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ON IDEMPOTENT BINARY RELATIONS ON A FINITE SET

STEFAN SCHWARZ, Bratislava
(Received August 14, 1969)

Let Q = {al, Aoy oeey a,,} be a finite set with n = 2 different elements. By a binary
relation on Q we mean a subset of Q x Q. The diagonal is denoted by 4, = 4. The
empty relation will be denoted by z.

Let B, be the set of all binary relations on Q. If ¢ € B, we denote

ag ={xeQ|(a,x)ee}, ea;={yeQ|(y,a)eq}.

If M is a subset of Q, then Mg = U a,0. Further we denote
a;eM

pry (o) =it_)1Qai’ pr (@) = Uaje.

Introducing in By, the usual multiplication of relations (see, e.g., [1]), B, becomes
a finite semigroup having 2" elements (with z as zero element).

To any ¢ € B, we can associate a “matrix” M(¢) = (e;;) with elements 0 and 1 by
writting e;; = 1 on the place (i, j) if (a;, a;) € ¢ and e;; = 0 if (a;, a;) ¢ 0. We call
M(p) the matrix representation of o. We define the product M(¢) M(c) by the usual
matrix multiplication, where for the elements 0 and 1 the addition and multiplication
is defined by the rules: 0+ 0=0,0+1=14+0=1+1=1;0.0=0.1=
=1.0=0,1.1=1.

The correspondence ¢ — M(g) is an isomorphism of the semigroup B, onto the
semigroup of all such “matrices”.

A relation g € By, is called irreducible if and only if g U @*> U ... U @™ (for some
m = 1) is a square, i.e. there is a subset 4 = Q such that guU ... U @" = 4 x A.
(It is easy to see that m < n.) (See, e.g., [2].)

If ¢ € By, we define ¢! by the requirement (a;, a;) e ¢~*

7 € By, is called a permutation relation if and only if nn~

< (aj, a;) € 0. A relation

V=g in = 4.
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It is well known that to any relation g there is a permutation relation 7 such that
the matrix representation of men~? is of the form

o e

\Asl AsZ Ass/

Here A;; is either a “matrix” which corresponds to an irreducible relation or 4;; is
a “zero matrix” of order 1.

For the study of the structure of the semigroup B,, it is of greatest importance to
know the idempotents € Bg, i.e. the binary relations g satisfying ¢ = o.

Clearly ¢ is idempotent if and only if mon ™" is idempotent (where = is a permutation
relation on Q). Hence, for further purposes, we may restrict our attention to relations
having a matrix representation of the form (1).

We shall briefly say that a relation g is of the form (1) if its matrix representation
is of the form (1). (No ambiguity can arise by this abuse of language.) Since no mis-
understanding can arise, we shall also use the word matrix to denote a 0—1 matrix
of the kind introduced above.

If ¢ is an idempotent relation of the form (1), it is easy to see that A;; is either
a (full) square (a positive square matrix) or A;; is a zero matrix of order 1.

In this paper we give a complete description of all idempotent relations of the form -
(1). In fact we give a non-tentative method how to construct all of them.

In section I we prove some necessary conditions which any idempotent relation
of the form (1) must satisfy.

In section IT we use these conditions to the construction of idempotents of the form
(1). It will turn out that the necessary conditions obtained in section I are in an obvious
sense sufficient.

We shall often use the following trivial remark. The relation g is idempotent if and
only if a;,0 = (a;0) ¢ for every a; e Q.

Let ¢ be an idempotent € B, of the form (1). As remarked above, A;; is either
a positive square matrix or a zero matrix of order 1.

Denote

A. = < pr2 (Aii) if Aii is pOSitiVB .
TN if A;; is the zero matrix on the place (k, k) .

Hence Q = 4, u 4, V...V A,
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We shall write A; = A; if A;; is positive and 4; = A if A4;; is the zero matrix of
order 1. Further (4; U 4, U ... U 4,)* will denote the union of those 4;,, 1 < I < i,
for which A,; is positive and (4; U 4, U ... U 4,)° the union of those 4,, 1 < I < i,
for which 4, is the zero matrix of order 1. Hence 4; U ...U 4; = (4; U ... U 4)" L
U4, 0. 0 4)°.

A) Let be first a;e Af. Then a0 = {a;,, aj,, ..., a;,, A}, where {a;,, ..., a;} <
c AU Ad,U...U A4;_,. The idempotency implies:

(2) a;e = (an) Q= {ain Ajpseees Ajps Ai} Q= {aj1Q> e @50, A} .

Suppose that 4; has more than one element: 4; = {a;, a}, a}, ...}. Then

(3) a0 = {a;o0, ..., a;0, a0, aj, aj, ...}

implies a;0 > ajo. By changing the role of a; and aj, we have ajo > a;0. Hence
a;o = ajo. This means that a;g is the same set for all a; e 4;; hence 4,0 = ajo.

In other words: All rows corresponding to a given A4; are identical. (Note, by the
way, that an analogous argument shows that all columns corresponding to 4;" are
also identical.) .

Denote B = {a;,, aj,,...,a;}. Then B< A, u...UA4;_;, BAnA;=0. The
relation (2) implies Bg < a;0 = B U A,. Since

Boc (A;u...ud;_)ec A U...U A4y,

we have Bg n A; = 0, and finally Bg < B.

We have proved that a;g has the following property: If a,, € a0, then also the whole
“row” a,g is contained in a;0. Moreover, a;o is a union of two disjoint sets a ;0 =
= BuU A;, where Bg < B.

For simplicity in further investigations we introduce the following notion:

Definition. Let ¢ be any binary relation on Q. A subset B = Q is called an R-set
(with respect to o) if it has the following property: If a,, € B, then the whole set a,,0 is
contained in B.

Remark. The set B = {a,, a,0} need not be an R-set. But if ¢ is idempotent,
then {a,, a,0} 6 = a,0 < B, so that {a,, a,0} is an R-set. Clearly if B is an R-set,
then Bo < B. If, e.g., a,, is such that a,0 is empty, then B = {a,,} is an R-set and
Bo = 0.

It is convenient in the following to consider the empty set as an R-set. Clearly,
if B, and B, are R-sets, also B; U B, is an R-set.

Using this terminology we can summarise our result as follows.
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Theorem 1. Suppose that ¢ is idempotent of the form (1). If a; € A], then aj;o is
a union of two disjoint sets a;0 = A; U B, where B is an R-set,

B) Let now a;e 4] (ie. a; = A7). Let ajo = {a;.a,, ..., a;}. Here again
{aj,,...,a;} = A, U A, U ... U A;_;. In this case a;0 may be empty. Suppose in
the following that a;o + 0. The idempotency implies
) aje = {a;, .. a;} = {a;0, .., a;0} .

This implies that there are integers {i,, iz, ..., ij} < {j, j, ..., j,} such that

a; €a;0, a;,€4;,0, ..., a;,_, €0a,0.

The | + 1 integers j; = i, iy, i, ..., i, cannot be all different. There are therefore
two integers s £ s+ h (0<s=<1—1,2<s+ h <) such that iy = i;,, We
then have

a;,€0a;,,0, Ai,,, €0; ,,0, ---» Aigon-,€a;,,,0 =0a;0,
i.e.

Aig€01,,,0 © Qi ,0 < o0 S 44,0 = ;0.

The relation a;_ € a; g says that there is an element a; € A; U ... U 4;_ such that
(a;,, a;,) € ¢ and that there is a subset 4, = A;", | < i, such that a; € A,. Finally,
(4) implies that a; 0 < ao.

We may write therefore,

an = {ai,Q7 aala aaz’ sy aav} s

where {a,,, d,,, ..., a,,}- is either empty or it has an empty intersection with a; .
Hereby {a,,, ..., a,,} € {a;,, aj,, ..., a;,}.
Suppose that the set just considered is not empty. The idempotency again implies

(5) ae = {aisg’ Aays -0 aau} = {aisQ’ Ag,0s - -5 aa,,@} .
By supposition
{Ogps Qgy s 4y} = {a,,0, agy0, ..., a, 0} .
This implies that there are integers {B,, Bs, .. B,} = {ay, o5, ..., &,} such that
y, € Gy,0, g, € Ap,0, ..., Ay, | € éﬂvg .

The v + 1 integers «; = Bo, by, ..., B, cannot be all different and we obtain analo-
gously as above that there is an a,, with a,, € d,,0 and hence an 4, = A; with ¢« <1
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such that a,, € 4,. (Clearly A, # A;.) Finally we conclude from (5) that a,,0 = aje.
Summarily: a;0 = {40, 4,0, a,,, ..., a,,}, where {a, , ..., a,.} G {a4, ds» .., g}
Repeating this argument we obtain (by changing slightly the notation) ajo =

= {a,0, ago, ..., a0}, where each of the a,, ay, ..., a,, is contained in a suitably
chosen 4] with I < i.

We have proved:

Theorem 2. If ¢ is an idempotent of the form (1) and a; = A3, then a g is either
empty or a union of some “rows’ a0, where a,e A, with h < i.

I
We now give an inductive method how to construct all idempotent relations of the
form (1).

Choose first arbitrarily the positive square matrices and zero matrices of order 1
Ay, Aggy ooy A such that 4, U 4, U ... U 4 = Q.

It is clear that to any such choice. there is at least one idempotent relation of the
form (1). This is the relation g, with

M(SO) =
A/

Suppose that in order to build up an idempotent relation & of the form (1) we have
already constructed the rows corresponding to Ay 4,, ..., 4;— (i = 2). We shall
construct the rows corresponding to 4,;.

A) Suppose first that 4; = A] and let a;€ 4;. Take any R-set B contained in
Ay U Ad,u...U A4;_; and put

(6) ajg=BuA; forevery a;eA;.

If A; = {aj,aj,a},...}, we have a;g = BU A4, ajg = BU 4;, aje = Bu 4,

Summing these relatlons we get A,e = B U A;, and comparing with (6) we have 4;¢
= aje.

Now (a;e)e = (Bu A4;)e = Be U A, Since Be = B, we have Be « B < a;6 =
= A Hence ajg? = Ag = ag.

B) Suppose next that a;e AY. If (4, U ... U A4;_y)" =0, putae = 0.If (4, U ..
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..U A4;_4)" # 0, consider all “rows” a;¢ with a,e(4, U ...u 4;,_,)*. Take any
“rows” of them, say a, aj, aje, ... and put a;¢ = {a,s, ag, aje, }
We have:

ai® = {a;?, aig?, aje?, ...} = {ag, ag, aje, ...} = ag.
Since by this proceeding (by applying successively A) and B)) we obtain ae =
= a,e” for every a, € Q, the relation ¢ is an idempotent, and it follows from Theorems
1 and 2 that any idempotent relation of the form (1) is obtained in this manner.

Remark. Suppose that we have already constructed the rows corresponding to
all a;e A, U ... U A;_,. The question arises how to find all R-sets which we have
to use for the construction of a e, where a; € A; . '

a) If a,e (4, U ... U 4;_)*, then clearly as is an R-set and a,€ aze.

b) If a, = Ay, h < i, and ae + 0, then {a,, a;c} is an R-set but a, ¢ a,e. [Note
that a ¢ is a union of some of the preceding rows, so that a,e itself is also an R-set. ]

¢) If a, =Ay, h < i, and a;¢ = 0, then {a,} itself is an R-set.

Any R-set contained in 4; U ... U 4;_ is a union of these three types of R-sets
[We shall call them in section III “elementary R-sets”.]

T

We now illustrate our proceeding on the following example.

We have to find all idempotent relations of the form (1) on the set Q = {a,, a5, as,
ay, as) if the diagonal matrices are prescribed as indicated below:

11
11
(7) .0
. 0

. 1)

Since A, = A3, the third row is either empty or it contains the whole preceding row.
We have therefore two possibilities:
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In the fourth row we have an analogous situation, so that we get four possibilities:

11 \ /1t \ /11 11 \
11 11 11 11

000 [, ooo |, |t1o |, 110
0000 1100 0000 1100

/2 UUEEES /A VR /2 CRRR |

In the first case the elementary R-sets contained in {a,, a,, a3, a,} are: 0, {a,, a,},
{as}, {a,}. There exist therefore eight possible R-sets which lead to the following
possibilities for the last row:

(00001), (11001), (00101), (00011),
(11101), (11011), (00111), (11111).

In the second case the elementary R-sets are: 0, {ay, a,}, {as}, {a4, a;, a,}. We get
only six different possibilities for the last row, namely: (00001), (11001), (00101),
(11011), (11101), (11111).

In the third case the elementary R-sets are: 0, {a, a,}, {a3, ay, a,}, {a,}. We get
the following six possibilities for the last row: (00001), (11001), (11101), (00011),
(11011), (11111).

Finally, in the last case the elementary R-sets are: 0, {a,, a,}, {as, ay, a5},
{a,, ay, a,}. They lead to the following 5 possibilities for the last row: (00001),
(11001), (11101), (11011), (11111).

We have obtained altogether 8 + 6 + 6 + 5 = 25 idempotent relations and these
are exactly all idempotent relations of the form (1) having the diagonal matrices
prescribed in (7). [Note that there are 2° = 512 different relations of the form: (1)
having the diagonal matrices prescribed in (7).]
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