergence on compact sets (see [5] (2.1.2)). (Kelley,
General topology — [3] ch. 7).

C. We have clearly the inclusion 4, < I'(U, t*) for all U. Because by A. there
must be t* < t, we can see, that in those cases, when there is not 4, = I'(U, t*),
for all Ue%(X), it is not possible to find a closure ¢t and a method g satisfying
(2.3.1-3). For example, (2.1.7) implies.

2.3.4. Proposition. If for some U € B(X) there exists a nonsolvable ¢ € T(U, t*),
then (2.3.1—3) is not true for any couple t, q. It happens particulary, if for some
U e B(X) there exists a non-solvable fe S(U, Sy). If for every U e B(X) every
¢ e T(U, t*) is solvable, then (2.3.2,3) holds for the method q = 1 and the closure t*
(1 is the closure of uniform convergence on compact sets).

Now the only problem is, whether (2.3.1) is true for g(¢*) = I(t*). In the convenient
cases it can be decided with help of tools from chap. 2. in [5].
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4. Sufficient condition for the representation

The requirements (2.3.1—3) lied to the inequality t* < t. But the examples
show, that (2.3.3) does not hold even for some very convenient presheaves. Thus we
shall omit the requirement (2.3.2).

2.4.1. Definition. We say, that the closure ¢ in P generates a representation, if for
some method g and the closure t (2.3.1,3) is satisfied.

2.4.2. Notation. Every stalk y~!(x) we shall provide with the coarse topology
t. = h (see (0.30)). Let t, (resp. t,) be the closure in P, which is the topological sum
of the closures t,, (resp. the sheaf topology from (0.34)). Let ¢, be the topological
sum of ¢, and f,.

2.4.3. Proposition. Let & = {(Sy, ty); Quv; X} be a projective presheaf, t a closure
in its covering space, ty < t < t,. Then T'(U, t) = Ay for all U € A(X).

Proof. For all U there is A4y = I'(U, t,) « T(U, t) = T(U, t,) (see (0.34)). We
shall prove, that T(U, t,) = Ay forevery U.If a € P, x, = (), then by the definition

of 1, and (0.34) we get: If for some Ve B(x,; X) the element a € S is a generating
one for « (see (0.18)), then

(2.4.9) A t,) = {gry-a U ¥~ !(x,); V' € B(xo; V)} — see (0.20) .

Let Ue%(X), ¢ eT(U,1,), [¢] = {(a..V,); xe U} a collection of the section ¢.
If x € U, then a, is a generating element for ¢(x), thus

(2.4.5) a(x) = o(x).

According to (2.4.4) O =gry a, v ¥ !(x)e A(p(x), t,). Thus there exists Ve
€ B(x; V,) such that for y e ¥, there is ¢(y) € O. The form of the set O implies
(2.4.6) o(y) = ay) for yeV,—x.

Hence by (2.4.5), (2.4.6) holds for all y € V,. Moreover let us set b, = g, 5 (a,). We
have

(2.4.7) o(y) = b(y) for yeV,.

To every x € U let us construct in this way ¥, and b, € Sy_, such that (2.4.7) holds.
The collection [¢'] = {(b., 7,); x e U} is a collection of ¢. Let x, y € U such that
V.aV,+0. For zeV,n ¥V, (2.4.7) implies b,(z) = ¢(z) = b,(z). By (0.17) we
have 0p.p,p,(b5) = p,p.~p,(b,), and thus [¢'] is smooth. By (2.1.4) [¢'] is solvable.
(2.1.7) implies ¢ € Ay, which finishes the proof.

In [5], (3.2.4,5) we have for every x € X denoted by u, the closure in ¥ ~*(x)
defined as follows: u, = ind,,-.,, t*. We have denoted there by # the topological sum
of the closures u, and by # the topological sum of 7 and #, (see (0.36)). Then clearly

(2.4.8) t,<t=t,.
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2.4.9. Theorem. Let & = {(Sy, 1y); ovv; X} be a projective presheaf, u = {t,}
its closure collection, ° the pointwise modification of p (see [5], (3.3.4)). If p = p°,
then the closure t generates a representation.

Proof. The equality g = u°® and (3.2.7) in [5] imply, that 7 is normal, i.e. the all
Py : (S, ty) = (Ay, b(1)) are homeomorphisms, where b(?) is the closure of pointwise
convergence (see [5], (3.1.2)). From (2.4.8,3) follows, that 7 generates a representation.

5. The sufficient condition for representation in the semiuniform case

2.5.1. Notation. Let & = {(Sy, ny); uy; X} be a presheaf of semiuniform spaces.
As in chap. 1 let for every U € %(X) be given a cofilter " in U, such that for V < U
there is

(2.5.2) K" ={K;KeAXV,K cV}.

For the closure t and z(r) € Z(1) (see (1.1.8)) let u,(t) be the semiuniformity of uniform
convergence on the cofilters o'V (see (1.2.5)), and let n resp. v be the semiuniformity
(1.3.16) resp. (1.4.1). Further let t, be the closure in P, generated by v (see (1.1.2b)),
and as in (1.4.5) let 1, be the topological sum of t, and the sheaf topology f,.

2.5.3. Theorem. Let & = {(Sy, tv); ouy; X} be a presheaf of closure spaces. Let
every 1ty be generated by a semiuniformity ny. Let there exists a cofiltration from
(2.5.1) such that if we form u,(t), n, v, to, t, for it and the presheaf F = {(Su» n0);
ouy; X}, then all the maps (py)~* : (Ay, n) = (Su, ny) are uniformly continuous.
Then the t, forms a representation.

Proof. By (1.4.6,4) all the py :(Sy,nu) = (Ay, n.,(t;)) are isomorphisms for
some z, = z,(t,) € Z(t,). Thus if q(t,) is a closure in A, generated by u,(t,), the
all pi : (Sy, 7y) = (4y, 4(t,)) are homeomorphisms. Let t, be the closure from
(2.4.2). By (1.4.4,5) we get t, < t; < t,. By (2.4.3) we have I'(U, t;) = Ay, which
finishes the proof.
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