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SOME MAXIMUM PRINCIPLES FOR STOCHASTIC EQUATIONS

Ivo VRKkOC, Praha
(Received May 31, 1968)

In this article we consider diffusion processes .# in a region D which are governed
by Ito stochastic equations. The probability that the first exit time of .# from the
region D is less than a given number T is important in many problems. Denote
by P(.#) this probability. We deal with classes of diffusion processes .# for which the
drift a(t, x), i.e. the “non-stochastic part” of equation (1, 1) is a given vector function,
but the matrix of the local diffusion B(t, x), i.e. the “stochastic part” of (1, 1) can
vary in a class. The question arises how the probability P(.#) depends on the matrix
of the local diffusion B(t, x). A condition will be given which guarantees that the
maximum probability P(//l) occurs in case of the “greatest” matrix of the local
diffusion B(t, x). The exact formulation of this problem is given in Definitions 5
and 6. It is shown that the dependence: “The greater is B(f, x), the greater is P(.#)”
is generally not -valid, even for very simple regions. This article is the continuation
of [1], [2], but the formulations are different. The greatest difference, however, is
that in [1], [2] only the one-dimensional case is considered.

In example 3 the case is considered that D is a circle and a(t, x) = 0. The matrix of
the local diffusion is found which gives the maximum of P(.#) in this case. Never-
theless the construction of the matrix shows that also in this case the strategy of the
greatest possible B is not the best one.

Our problem may be reformulated and we could consider it as an optimal control
problem [10], but due to the assumptions used there we cannot apply the results of
[10] on our problem.

1. Basic definitions and notation. Let R, denote the n-dimensional Euclidean space
with a norm!ol. Denote by D a region in R, and by Q a region in R, of the type
Q = (0, T) x D where T is a positive number. Denote by D the closure of D and
by D the boundary of D and by S the set {0, T) x D. Let Q be a space, # a o-field
of subsets of Q and P a probability measure defined on &.

Random variables z and random processes z(f) may be considered as #-measurable
functions z(w), z(t, ) on &, respectively. We suppose that the structure of Q, #, P
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enables us to express every random variable and every random process as an & -mea-
surable function on Q.

We shall consider Ito stochastic equation
(1,1) dx = a(t, x) dr + B(t, x) dw(t)

where a(t, x) is a vector function a(t, x) € R, B(t, x) is an n X n matrix function and
w(t) is an n-dimensional Wiener process, i.e. w(t) = [w;(?), ..., w,(t)] where w()
are independent Wiener processes with Ew(t) = 0, Ew?(t) = t. The letter E denotes
the mathematical expectation.

We call a function f(x) a density in D if f(x) is Lebesgue-measurable, nonnegative
and [, f(x) dx = 1. A random variable x(w) has a density f(x) if P{w: x(0)e A}=
= J4f(x) dx for every n-dimensional Borel set 4, 4 = D. Denote by x,(t)} the
solution of (1,1) with the initial density f(x), i.e., x,(0) has density f(x). We assume
that (1,1) fulfils some condition guaranteeing that the unique solution exists for every

f(x).

Definition 1. Denote by P(B, a, f, Q) the probability that x(t) leaves the region D
at least once on the interval 0, T), (@ = (0,T) x D)i..

(1,2) P(B,a,f, Q) = P{w:3{t : x/(t,w) ¢ D, 1€ <0, TH}}.

If the initial value of a solution of (1,1) is nonstochastic x(0) = x, € D, then we shall
write &(x,) instead of f in (1,2).

Definition 2. A region D fulfils condition (B) if it is bounded and if to every point
X e D there exists a ball K with the centre at X and a system of orthogonal coordinates
V1 ---» ¥ Where y, has the direction of the outward normal to D with respect to D
at the point X such that the frontier D can be expressed in the ball K as a function
Vo =h(yy, ..., yu—y) for [y, ..., yo—1] € K = K* with Hélder continuous second
derivatives. The set K* is defined by K* = {[y,, ..., ¥a=1] : [V1s --» Yu-1, 0] €K}
and K™ is an open subset of K* containing the origin of y, ... y,_, - coordinate
system.

We shall pass to the definition of the concept of the solution of (1,1) with an
adhesive barrier. Let a(t, x) be a vector function and B(t, x) be an n x n matrix
function which are defined for all + = 0, x € R, and which are continuous in ¢t and
Lipschitz continuous in x. Let D be a region in R,. By Theorem 4 [5] (similar results
are in [9]) there exists a solution x*(t, w) of

1,3 x*(t) = xo + fta(T, x*(1)) dr + JqB(r, x*(7)) dw(t),

0 0
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where x, is a random variable with the given density f(x) which is independent of
w(t). The process x*(t, w) is a solution of (1,3) in the sense that

¥ (1) = xo — f (:a(r, x4(z)) dr — J:B(L (o) av(s) | =

The norm |||z||| is defined by |||z|||r = JE sup Iz(r, )|?.
¢0,Ty

Definition 3. Let 7(w) be the first exit time of x*(t) from D. The process x(t, ®) =
= x*(t, w) for 0 £ t < t(w) is called the part of x* in D. The process x(t, ®) =
= x(t, ») for t < (), x(t, ) = x*(x(w), ») for t = 1(w) is called the solution of
(1,3) with the adhesive barrier D.

The last statement of 11.14 Chap. 11 [6] yields (similarly as in the conclusion of
11.13 Chap 11) that the processes x(t, w) and x.(t, ) are independent of the values
of a(t, x) and B(t, x) outside of D. We may suppose that a(t, x), B(t, x) are defined
in Q only. In this case we extend first the domain of definition of a(t, x), B(t, x) on the
whole €0, T) x R, and then define x(t, w) and x(t, ») as the part of the solution or
the solution of (1,3) with the adhesive barrier D, respectively. Obviously, the proba-
bility P(B, a, f, Q) does not depend on the extension of a(t, x), B(t, x) outside of Q.

Definition 4. A vector function a(t, x) and a matrix function B(t, x) defined on Q
fulfil condition (A) if it holds:
i) B(t, x) B™(1, x) is positive definite in Q (BT is the transpose matrix).
ii) a(t, x), B(t, x) B™(t, x) are Holder continuous, i.e.
|a(ts, x5) — a(ty, x,)] £ M(|x; — x| + |t, — tllf'/z)
and similarly for BBT where M is a positive constant and o is a number 0 < o < 1.

iii) Ito equation (1,1) has the unique solution with the adhesive barrier D for every
initial density f(x) in D, i.e., there is the unique solution x (¢) of (1,1) with the
adhesive barrier D such that x(0) has the density f(x).

iv) The parabolic equation

0u

(1.4)

=3 Z BLL(T t, x) By(T — t, x) 3 Fu

ivry

+ Ya(T - t,x) —66_11

¢ i

has the unique bounded solution (unique in the class of bounded functions) fulfilling

(1,5) limu(t,x) =0 for xeD
t—0+
(1,6) limu(t,x)=1 for t>0, XeD.

X=X
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v) The bounded solution u(t, x) fulfils
(17) P(B, a.f, Q) = f £(x) u(T; ) dx
D

for every density f(x) in D and also for f(x) = (x), x € D: P(B, a, 6(x), Q) = u(T, x).
Item iii) is fulfilled if a(t, x), B(z, x) are Lipschitz continuous in x and continuous
in t [9]. Sufficient conditions for iv) and v) are given in Lemmas 4 and 5.

In the following Definitions the problem will be formulated precisely which was
only sketched in the introduction.

Definition 5. A matrix function B(t, x) is called maximal with respect to a vector
function a(t, x) and to a region Q (Q = (0,T) x D) if

i) B(t, x) B"(t, x) is a diagonal matrix in Q,
ii) a(1, x), B(t, x) fulfil condition (A),
iii) the region D fulfils condition (B),

iv) P(B, a, f, Q) = max P(B’, a, f, Q) for all densities f in D where the maximum is
taken over the set of matrix functions B'(t, x) fulfilling conditions i), ii) and
Aft, x) = A1, x) where A1, x), A;(t, x) are the diagonal elements of the
matrix A'(t, x) = B'(t, x) B'(t, x), A(t, x) = B(t, x) B'(t, x), respectively.

Definition 6, A matrix function B(t, x) is called strongly maximal with respect to
a vector function a(t, x) and to a region Q if conditions ii), iii) from Definition 5 are
fulfilled and if
iv*) P(B, a. f, Q) = max P(B’, a, f, Q) for all densities f in D where the maximum
is taken over the set of matrix functions B'(t, x) fulfilling condition ii) from Def-
inition 5 and A(t, x) — A'(t, x) is a positive semi-definite matrix for every [t, x] €
€ Q (A(t, x) and A'(t, x) are defined in the same manner as in Definition 5).

If no confusion about a(z, x) and Q may arise, we shall use only the terms “maximal
matrix function” or “strongly maximal matrix function”, respectively.

In some considerations we shall need more general regions than cylindric regions Q.
Let Cg, C§ be regions in R,. Denote C, = {[0, x] : xe C3}, C; = {[T, x] : x e C}}.
We say that a region C in R, , is regular if the frontier C consists of the sets C,, C;
and of a surface S which is situated in the strip <0, T) x R, and has the outside
strong sphere property for every [, x] € S (for the definition of the outside strong
property, see [3]). We can modify the definition of P(B, a, f, Q) and also those of the
maximal and strongly maximal matrix function for regular regions (cf. Remark 6).

2. We shall need the following statement about comparison of solutions of parabolic
equation.
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Lemma 1. Let C be a regular region in R, 1, let aft, x), A;(t, x) be defined and
Hélder continuous in C and let the matrix function A(t, x) be positive definite in C.
Assume that ¢ (t, x) are continuous functions defined on C, U S fulfilling ¢4(t, x) =
2 ¢,(t, x). If v(t, x), u(t, x) and the derivatives

dv v % ou ou  u

at’ ox;  ox;, ax,.’ o’ ox; 0x; 0x;

are continuous in C and

( QD

2
o + Yait, x);;22

v
=) At x)—
_:21: A )6xi6xj 7 X;

t

o5}

o(t, x) = @4(t, x) on Co U S,

o%u
@xi axl

W oS At x) T 4 Sat ) O
ot i 7 0x;
u(t, x) = @,(t, x) on Co U S, then v(t, x) = u(t, x).

This lemma is an easy consequence of Theorem 16 Chap. II [3].

3. We need some approximation of bounded solutions of (1,4) fulfilling (1,5) and
(1,6), by smooth solutions of (1,4).

Lemma 2. Let conditions (A), (B) be fulfilled. If u(t, x) is a bounded solution of
(1,4) fulfilling (1,5) and (1,6), then u(t, x) = lim u,(t, x) holds where u,(t, x) are
solutions of (1,4) fulfilling

limu,(t,x) =0 for xeD
t—-0+

and u,(t,%) =0 for 0 <t < 27" u,(t,X) =2"(t — 27™) for 27" <t < 27"*1,
u,(t, %) = 1 for t > 27™*' X € D. Such solution u(t, x) always exists.

Proof. Denote by 0(g, D) the g-neighbourhood of D, i.e. 0(o, D) = {z:3{x:
|x = z| < @, x e D}}. Let ¢,(x) be a sequence of functions such that ¢,(x) = 1 for
x€ 027", D), ¢,(x) = 0 for x¢ 0(2™™*', D), ¢,(x) being defined and continuous
inD, 0 < ¢,(x) < 1(Dis the closure of D).

Let u_,(t, x) be the solution of (1,4) fulfilling (1,6) and u_,(0, x) = ¢,(x) for
xeD.

Obviously

B 0. Zu(t,x) Supei(t,x) S Supy(t,x) Su_(t,x) <. S 1.

573



Put u*(t, x) = lim u_,(t, x), u**(t, x) = ]1m u,,,(t x). By (3,1) we have

(3.2) 0 < u**(t,x) < u¥(t,x) < 1.

Since 0 < lim w**(t, x) < hm u*(t x) £ hm u_,,,(t x) =0forxe D,x¢ 02", D),

=0+
the functions u*, u** fulﬁl(l 5) Since 1 = hmu ot %) < lim w**(t, x) < lim u*(t, x) <

XX x—=X

< 1fort > 2"™*! Xe D, the functions u*, u** fulfil (1,6).

We shall prove that u*, u** are solutions of (1,4). Choose a point [t, x], t > 0,
xeD.Let0 < ¥ <t Let G, x; 7, £) be the Green function of (1,4) for Q (Theorem
16 Chap. III [3]) then

%agzthwﬁm@@ﬁﬁ_gg.
D
For m — oo we obtain

u“@ﬂ:1+J@@miQ@“@@—Q%.
D
The last equality proves that u** and its derivatives

ou**  Jur* O2y*

ot ox; | ox; ox,

are continuous in (i, T) x D and that u** satisfies (1,4). The same holds for u*.
According to (3,2) these solutions are bounded and with respect to condition (A)
iv) u*(t, x) = u**(z, x).

4. Now all is prepared to formulate one of the main results.

Theorem 1. Let a vector function a(t, x), a matrix function B(t, x) and a region D
be given such that D fulfils condition (B), a(t, x), B(t, x) fulfil condition (A) and the
matrix A(t, x) = B(t, x) B'(t, x) is diagonal. The matrix function B(t,x) is maximal
with respect to the vector function a(t, x) and to the region Q = (0,T) x D if and
only if the bounded solution of

ou

(4.1) ‘E=ZZA,,(T t, X) —+Z (T——tx)——
Sfulfilling

4.2) t11m+u(t x)=0 for xeD,

(4.3) limu(t,x) =1 for t>0, %eD

has nonnegative partial derivatives ﬁzufaxf >20,i=1,...,nin Q.
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Remark 1. According to condition (A) the bounded solution of (4,1) fulfilling (4,2)
and (4,3) exists and is unique.

Proof. With respect to condition (A) (Definition 4 v)) the solution u(T, x) is the
probability that the solution of Ito stochastic equation (1,1) with a nonstochastic
initial value x € D crosses the barrier D at least once in the interval <0, T'). Consider
another Ito equation

(4.4) dx = a(t, x) dt + B'(1, x) dw(t) .
The above mentioned probability is now (T, x), v being the bounded solution of

v % ov
4,5 — =3 XYAUT - t,x) — + Ya(T—t,x)—
4.5) Pl DI ) oot 2ad )

fulfilling conditions (4,2), (4,3). We assume still as above that
A'(t, x) = B(t, x) B'(1, x)

is a diagonal matrix. Suppose 0uf0x; = 0; since A;(t, x) = Aj(t, x) we obtain

ou o%u ou
4,6 — =3YA{T—t,x) — + da(T—t,x)— =
60 Eoipar- 9t gur-nn]

i

2
> YAUT— 6,008 YT — 102
i 0x; i 0x

i

Lemma 2 implies that the solution v(z, x) is the limit of solutions v,,(t, x) of (4,5)
fulfilling v,(0, x) = Ofor x € D, v,(1, X) = 0for 0 < t < 27", 0,(t, X) = 2"(t — 27™)
for 27" <t < 27" p,(t,X) =1 for t > 27"*' X e D. It means v,(27™ x) =0
for x € D. Obviously the solution u(t, x) fulfils u(2™™, x) = 0 for x e D, u(t, X) = 1
for t 2 27" xeD. Using Lemma 1 in (27", T) x D we get u(t, x) = v,(t, x). As
u(t, x) is the limit of v,, we have proved u(t, x) = v(t, x). By condition (A) (Defini-
tion 4 v)) we have also

P(B,a,f, Q) = J'f(x) u(T, x)dx = P(B', a, f, Q) = jf(x) (T, x) dx .

This prove the first part of the Theorem.

Let the function u(?, x) not fulfil *u/ox; = 0 in Q, i =1,...,n. Put K; =
= {[t, x] : 0%u/ox} < 0}. The sets K; are open, K; = Q, UK, is nonempty. Define
A'(t, x) so that the assumptions of the Theorem are fulfilled and that 4;(T — t, x) =
= A(T — t,x) for [t,x] ¢ K;, 0 < A}(T — t,x) < A(T — t, x) in K;. We compare
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equations (4,1) and(4,5) once more

1A

2
(4,7) ou =% ZAii(T — 1, X) 0_1: + Ya(T—t, x) —
ot i 0x; i

~i

Xi

2
S EYAUT - 1) T8 4 YT - )
i 0x; i 0
In the same manner as above, we obtain u(t, x) < u(t, x) now. It cannot be u(f, x) =
= o(t, x) since du[dt < dv[ot would hold on UK.

Let [to, xo] be such point that u(t,, xo) < v(to, Xo), 0 < o < T, xo € D. Let y(t, x)
be the solution of (4,5) fulfilling the initial condition y(to, X) = u(t,, x) for x € D and
y(t, %) = 1 for t = t,, Xe D. By (4,7) and by Lemma 1 we obtain u(z, x) < y(t, x)
for t = to, x € D. Put A(t, x) = v(t, x) — y(t, x). The function A4(t, x) is the solution
of (4,5) with 4(ty, x) = 0 for x e D, A(to, xo) > 0, A(t, X) = 0 for t = t,, X D.
Obviously 4(t, x) = 0 and applying Theorem 5 §2 Chap. II [3] we get 4(t, x) > 0
for t > t,, xe D, i.e. u(t,x) < v(t, x) for t > t,, x e D. It means that for every

density f in D, P(B, a, f, Q) < P(B’, a, f, Q) holds.

Remark 2. We have proved some stronger result. If the function u(t, x) does not
fulfil >ufox} = 0i = 1,..., nin Q (u(t, x) is determined in Theorem 1) then B(t, x)
is not maximal and there exists a matrix function B’(t, x) fulfilling all conditions of
Definition 5 and such that P(B, a, f, Q) < P(B’, a, f, Q) for all densities f(x) in D.

On the other hand if all assumptions about u(z, x) are fulfilled, then the region D
must have the following property: The intersection of D and of a straight line which is
parallel to one axis is either empty or an interval.

5. Before formulating the second main result we shall introduce a statement about
convex functions. Let f(x) be a function defined in a region D, D < R, such that f(x)
has continuous second derivatives. The function f(x) is convex if and only if
d*f[dI*(x) = 0in D for all vectors [ # 0, where df/dI*> means the second derivative
in the direction of the vector /. This condition is equivalent to the following one: The
function f(x) is convex if and only if the matrix d?f/dx? consisting of the elements
(0*f[ox; 0x;) (x) is positive semi-definite for all x € D. We shall prove a Lemma which
we shall use in the proof of Theorem 2.

Lemma 3. Let B be a square matrix. The inequality

(5.1) ZA,JBJ z0

iJj

holds for all symmetric positive semi-definite matrices A if and only if the matrix B
is positive semi-definite.
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Proof. Let B be a positive semi-definite matrix. We assume that A is a symmetric
positive semi-definite matrix. There exist real characteristic values 1;, A; = 0 and an
orthonormal basis consisting of eigenvectors z; of 4. The expression ) A;;B;; can
be written as

(5’2) ZAijBij = Z(Aekv Bek)
ij k

where e, is the k-th column of the unit matrix J. Since the expression Y (Ae,, Be,)
k
is independent of the orthonormal basis we obtain by (5,2) Y 4;;B;; = Y (Ae,, Be,) =
ij k
= Y(Az, Bz,) = Y A(z, Bz,) = 0, which proves (5,1).
k k

Conversely let (5,1) be fulfilled for all symmetric positive semi-definite matrices A-
To prove that B is also a positive semi-definite matrix it is sufficient to choose 4;; =
= I;l; where I;, i = 1, ..., n are arbitrary real numbers. Lemma 5 is proved.

6. Theorem 2. Let a vector function a(t, x), a matrix function B(t, x) and a region D
be given such that D fulfils condition (B) and a(t, x), B(t, x) fulfil condition (A).
The matrix function B(t, x) is strongly maximal with respect to the vector function
a(t, x) and to the region Q = (0, T) x D if and only if the bounded solution of

ou 0%u
6.1 M 1S AST — 1, x
N

+ Ya{T — t,x) ou ,
X; 0X; i 0x;

A(t, x) = B(t, x) B"(1, x)

fulfilling
(6,2) limu(t,x) =0 for xeD,
t—>0+
(6,3) limu(t,x) =1 for t>0, XeD

x—X

is convex with respect to x in Q.

Remark 3. Since A(t, x) = B(t, x) B"(t, x) the problem (6,1) to (6,3) is the same
as (1,4) to (1,6).
Proof. In the same way as in the proof of Theorem 1 to Ito equation (1,1) there

corresponds the parabolic equation (6,1) and to Ito equation (4,4) there corresponds
now the parabolic equation

0%v

x; 0

i

(64) O AT - 1,%) + YaT — 1, %) 22
ot N 0 X ; 7 0x

i
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The bounded solutions of (6,1) and (6,4) fulfilling (6,2) and (6,3) have the same mean-
ing as in the proof of Theorem 1. Since u(t, x) is convex, the matrix d?u/dx?(t, x) is
positive semi-definite. As A(t, x) — A'(t, x) are symmetric positive semi-definite
matrices for all ¢, x, hence according to Lemma 3

2
S(AAT = 1, %) — AT - 1.x) = (1,x) = 0
i,j 0x; 0x;
so that
Ju 0%u ou
6,5 — =3YA,(T -1, +Ya(T—t,x)— =
(6.5) o A %) ax, 0x, Z ( )axi
2 1Y AT~ t.x) + Ya T — t,x) —
[ i 0Xj i i

In the same manner as in the proof of Theorem 1, we get u(t, x) = v(t, x) and this
implies P(B, a, f, Q) = sup P(B’, a, f, Q) which proves that the matrix function is
strongly maximal.

Let u(t, x) be not convex in Q. Hence there exists a point [t, x] andavector [, £ 0
such that d?u/dI* (t, x) < 0. Put I, = I/|I| and let vectors I,, ..., I, together with I,
form an orthonormal basis. Let L be the matrix with columns /4, ..., l,. Using the
transformation x = Ly, u(t, x) = u*(t, y), we obtain the equation

2, %

6 A%( *T — ou*
(6.6) Z (T — +Za,(T t,y)a .

iJj Vi Jj t i

The region D is transformed onto a region D* and conditions (6,2), (6,3) are modified,
too. Denote by K the set K = {[t, x] : 0>u*[dy} < 0}. We construct the matrix
function: A}(T — t,y) = Ai{(T — t,y) for all i, j except i =j =1 and for all
[t, y] e @*. Moreover, 0 < AT{(T — t, y) < AT(T — t, y) for [1. y] €K,

AX(T — t,y) = AT(T — 1, y) outside of K .

Since the matrix A* is symmetric and positive definite, obviously the matrix A*’ is
symmetric and can be constructed as pOSitiVC definite (if ATI —_ Afi is sufﬁciently
small). Evidently A* — A*' is symmetric and positive semi-definite. From that there
follows

2, % *

____%ZA T 1) 2% yarr—1,y) 2 <
0y; dy; i 0y;
o2u* *
S TAHT - 0) Y YaT— 1,9
- dy; dy; i dy;
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and u*(t, y) < v*(¢, ) as in Theorem 1 which means u(t, x) < o, x). The function
v*(t, y) is defined by v*(¢, y) = v(t, x) and it is the solution of

2
By 1) =T 4 Yl ) O
ot i 0y; 0y; i dy;
By the inverse transformation L™! the matrix function A*’ is transformed into A’ =
= LA*IT, i.e. A’ is symmetric and positive definite and A4 — A’ is symmetric and
positive semi-definite. There exists a matrix function B'(¢, x) such that A'(t, x) =
= B'(t, x) B'"(t, x). The inequality u(T, x) < o(T, x) implies P(B, a, f, Q) <
< P(B', a, f, Q) for every density f(x) in D.

Remark 4. As in the case of Theorem 1 we have proved a stronger result. If the
function u(t, x) of Theorem 2 is not convex in Q with respect to x then there exists
a matrix function B'(t, x) fulfilling all condition of Definition 6 and such that
P(B, a,f, Q) < P(B', a, f, Q) for all densities f(x) in D.

If the function u(t, x) determined in Theorem 2 is convex in Q then the region D is
convex.

7. We shall introduce some explicit conditions under which a(z, x), B(t, x) fulfil
condition (A). (Definition 4). We have already mentioned that item iii) is fulfilled if
a(t,x), B(t, x) are continuous in all variables and Lipschitz continuous in x. In this pa-
ragraph we shall deal with item iv) of Definition 4, i.e. we shall introduce conditions
for the unicity of bounded solutions of parabolic equations with noncontinuous
boundary values. (Item v) will be investigated in the next paragraph.) The existence of
bounded solution of (1,4) fulfilling (1,5) and (1,6) was proved in the proof of Lemma 2.
Actually, we proved that the function u*(¢, x) is solution of (1,4) under conditions
i), ii) of Definition 4. These conditions i), ii) are included in assumptions of
Lemma 5 and Lemma 6 so that the existence of such solutions is guaranteed.

Let N be a subset of S. The set N is almost everywhere in S if to every X € D the
set {[t, V1o oous Vo1l 2 [t V1o ooos Yue1s B(¥1s ooy Yumq)] €N} is almost everywhere
in <0, T) x K* where K" is some open subset of K* containing X and where
Y1, ---, Yn are local coordinates at X which together with 4 and K* fulfil all conditions
of Definition 2.

Lemma 4. Let a(t, x), B(t, x) be defined on Q = <0, T> x D where D fulfils
condition (B). Let the matrix A(t, x) = B(t, x) B'(t, x) be positive definite matrix
Sor every [t, x] € Q and let 0A;;ox;, 0*A;;[0x; 0xj, da;[0x; exist and

|Aij(tzs X3) — Aty x1)l = M({xz - x1|°' + |t2 - t1la/2) >

0A4;; oA;;
- ij (t2’ x2) - g”(tl, Xl) < M(}xz — xll‘z + ‘tz _ t!|a/2) ,

Xj J
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A,
t,, X3) —
ax,.axj(2 )= 3

lai(ts, x5) — afts x,)| £ M(|x, - X[+ | =1

S M(|xy — x4 + |t — 1|73,

*A;;
4 (tla xl)
x; 0x

J

a/Z)

da; da;
—(ty, x,) — — (4, x
ax.(z ) ax.(‘ )

i i

= M(lxz - xll" + |t2 - tll"/z)

for [t, x,] €0, s = 1,2 for all indices i,j where « is a positive number o < 1
and M is a positive number. Let uk(t, x), k = 1, 2 be given functions on Q such that
their derivatives

2
(). (), S
t i

Uy
t, X
0x 0x; 0x; (&%)

are continuous on Q and let a function ¢(t, x) be given on {[0,x] : xe D} U S(S =
=<0, T) x D).
If u(t, x) are bounded on Q and fulfil

ou o*u ou
7,1 — = ) A;t, x + )at, x) —
H ot Z, A )axiax,. Z ( )6xi
(7,2) lim u,(t, x) = ¢(0, x) for almost all xe D
-0+
(7.3) lim w(t, x) = ¢(t,X) almost everywhere on S

then u,(t, x) = u,(t, x).
The proof of Lemma 4 is in Appendix.

8. Lemma 5. Let all assumptions of Lemma 4 be fulfilled and let a(t, x), B(t, x)
be continuous in all variables and Lipschitz continuous in x. If f(x) is a given den-
sity in D then

(8.2) P(B, a., 0) = j £(x) (T, x) dx

where u(t, x) is the bounded solution of

2
83 M Y BT = 1, Bu(T— 1, %) = 4 Ya(T— 1, x) %
ot ik 0Ox; 0x; i 0x;

fulfilling
(8.4) limu(t,x) =0 for xeD,
: >0+
(8.5) limu(t,x) =1 for t>0, XeD.

This statement is valid also for f(x) = &(x) : P(B, y, 3(x), @) = u(T, x).
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Remark 5. The unicity of the bounded solution u is guaranteed by Lemma 4.
The proof of Lemma 5 is in Appendix.

9. Remark 6. Let a region C be regular (see definition in 1). In paragraph | there
was suggested the concept of the strongly maximal matrix function B(z, x) with re-
spect to a vector function a(#, x) and to the region C. The question arises if Theorem 2
can be adapted to this case. Assume that there exists a linear regular transformation
y = Y(t)x + ¢(r) which maps C onto a cylindric region Q = (0, T) x D such that
dy(1)/dt, de(t)/dt are Holder continuous. Equation (1,1) is transformed into

0 dr =[ My 0~ 0(0) + S0+ p)ale b0 (- oo |0 +

+ (1) Bt v (1) (v — (1)) dw(?) -

If the coefficients in (9,1) fulfil the assumptions of Lemma 5 and the region D fulfils
(B) then we can apply Lemma 5. We obtain that P(B, y, 5(x,), C) = u(T, ¥/(0, x,))
where 8(x,) is the Dirac function concentrated into the point x, and u(t, y) is the
bounded solution of the parabolic differential equation corresponding to (9,1)
according to Theorem 2 and fulfilling the initial and boundary conditions given in
Theorem 2. The coefficients at (0*u[dy; dy;) (¢, y) in this parabolic equation are the
elements of the matrix Y(T — 1) B(T — t, y (T — t) (y — o(T — 1))) B'(T — 1,
v (T — ) (y — o(T — 1)) ¥"(T — t). If Ais a symmetric matrix then BBy —
— YyAYT is positive definite if and only if the matrix BBT — A is positive definite.
Hence Theorem 2 can be applied in the following manner. If the bounded solution
u(t, y) of the parabolic equation corresponding to (9,1) according to Theorem 2 (or
Lemma 5) fulfilling (6,2), (6,3) is convex as the function of y then the matrix function
B(t, x) is strongly maximal with respect to the vector function a(t, x) and to the re-
gion C. The convexity is a necessary condition again. The matrix B(t, x)is strongly
maximal with respect to a and Cif P(B, a, f, C}y = P(B’, a, f, C) for every density f in
C, and every matrix function B'(t, x) fulfilling all assumptions formulated above and
if BBT — B’'B'T is positive semi-definite.

P(B,a,f,C) = P{w: 3 {t: [r. x(r, w)] ¢ C, 10, T>}'} .

10. Remark 7. Let [to stochastic equation (1,1) be given and let a, B, D fulfil the
conditions of Theorem 2. Let & be the set of the nonstochastic solutions of

(10,1) x = a(t, x)

for which there exists 7, 0 < © < T such that x(0) € D, x(t) € D. Let o be a set of
points [#, x], 0 < ¢ < 7 lyingin Q and simultaneously on some solution of . Denote
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by u(t, x) the bounded solutions of (6,1) fulfilling (6,2), (6,3). If the interior ¢° of ¢ is
nonempty then u(t, x) cannot be convex on ¢ with respect to x. We have

(10,2) P(B,a,f,Q)—>1 for B—0

if the initial density f(x) is concetrated on the interior of the set {[t, x] : t = 0} N 0.
In this case we can the Lu.b. of P(B, a, f, Q) only approximate, choosing the elements
of B(t, x) sufficiently small on ¢°.

Proof. If B — 0 then the solution x(r) of (1,1) converges to the solution x(t)
of (10,1) (which has the same intial values as x,(t)) in the sense |||x4(t) — xo(t)|||r — O
Since the solution of (10,1) passing through a point [t, x] € o certainly leaves D
on <0, T) we have (10,2). If u(#, x) were convex on o then by Theorem 2 the correspon-
ding Lu.b. of P(B, a, f, Q) would occur for given B. By the maximum principle there
is u(t, x) < 1 for t > 0, x € D and consequently P(B, a, f, Q) < 1. This proves the
Remark.

11. Theorems 1 and 2 can be applied in the one-dimensional case n = 1 and they
are identical then. But in the one-dimensional case explicit conditions are presented
which cannot be generalized directly to n > 1.

Theorem 3. Let a region Q be defined by Q = (0, T) x (x,, x,) where x;, x, are
numbers x; < X,. Let a function B(t, x) be defined on Q so that B(t, x) is continuous
in t, Lipschitz continuous in x, B(t,x) % 0 on Q, B*(t, x) and 3*B*(t, x)[0x* are
Hélder continuous in t, x (as in Lemma 4 with A(t, x) = B*(t, x)). Let oft), B(t)
be Holder continuous functions on 0, T). Put a(t, x) = o(t) + B(t) x. If a(t, x,) <
<0, a(t, x,) = O then the function B(t, x) is (strongly) maximal with respect to the
function a(t, x) and to the region Q.

Proof. By Lemma 4 and 5 condition (A) is fulfilled (n = 1). According to Theorem
2 it is sufficient to prove that the bounded solution of

(11,1) %g:%BZ(T—t,x)g%+a(T—t,x)Z—i
fulfilling
(11,2) lirgl u(t,x) =0 for xe(xy, x,)
-0+
(1,3) limu(t,x) =1 for t>0, i=12

XX
is convex in x. Obviously the following Lemma implies this statement.
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Lemma 6. Let a function b(t, x) be defined on Q = <0, T) x <Xy, X,), let b(t, x) >
> 0 on Q and

lb(tz, xZ) - b(tl, xl)l é M(lx2 - xliu + Itz - tlla/z) 5

1/2) > [ts’ xs] € Q )

0%b . 0%b
07(t2, x,) — P (t x0)| S M(|x2 = x4|* + |t — £,
s=1,2, M>0, O0<a<l1.

Let a(t, x) be defined as in Theorem 3 and let a(t, x) fulfil the conditions of Theorem
3. The bounded solution of

6u

(11,4) 1 b(t, x)— + a(t, x)

fulfilling (11,2), (11,3) is convex in x.

Proof of Lemma 6. Let ¢(x) be a convex function on {x;, X,», with Hélder
continuous third derivative and

o(x) =1, %b(0, x) (x)+a(0 x) (x)=0 for i=1,2.

We shall prove that a solution o(t, x) of (11,4) fulfilling
(11,5) (0, x) = ¢(x) for xed{xy, x>, v(t,x)=1 for t=0, i=12

is a convex function in x.

We shall prove this using an approximation method well-known in the numerical
mathematics. We divide the interval (xy, X,) by equidistant points x, + kh, h =
= (x, — x,)[n where n is an arbitrary integer. Put

(IL6) 0 <t < min [3 max [o(t) + B(t) x| ~ 3max b(t, x) 3 max lﬁ(t)d

where t€<0, T), x e {xy, X, i = 1,2.

Let v*(1, x) be defined at points x; + kh, It, k, I being integers and let v*(t, x) be
the solution of linear algebraic equations

(11,7) %t + 7, x) = v*(t, x) — ¥(t, X) % ((t) + B(t) x) [v%(t, x) —
— v*(t, x + (1, x) h] + b(t x) [o*(t, x + h) — 20*(t, x) + v*(t, x — h)]
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fulfilling
(11,8) v*(0, x) = ¢(x) for x = x; + kh
(11,9) vk(t,x;)) =1 for for t=1It, i=12.

The function v(t, x) is defined by v(t, x) = sgn («(t) + B(f) x). Since this method is
only slightly different from the well known method used in numerical mathematics
(e-g. [8]) the proof that v*(t, x) converges to v(t, x) for n — oo will be sketched only.

As usually, we see that v(t. x) fulfils
lo(t + 7, %) — o(t, x) + v(L, %) :7 (1) + B(1) x) [o(t. x) — o(t, x + ¥(t, x) h] —
- EE b(1, x) [o(t, x + ) = 20(t, x) + o(t, x — B)]| < Me(h + /)

where M is a constant. We use the fact that 0°v/0x® is bounded and |(8v[ot) (t, x) —
— (avfor) (¢', x)| £ M|t — ¢'|'/* (cf. Theorem 5.2 §5 Chap. IV [4] where due to the
assumptions on ¢(x), I > 1 can be chosen). If we denote 4(t, x) = v*(t, x) — v(t, x)
then A(1, x) is a solution fulfilling 4(0, x) = 0, 4(f,x;) = 0 i = 1,2 of the linear
algebraic system

T

(11,10) A(t + 7, x) = [ﬁ b x) + v (1 3) E 6l0) + 500 x)] Atx + h) +

+ [1 —5(1.0) 5 @) + 500~ 5 bl x)] At %) +

i [thz bt ) + v (1) (a0) + 400 x)] At x — h) + (e, %)
where
v¥(t, x) = max (0, v(1, x)), v7(t, x) = min (0, v(1, x)) and (1, x)
is a function fulfilling |y(, x)| £ Mx(h + /7). With respect to (11,6) we obtain

max {'A(t + 1,X); x = x; + kh} < max {|A(t, x)]; x = x; + kh} +
+ max {[y(t, x)|; x = x, + kh}.

Thus |4(1, x)| £ M(h + /7) and the convergence v*(t, x) - vz, x) for n — o
is proved.

We shall prove that the functions v*(t, x) are convex in x. Put (¢, x) = 3[sgn («(t) +
+ B(t) x + B(t) h) + sgn (off) + B(t) x — P(t) h)]. The function (¢, x) can assume
values —1, —4%, 0, 1, 1. The values —1, 1 will not be further considered since these
cases can be reduced to & = 0 by means of arbitrary small changes of a(t), A(1).
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With respect to (11,7), we obtain

(11,11) v¥(t + , x + h) — 20%(t + 7, x) + v*(t + 1, x — h) =
- [1 vl + B0 %) - 5 b6 ) + rﬁ(z)] [%(t, x + ) —

— 20%(t, X) + v*(t, x — B)] + & % [of) + B(t) x + SB(t) k] x
x [v*(t, x + 6h + h) — 20*%(t, x + 6h) + v*(t, x + Sh — h)] +

+ 2—;—2 b(t, x + h) [v*(t, x + 2h) — 2v%(t, x + h) + v*(t, x)] +
+ 5—7;3 b(t, X — h) [U*(t, x) — 20*(t,vx _ h) + U*(t, x — 2h)]

for }6| #+ 4 and for x = x; + kh such that x; < x < x,. For the sake of simpli-
city denote v = v(t,x), § = (t, x) and put v¥(t,x; + (—1)'h) =2 — v*(t, x; —
= (=1)"h) + 2k [|a(t, x;)|/b(t, )] (1 — v*(t, x; — (=1)" b)) for i = 1,2 i.. (11,7)
is fulfilled for x = x;, i = 1, 2.

For t = 0, v*(0, x) is convex since v*(0, x) = ¢(x) and ¢(x) is assumed convex.
Let v*(t, x) be convex in x then we shall prove that v*(t + 7, x) is convex in x.
Since v*(t, x) is assumed convex we obtain by (11,11)

(11,12) vt + 1, x + h) — 20%(t + 1, x) + v*(t + T, x — h) 2
> [1 v I Gl) + B ) — 5 blex) + r,B(t):l .
x [v(t x + h) — 20%(t, x) + v*(t, x — h)] + & % [o) + B(t) x + 8B(r) h] x

x [v¥(t, x + 6h + h) — 20%(t, x + Sh) + v*(t, x + Sh — h)]

for x fulfilling x + h + x,;,i = 1, 2, |5l + }. Since the convexity of v*(t, x) implies
v¥(t, x, — h) £ v¥(t, x,) = 1, v*(t, x; + h) < v*(t, x,) = 1 the inequality (11,12)

holds also for the points x = x; + h and x = x, — h. By means of (11,6) we obtain
T T
1—v—(e+px)—=b+1>0
; (ot ) P B
and using the definition of § we get

5£(<x+ﬂx + 6ph) g“o.
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From (11,12) then follows that v*(t + 7, x) is convex in x. Since (¢, x) is the limit
of v*(t, x) for n — oo, the function (¢, x) is convex in x, too.

We choose a sequence of functions ¢,(x) fulfilling conditions formulated above
(i.e. (p,,,(x) are convex, they have Holder continuous third derivative and

Pou(x) =1, 1b(0, x;)

d’e do
- (x;) + a0, x;) —" (x;) =0,
"0m () + (0, %) 927 )

i = 1, 2) and, moreover fulfilling the condition: functions ¢,,(x) converge uniformly
to zero on every compact subinterval of (x,, x,). As in the proof of Lemma 2 (and
using Lemma 4) we see that the corresponding solutions v,(t, x) converge to u(t, x),
u(t, x) being a convex function in x. Lemma 6 and Theorem 3 are proved.

12. Similarly as in Remark 6 we can extend Theorem 3 on a more general class of
regions.

Remark 8. Let ofr), A(t), h(t), (dh;/dt) (£), i = 1,2 be defined and Hélder con-
tinuous on <0, T, hy(f) < hy(f) for 1€<0,T). Denote by C the region of points
[t x]: hy(f) < x < hy(), 0 < t < T. Denote a(t, x) = oft) + B(t) x in C and assume
that B(f, x) is defined on C and fulfils there the conditions of Theorem 3 (where Q
is replaced by C). If a(t, h,(t)) < h)(t), a(t, hy(r)) = hi(t) then the function B(t, x)
is (strongly) maximal with respect to the function a(t, x) and to the region C.

The proof follows from Remark 6 and from the fact that the required transforma-
tion on a region (0, T) x (0, 1) has the form y = y(t,x) = (x — hy)/(h, — h,). Hence
the coefficients at dz in (9,1) are linear in y again and we easily establish that the
conditions of Theorem 3 are valid.

13. We introduce now three examples. Examples 1,2 show that Theorem 3
cannot be directly generalized onto a multidimensional case. In Example 3 an im-
portant case when D is a circle is investigated. In Examples 1, 2 regions D do not
fulfil condition (B). But in these cases we can calculate Green functions explicitly and
it is possible to show that in these cases the preceding results can be applied as if
condition (B) were satisfied.

Example 1. Let n = 2, the region D be a square (0, ) x (0, 1), 1 > 0, a(t, x, y) = 0,
and B(t, x, ) be a unit matrix for all ¢, x, y. We shall show that B is maximal with
respect to a = 0 and to the square D. To be able to use Theorem 1, we must prove
that the bounded solution of

2 2
(13,1) 6_u = 1(9_“ + éﬁ)

ot 2\dax?  0y?
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fulfilling

(13,2) limu(t,x,y) =0 for [x,y]leD, lim u(t,x,y)=1 for t>0,
t—0+

[x,y1~[X,5]
[X.7]eD

has nonnegative second derivatives du[0x? = 0, 8*u[oy* = 0in Q. Let v(t, x) be the
bounded solution of

(13,3) ®_

v
ot ox>

N | =

fulfilling

(13,4) limo(t,x) =0 for xe(0,1), o(t,0)=v(t,l)=1 for ¢t>0.
-0+ .

The solution u(t, x, y) can be written as

(13,5) u(t, x, y) = o(t, x) + o(t, y) — o(t, x) o(t, y) .
According to Theorem 3 (Lemma 6) the function u(t, x) is convex in x and since
0 < o(t, x) < 1 we obtain actually 0*u/ox> = 0, 0*u[dy* = 0 in Q.

On the other hand we shall prove that the unit matrix B is not strongly maximal
with respect to a(t, x, y) = 0 and with respect to the square D. According to Theorem
2 it suffices to prove that the solution u(t, X, y) is not convex with respect to the spatial

variables x, y. The bounded solution of (13,3) fulfilling (13,4) is given by the well
known formula

R (% — x + K .,
and by (13,5)

1ol

13,6 u(t,x,y) =1+ —1"*"'“—1— exp{ —

(13.6)  u(t,x, y) >(=1) p
k,mi 27'Ct 0Jo

5o 2
Gy mly y+ml)}d£dﬁ.

(X = x+k)*
2t

2t

Provided that u(t, x, y) is convex for all I > 0, T > 0, [t, x, y] e‘(O, T) x (0,1) x
x (0, I) we get a contradiction. The function u(z, x, y) must then have a bounded
limit #(t, x, y) for I - co. The function (t, x, y) must be convex for all x >0,
y > 0. (13,6) implies

it x,y)=1- ——L‘Lexp{ F=-x (- y)z}dxdy +

2t 2t
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Tl 05
R S e

R

By means of this formula we deduce

Pa _ x x3 [ &2
= —exp{— — exp{ — —%d¢&,
ox* p{ 2t}J_y p{ Zt} ¢
2 ' 2 x 2 2~ 2 2
?-1—‘=L exp - exp _< dé, au=—£exp L
ay?  nt? 2ty ). 2t ox dy nt 2t

The function # is convex if

o%u |* 0% o

O0x dy

x/Jt + t
Q}f " exp{— 5—2} déf Y exp{— 5—2} d¢ e:xp{———x2 + yz}.
tJ s 2 It 2 2t
For every ¢ we can find positive x, y, such small that the last inequality is not valid,
i.e. the function #(t, x, y) is not convex in x, y. This example shows that it is not pos-
sible to generalize Theorem 3 to the multidimensional case in the sense of Theorem 2.
However, it could still be a possibility to generalize Theorem 3 in the sense of Theorem

1 where only 9*u[0x} = 0 is demanded. To show that there is not such a possibility
we introduce another example.

Ilf
|

which means

4

A

14. Example 2. Let the region D be a triangle: D = {[x, y] : 0 < y < /3 min (x,
1 — x)}, let a(t, x, y) = 0 and let B(t, x, y) be the unit matrix on D. We shall prove
that the unit matrix B is not maximal with respect to a(t, x, y) = 0 and to the tri-
angle D.

With regard to Theorem 1 we need to prove that the bounded solution of (13,1)
fulfilling (13,2) does not fulfil azlz/é‘x2 >0, 0%ul0y* 2 0 on Q. Denote

Dk,z{[). e \/3<y<\/3mm(x—kl—x)}

l--k+1
2

<D:,,={(x,y]: \/3>y>\/3max(x—k,l—x)}.
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For bounded solutions of (13,1) fulfilling (13,2), we have

u(t, %, y) = 1 — 571; [Z Hnmexp{_ ( ;tx)"' (@ ;ty)’} d% 45 —

Bl el 5 5]

Denote
- 2 N 2
G =G(t % 7, x,y) = ex _(x~x) _(J’*)’)
(:%5.%) p{ 2t 2t
and
ukl(t’ X, y) = J‘J‘ G di dj; ’ u;:l(t’ X, J’) = Jf G df dy
Dicy D%

Evidently

] G|, .
- o
d

where h, d are the y-coordinates of the intersections of the straight line ¥ = x with Dy,

d < h and
oGy _o6) _
0x |y 0x|z=p

The domain of integration is the interval (}(I — k — 1) /3, 3(I — k) \/3>

Similarly
o%uy, oG
X, y)= — dy
ox? (& 5) j[ax:l Y

where d, h are the y-coordinates of the intersections of the straight line % = x
with Dy and the domain of integration is (3(I — k) /3, (I — k + 1) /3). Using
these relations, we obtain

¢2§
0x

Z=d

%u ® aG @ 6G | - |
es=-Ix[ Y wex[TY W)
X £=k+5/v3 =1-5/V3
Since
® 3G IS s R INEFS B N L aNE) &
—_ dj =3 \/ L TNT O TNT —
e 0% |z=r+5/y3 V(1) 8t
and

P RS N N g {__(y+x\/3——‘l\/3)2}

£=1-3/v3 V(@) -8t

" a6
o Ox
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we have

(14,1)

WU BV E e - oy IV G SR RN e
R e e et TR

—x/3+ k.3 (= x34+ k3
" Zk:y J(81) eXp{ 81t }

The right hand side of (14,1) cannot be positive for all ¢, x, y. If we take ¢, x, y
positive but sufficiently small then the sign of 9%u/ox* depends most essentially on
two terms: I = 0; k = 0. Hence 9%u[0x* > 0 in every neighbourhood of [¢, 0, 0],
t > 0 if and only if exp (xv \/3/(2t)) > (x \/3 + »)/(x \/3 — »). The last inequality is
not valid for 0 < x < ./(2t[3), (e — 1) x/3/(e + 1) < y < x /3, i.e. in every
neighbourhood of [t, 0, 0], t > 0, ¢ sufficientlly small, there exist points [z, X, vl
(6*u/ox?) (t, x, y) < 0. On the other hand, we obtain 8%u/dx? > 0 in a sufficiently
small neighbourhood of [0, 4, 3]. To prove this, we perform the transformation
x =%+ ¢ y=./3/2 — n. For sufficiently small ¢, &, n the most important terms are
I =1, k = 0. In this case 8*u[0x* > 0 if and only if exp (én \/3/(21)) > (£ /3 + 7).
(&3 =) Since £ /3 — 1 < 0 < &./3 + 1 we have 9*u[dx? > O there.

15. The last example deals with the case when D is a circle D = {[x, y] : x* +
+ y* < R*}, R > 0 and a(t, x, y) = 0. We shall show that the unit matrix is not
strongly maximal with respect to a and Q. However, the prescription will be given
how to choose a generalized strongly maximal matrix function B¥ with respect to a
and Q so that J — B*(t, x, y) B*(t, x, y) is positive semi-definite. The notion of
the generalized strongly maximal matrix function is introduced in the following way:
A matrix function B*(t, x, y) is called generalized strongly maximal with respect to a
and Q if it fulfils all conditions of Definition 6 except ii) (i.e. B*B*” need not be
smooth and positive definite).

If we require condition (A) to be fulfilled then the generalized strongly maximal
matrix can be approximated only. This result can be immediately modified to the
multidimensional case. The next Lemma is a generalization of the well-known the-
orem about the removable singularity of the harmonic function. It is interesting that
such result may be proved using Lemma 6 (Theorem 3).

Lemma 7. Let w(t) i = 1, 2 be independent Wiener processes fulfilling Ew(t) = 0,
Ewi() =t,i = 1,2. We have

(15,1) P{w:3{te0,T), wy(t,w) = 1, wy(t, ) = 0}} = 0. |
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Let u(t, x, y), u, g(t, x, y) be the bounded solution of (13,1) fulfilling
(15,2) limu(t,x,y) =0 for 0=x®>+ y*<R*, u(t,%,7y)=1
=0+
for t>0, X%+ y>=R?
and

(153)  limu,g(t,x,y) =0 for &* < x>+ y* <R*, u,(t,%y)=1

-0+
for X2+ 32 =¢> or X>+352=R*, t>0.

Then u, g(t, x, y) = u(t, x, ) for & — 0 and for fixed t, x, y,t = 0,0 < x* + y* <
< R%.

Proof. Lemma 5 implies
u(t,x,y) =Plo:3{r:1e0, ), &(7) + n*(x) = R*}},
u, g(t, %, y) = P{low:3{r :1€<0, 1), E¥(z) + n*(x) = R or &*(1) + n*(x) = &*}}
where &(f) = x + wy(1), n(t) = y + wy(t), & < x*> + y* <R? (ie. &n is the

solution of d¢ = dw,, dn = dw, respectively and (13,1) corresponds to this Ito
equation). Obviously

u(t,x, y) < ug(t, x, y) S u(t, x, y) + Plow:3 {r: 140, 1), &(7) + n*(x) = &*}.

Thus the second part of Lemma 7 is evidently a consequence of the first part of
Lemma 7.

We pass to the proof of the first part of the Lemma. Put R = ¢~ !. There is

(15,4) Plw:3{r:7e0,t), () + n*(x) = &*} £
S Plo:3{r:1e0,t), (1) + n*(r) = &
or GO 4 1) = N = toamst %.2).

It is sufficient to prove u,,-(t, x, y) > 0 for ¢ » 0 and x> + y* > 0. According
to Lemma 5, the function u, ,-1(t, X, y) is again the bounded solution of (13,1) fulfilling
Uy o-1(t, X, ) = 1fort > 0,%* + y2 = e? or X*> + y> = &~ 2. The function u, ,-:(t, x, y)
depends only on tand r = /(x* + y*) since (13,1) as well as the initial and boundary
values are independent of the rotation of plane. Put 0,(t, z) = u,,-1(t, %, ), z =
= Ig/(x* + y?) for & > 0. The function 6,(t, z) is the bounded solution of

a0 %0
15,5 —=1e
( ) ot te 0z%

fulfilling 6,(0, z) = Oforlge < z < —Igs, 0,(t, +1g,) = 1fort > 0. Using Lemma 6
we see that 6,(t, z) is a convex function in z. We shall prove lim 6,(t, z) = 0. Since
e—0
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0,(t, z) is convex in z and 0 < 6,(t,z) <1 on Ige < z < —lge the derivatives
(@0,/0z) (¢, £ 1) - 0 for £ > 0 uniformly in ¢. It implies [, (6°6,/0z%) (¢, z) dz — 0
for ¢ > 0 uniformly in ¢ and [§[%, (6?0, '/0z%)(, z) dt dz — O for & — 0. Since
0,(t, z) is convex in z nad (15,5) holds, we conclude [§[L, (96,/01)(r, z) dr dz =
= [, 0t,z)dz - 0 for ¢ — 0. If we consider the facts that 0,(¢, z) is convex in z
and bounded on {Ige, — Ige) again, we obtain (¢, z) » 0 for ¢ - 0. Together
with (15,4) and u, ,-(t, x, y) = 0,(t, z), the equality lim 6,(¢, z) = 0 proves the first
part of Lemma 7. &0

Example 3. Let D be a cricle D = {[x, y] : x* + y* <1}, T< 1, a(t, x, y) = 0 and
let B(t, x, y) be the unit matrix for all t, x, y. First of all we shall prove that the unit
matrix is not strongly maximal. Then we shall find a generalized strongly maximal
matrix function fulfilling: J — B*(¢, x, y) B*"(t, x, y) is positive semi-definite. To
describe such generalized strongly maximal matrix function we introduce a regular
region C defined by: C={[t,x,y]:x* +y* <1 —-T+1t 0<t<T} The
region C is a subregion of Q = (0, T) x D. The generalized strongly maximal matrix
function B*(t, x,y) is defined by BY,(t,x,y) = B3,(t,x,y) =0, Bi,(t,x,y) =
= — sin ¢, B},(t, x, y) = cos ¢ where ¢ = arctg(y[x) in Q — C and B*(t, x, y) is
the unit matrix in C. In Q — C the process is governed by Ito equation dx =
= — sin @ dw,, dy = cos ¢ dw, where w,(¢) is an one-dimensional Wiener process.
The solutions of this Ito equation have the following properties: The local diffusion
in the direction of the radius vector is zero (in @ — C) and the local diffusion in the
perpendicular direction is constant (in entire Q). If the initial values of a solution of
Ito equation dx = — sin ¢ dw,, dy = cos ¢ dw, are concentrated on a circle
X2+ y* =142 >1— T ie P{ow:x(0, 0)* + y(0, )* = r*} = 1 then the solu-
tion x(f), y(t) is concentrated on the circle x> + y> =r* + tfor 0 <t <1 — 12
This implies that the process governed by our Ito equation in @ — C moves away
from the origin in the deterministic manner and it reaches the boundary D at t =
=1 — r? < T. Nevertheless, it is a random process since the distributions of the
solution on the circle x> + y? = r?> + t may change with ¢, if the intial distribution
was not uniform on the circle x2 4+ y? = r2. Thus we can consider the surface S :
:x2 4+ y? =1 — T+ tfor0 <t £ T, whichis a part of the frontier C, as an adhesive
barrier. (The conditional probability that the solution will reach D under the con-
dition that at some moment ¢, this solution assumes values from Q — C only is
one.') This enables us to reformulate our problem. We take the unit matrix only in
the region C and consider the surface S as an adhesive barrier. Actually we shall
prove that the unit matrix is strongly maximal with respect to C. This part of the
proof is the most complicated one and will be performed in several steps. We shall not
deal with the existence of a process governed by Ito equation where the matrix of
local diffusion is a generalized strongly maximal matrix function, since we want to
use only the matrix functions fulfilling condition (A). The generalized strongly
maximal matrix function may be approximated by matrix functions fulfilling con-
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dition (A). Let us consider Ito equation dx = y(t,r)cos ¢ dw, — sin @ dw,,
dy = y(t, r) sin ¢ dw, + cos ¢ dw, where ¢ = arctg(y/x), r = /(x* + y*) and
y(t, r) is a given function. If y(¢, r) is sufficiently smooth and positive then the cor-
responding (by Theorem 2) parabolic system is (15,13). Let y*(¢, r) be defined by:
y(t,r)=1 for r< /(1 = T+1) and y*(t,r)=0 for J1—-T+t)=sr=1
(i.e., it equals to one on C and equals to zero on Q — C if this function is expressed
in the variables x, y). For y = y* we obtain a generalized strongly maximal matrix
function (the systems dx = cos ¢ dw; — sin ¢ dw,, dy = sin ¢ dw; + cos ¢ dw,
and dx = dw,, dy = dw, are equivalent — cf. Proposition in Appendix.) If y,, — y*
then P(B,, 0, f, Q) converges to the least upper bound of P(B’,0,f, Q) where
J — B'(t, x, y) B(t, x, y) is positive semi-definite and B’ fulfils condition (A).

Now we shall begin with the first part of the proof and show that the unit matrix is
not strongly maximal with respect to Q.

Theorem 2 shows that we shall deal with bounded solution of

(15,6) u _1 (iz_“_ 4 Tﬁ)
ot 2\ox%2 0y?
fulfilling
(15,7)  u(0,x,y) =0 for x>+ > <1, u(t,X,y)=1 for t>0,
X+ yr=1.

With respect to Lemma 7 we can approximate u(t, x, ¥) by u(t, x, y) = u, 4(t, x, y).
For v(t, r) = uy(t, x, y), r = /(x* + y*), ¢ > 0 we get that ¢, r) is the bounded
solution of

1
(15,8) 22l L2
fulfilling
(15,9) v,(0,r) =0 for e<r<1, vft,e)=0,1)=1 for t>0.

By Lemma 5 v,(t, ) = P{w : 3 {r : 1€ <0, 1), {(t) = ¢ or {(x) = 1} where {({) is the
solution of Ito equation

fodr

C(t)=r+f 9w,

0 2((x)
w(t) is some Wiener process, Ew(t) = 0, Ew?(f) = ¢. With respect to Remark 7, we
consider the equation { = 1/(2{) which has solutions {(f) = \/(r* + t). The interior
of the set o (Remark 7) is a nonempty set: ¢* = {[t,r] : 1 > r > /(1 — T+ 1),
0 <t < T}. Remark 7 implies that v,(z, r) cannot be convex in r. If we consider
a class of Ito stochastic equations

(15,10) = (2% + (8, (1) dw(1)
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then, by Remark 7, the extremal case occurs for y = 0 on ¢°. We shall show the mean-
ing of this assertion in the wording of the matrices B. By means of condition (A) or
Lemma 5 to (15,10) corresponds the parabolic equation

o % 1 dv
15,11 Wy r— 20 L0
( ) ot B ( ) orr  2ror
Let v,(t, r; 7) be the bounded solution of (15,11) fulfilling (15,9), then v,(t, ;7) =
= P{w:3{tre{T -1, T),{(t) = eor {(r) = 1}} where {(t) s the solution of (15,10)
fulfilling {(T — t) = r. By Remark 7 this probability converges to one if y — 0 and
if[t,r]ec®ie.

(15,12) vt r;9)>1 for y>0, r> /1 -T+1), 0<t<T.

Put u(t, x, y;7) = vt, r;y), r = /(x* + y*). The function u(t, x, y;y) is the
bounded solution of

0 2 2
(1513) 2 = 3[3? + 1 + (4> — 1) cos 20] Tu 3(y* — 1)sin 2¢ v,
ot ox? 0x dy

+i*+1-(*-1Dec 2]62"
r:s 4 Y 03(Pa—y‘2‘

fulfilling (15,3) (where R = 1), ¢ = arctg (y[x).
Let xo, yo be a given point 2 < x2 + yZ < 1. Using a new coordinate system r, k
in a neighbourhood of [x,, yo] where r has the direction of the radius vector of

[xo, ¥o] and k is the straight line perpendicular to r and passing through xo, o,
(15,13) will take the form

ou 2

QD
b

1
=-—+
ot 20k

%u y_z
2

rZ

D

The relation y — 0 means that the local diffusion in the direction of r converges to
zero and the local diffusion in the direction of k is constant. We cannot directly put
y=0(onx?+ y>>1— T+ 10 =<t < T)since we should obtain irregular para-
bolic equation (condition (A) is not fulfilled). But from (15,12) we obtain u(t, x,
y;9)>1ify—>0o0n x2+ y>>1— T+t 0=t < T and similarly as in Lemma 7
also u(t, x, y; y) > 1if y — 0 for the same ¢, x, y. The function u(t, x, y; 7) is the so-
lution of (15,13) fulfilling (15,7) (we can assume that y is a constant for this moment).
Hence the surface x> + y? = 1 — T + ¢ can be actually considered as an adhesive
barrier and our problem can be reformulated. Ito equations corresponding to (15,13)
are for example

dx = y(t, r) cos ¢ dw; — sin ¢ dw,
dy = y(t, r) sin @ dw; + cos ¢ dw,
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The first two steps are finished i.e. we proved that the unit matrix is not strongly
maximal and we suggested a way of constructing B* in Q — C.

Remind that 0<T<1, C={[,x,y]:x*+)y2 <1 -T+1t, 0<t<T}
S={tx,y]:x*+ y*=1-T+ 1,05t <T}, Cy = {[x,y] : x> + y* <1 =T},
C? = {[x, y] : x* + y* < 1}. The third part of the problem will be solved in accor-
dance with Remark 6. First we must transform the region C onto the region (O, T) x D.
This transformation has the form &* = (1 =T+ ¢)"'2 ¢ p* = (1 =T+ 1) '/ .
Ito stochastic equation d¢ = dw,, dp = dw, (which corresponds to (15,6) will be
transformed (by Ito formula or by (9,1)) onto

(15,14) dé* = =31 =T+ )" & dt + (1 = T+ 1) dw,
dp* = =31 =T+ )" 'p*dt + (1 = T+ )" 2 dw,.

We can apply Theorem 2 to (15,14) in Q = (0, T) x D. With respect to this Theorem
and (15,14) we obtain the parabolic equation

ou ou ou *u  d*u
1515) — = -1 -9~ {x— + ——)+ 1-0)"'—+—).
( ) ot ( ) ( 0x Y dy X ) ox?  oy?
We want to show that the bounded solution of (15,15) fulfilling (15,2) (R = 1) is
convexinx, y for0 < ¢ <T < 1. Then there follows by Theorem 2 and Remark 6 that
the unit matrix B is strongly maximal with respect to a = 0 and to C. The transforma-
tion t = 1 — e~ " transforms (15,15) to

2 2
(15,16) 6_u=_1(xa_u+y%)+l(a_u+ﬂ).

ot 2\ ox oy 2\ox%  8y?

The interval <0, T) is transformed to <0, —Ig (1 — T)). Since the property of u
being convex in x, y does not depend on this transformation we shall use the same
notation u for the bounded solution of (15,16) fulfilling (15,2) (R = 1) in the sequel.
First we shall prove that u(z, x, y) is convex in a neighbourhood of the cylinder
t 2 0, x2 + y? = 1. This will be done by means of functions u,(t, x, y) and v,(t, r).
By Lemma 7, we can approximate u(t, x, ) by u,(t, x, y). The function u(t, x, y) is
the bounded solution of (15,16) fulfilling (15,3) (R = 1). We can put vz, r) =
= u(t, x, y), r = /(x* + y?), ¢ > 0 again. The function v,(t, r) is the bounded so-
lution of

_ 2 2
(15,17) o _1-rdw, 19
ot 2r or 2or

<

|

(3]

fulfilling (15,9).

Let y(z) be the solution of dy/dz = ¥ exp 3(1 — y?), y(0) = 1. There exists
a number &(s) < 0 for every 0 < & < 1 such that y(5(c)) = &, ¥'(2) > O ¥ (2)>0

on {&(¢), 0), y'(0) = 1. /
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By the transformation v,(t, ¥) = 0,(t, z), r = ¥(z), equation (15,17) is transformed
into
2
(15,18) _a_g = 1 M
ot 2y'*(z) 0z*
and 6,(t, z) is obviously the bounded solution of (15,18) fulfilling 6,(0, z) = 0 for
3(e) < z < 0,01, 8(¢)) = 0,(¢,0) = 1for t > 0. According to Lemma 6 the function

0,1, z) is convex in z. Since lim §(c) = —oo there exists 0(t, z) = 11m B(t z) for
-0

every z < 0. The function (t, z) is convex in z and bounded. This 1mplles that 6(t, z)
is nondecreasing. Since v,(1, r) = 0,(t, z) there exists v(t, r) = 11m vt r)for0 < r <

< 1. Since (00/0z)(t, z) = (ovfor) (t, ) Y'(z), r = Y(z), ¥ (z) > 0, the function
v(t r) is also nondecreasing in r. Since (026,/0z%) (t, z) = (0%v,/or?) (¢, r) Y'*(z) +
+ (9v,[or) (¢, ) ¥"(2), r = ¥(z), ¥"(z) > 0 and 6, is convex in z the function v,(t, r)
is convex in x at all points [¢, r] for which (év,/or) (1, r) < O i.e.

(15,19) ?(t,r)go for 0SI<ST, 0<rgl
r

%1120 for for which
Py (t,r) = or [t,r] for whic

To solve the problem whether v, is convex also for dv,/or > 0 we need the
following

Proposition. Let y(z) be the solution of

o ()

dz? ¥ dz dz

a, = n*(2 — )72, & > 0, fulfilling the initial conditions Y(0) = 1, ¥'(0) =
Then Y(z) is defined on an interval €0, zo), zo > 0, Y(zo) = & and ¥'(z) < Ofm
z2e<0, zo), Y"(z) < O for those z > O for which y(z) > (a, — 1)~ /2

Proof of Proposition. Let G be the region of poins [y, 1//’] ey <1,
Y’ < 0in R,. The frontier G consists of G, = {[1,y'] : ¢’ < 0}, G, = {[¥,0] : e <
Sy =1}, Gy = {[e,y']: ¥’ < 0}. We shall say that a solution y(z) is in G for
some z or intersects G if [§(z), y'(z)] belongs to G for this z or [Y(z), ¥'(z)] € G,,
respectively. The solution y(z) enters G for z > 0 since ¥ < 0 for z > 0, Y = 1,
Y’ < 0by (15,20). We shall prove that y(z) cannot leave G but by intersecting G and,
simultaneously, it cannot stay in G for all z. Obviously y(z) is defined on some maxi-
mal interval <0, z,), z; > 0 (z; = oo is possible). We assume that y(z) does not
intersect G3 on <0, z;). Since y(z) cannot intersect neither G, for z > 0 (there is
Y’ < 0) nor G, (G, consists of solutions (z) = const and the unicity conditions are
fulfilled) and since we assume that /(z) does not intersect G, the solution y(z) must
stay in G for z € 0, z,).
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First we eliminate the case z; = co. If we multiply (15,20) by (dy//dz)~" and inte-
grate, we obtain

(1521) ¥(2) = —w(z)exp{‘:{f@ +a, j () dn} for 0<z<z,.

As ¢ <(z) < 1 for z 2 0, we obtain ¥'(z) £ —y(z) and finally y(z) < ™% for
z €0, z,). Certainly it cannot be z; = co.

Secondly we shall prove that ¥(z) must intersect G. Since [Y(z), ¥'(z)] € G for
z€<0, z,), we have y'(z) < 0 and there exists lim y(z) = &. As z; < o0, [Y(2),

zzy—
y’'(z)] cannot stay in any bounded set and this implies lim infy’(z) = — oo. Accord-

zorzy—

ing to (15,21) this means lim Y'(z) = —oo. As lim y(z) = & the integral [5' (1 —

z—2)

= () W) ~" (= W/(n)) " dn converges and (=G WE) " (v i

a continuous function on <0, z,) if its value for z = z, is zero. We shall prove

Z1 — al2(;
(15,22) PR TP R Tl 7 () N

0 lﬁ(ﬂ) (—' l//I('I))

Equation (15,20) can be rewritten in the form

(c_i_gb_>"3 gi% =a,z + —~—#] — lj/z <%>—1.
dz dz ] dz

If the last term is considered as a known function, we obtain

zq 2 ~1/2
(15,23) t//’(z) = — (1 — az* + Zj ! - dn) for 0<z<z,
o Y(—¥)

(529 @) =1 [ (1-a2 2 L= lar)
15,24 l//Zz]——j(l—aﬁ-i—Zj———— ) for 0z <z;.
0 0 ‘/’(““/’ )

Equation (15,23) implies 1 — a,z> + 2 G (1 — y*) ¢y~ '(=y') " dy > O for z < z,.
The left hand side of (15,22) must be nonnegative. In fact, supposing the left hand
side of (15,22) is positive then there exists z, < z; such that 1 — a,z> + 2 [§ (1 —
— Y)Yy~ (=y)""dn = & > 0 for z € (z,, z;) where § > 0 is some number. With
respect to (15,23) it implies y'(z) = —36~ '/ for z € (z,, z,) but this is a contradiction
with lim y'(z) = —oo. (15,22) is proved. Using e < y(z) < 1, y'(z) < 0 for z e

z—zy

€ <0, z,) and (15,24), we obtain

‘//(Z)<1—J‘(1—a§2+2j M—IZ/; )“”df:

- Laresinfz a1+ 2 [ qn) ] = 1= Loaresin 2
=1 — ——arcsin 1+ =1l- ——arcsim —
Ja, [ ’ < 0 U(—¥) ) ] Jao

597



for 0 < z < z;. The last equality holds with regard to (15,22). Hence

limy(z) <1 — 2 =2,
z-*zl-—l//( ) - 2\/118 2

This contradiction proves that [(z), y'(z)] must intersect G5 on (0, z,), i.e. there
exists z, > O such that y(z,) = & and [Y(z), Y'(z)] € G for z € (0, z,). Simultaneously
we have proved ¥'(z) < 0 for z € €0, z,).

Further, we shall deal with y"(z). (15,20) can be rewritten by ¥" = a,zy/"*[1 +
+ (1 =y a, Yy "Y' 'z7"] and since lim (1 — y?)/(ayy’'z) = —2[a, > —1 the
z=0+

second derivative y"(z) is negative for sufficiently small positive z. Let z5 be the first
number greater than 0 for which y"(z) = 0. Assume ¥(z;) > (a, — 1)7'/? then the
inequality ¥" < y'2y(1 — ¢*)"*(a, — 1 — ¢ ) holds on (0, z;) (its right hand
side being positive). This inequality gives —a, + 1 + ¢~ + (1 — Y)Y~ ' " 2" <
<0 on (0,z;) and by integration —a,zs + (1 — ¥*(23))/(¥(z5) (—¥'(z3))) < 0.
This inequality is equivalent to y"(z3) < 0 according to (15,20). This contradiction
implies ¥(z3) < (a, — 1)™'/* and Proposition is proved.

We return to equation (15,17) and perform a transformation v,(t, r) = 6,(t, z),
r = Y(z). The function 6,(t, z) is the bounded solution of

1 30 a, 00

— = z
o u*z)oz2 2 oz

fulfilling 6,(0,z) = 0 for 0 < z < z, 0,(t,0) = 6(t, zo) = 1 for ¢ > 0. Applying
Lemma 6 we conclude that 6,(t, z) is a convex function in z. Since (9%6,/0z%) (t, z) =
= (8%v,[0r?) (t, 7) ¥'*(2) + (9v,]or) (¢, r) ¥"(2), r = Y(z) and ¥"(z) < O for Y(z) >
> (a, — 1)7"/2 the function v,(t, r) is convex as the function of r at all points ¢, r
for which (dv,[or) (t, ) 2 0, r = (a, — 1)7'/%. (15,19) implies that v (¢, r) is convex
as the function of r at all points [z, r], r = (a, — 1)~/2. Hence also the limit o(z, r)
is convex as the function of r at all points [¢,7], r = 2(n® — 4)~"/% (a > n?[4
for ¢ - 0). Since u(t, x, y) = v(t, r), r = \/(x* + y*) and considering the first part
of (15,19) we conclude that u(t, x, y) is convex as the function of x, y for [t,x, y] : x* +
+ y2 2 4(n* — 4)7".

To prove that u(t, x, y) is convex at all points of (0, —Ig(1 — T)) x D we put
At, x, y) = (0%ufox?) (t, x, y). By (15,16) the function A(t, x, y) is the solution of

a2 1 a2 0A 1/0%4 0%
=——(2+xZ 4y )+ (22 + 22
2 ox Ox 2\0x%  9y?

fulfilling A(0, x, y) = 0 for x* + y? < 0%, A, X, ) = d%u/ox* for t 2 0, X% + 72 =
= o2 where ¢ = } + (n® — 4)~!/2. Since we proved that (0*u[0x?) (t, X, 7) = O for
X? + j* = o we obtain by the maximum principle A(t, x, y) = (0%u[0x?) (t, x, y) =
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> 0. Since (15,16) is independent of the rotation of the plane we have proved simul-
taneously (0%u[ol?) (t, x, y) = 0 for every vector I = 0, i.e. the function u(t, x, y)
is convex as the function of x, y.

APPENDIX

This part is devided into two paragraphs which are devoted to the proofs of Lemma
4 and Lemma 5.

16. The proof of Lemma 4.
Let u,(t, ), k = 1, 2 be the bounded solution of

(16,1) ZA,,(t x) o+ Za (1, x)——

fulfilling

(16,2) lim w(t, x) = ¢(0, x) for almostall xeD,
t—>0+

(16,3) lim w,(t, x) = o(t, X¥) almost everywhere in S .

We put u(t, x) = u,(t, x) — u,(t, x). The function u(t, x) is the bounded solution
of (16,1) fulfilling

(16,4) lim u(t,x) =0 for almostall xeD,
=0+
(16,5) lim u(t, x) = 0 almost everywhere in  S.

We shall prove u(t, x) = 0. On the contrary, let a point [7, %] exist such that
u(f, ) > 0 (if u(?, X) < 0 we consider —u(t, x)). Certainly 0 < ¥ < T. Without loss
of generality we can suppose T = 7. First, we construct a sequence of regions D,,
such that ¥e Do Dy = ...< D, =D, = ..., UD,, = D. To every point Xe D

m

there exists a ball K and local coordinates yy, ..., y, such that besides assumptions
of Definition 2 the following conditions are fulfilled: D,, n K can be expressed by
means of functions h,,,(yi, cees Ve 1). The domains of definition of h,, contain a neigh-
bourhood K* of the origin of y-coordinate system which is part of K* (K* and K*
are independent of m), hm h,=h, 11m 62hm/6y, dy; = 0*h[dy; dy; uniformly onK™*,

sup || 2+ < 0 where ]D I‘“") = sup ||+ and the norm |h,,| " is defined
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in [4] Chap. I §1 sect. 2 (1,9). Let &, be a monotonically decreasing sequence of
positive numbers ¢,, > 0 for m — o, 2¢, < T. The adjoint equation to (16,1) is

(16,6) )

116

(Au(t x) v) Z o (a (t x) U) + — =

Let G,, be the Green function of (16,6) for the region (0,T) x D,,. Denote U,, =
= {[&y, x] : x€ D,,} U <&, TY x D,,. If we express G,, as G,(t, x) = p(T; %; t, x) —
— z,(t, x) where p(z, & t,x) is the fundamental solution of (16,6) and z,(t, x) is
some solution of (16,6) (z,(T. x) = 0, z,(t,x) = —p(T, %; t, x) on <0,T) x D,,)
we obtain by means of (13,1) to (13,3) and by Theorem 5,4 Chap. IV [4] that G,, and
9G,,[0x; are bounded on U,, independently of m (cf. Remark 9).

For u(t, x) and G,(t, x) the Green formula
%0 " ou G oA;; 0
16,7 - Gy — — ud;; —= — uG,, —4\) + auG, | = = (uG,
(167 .-; 0x; [,—;( " ox; " ox; ax,) :| 6t( )

holds. Integrating (16,7) over (s, T — &,) x D,, we obtain

(16,8) ‘[ u(T — &,, X) G(T — &, x) dx = J &y X) Gpf&, x) dx —
D

—Zcos(vx)f J y ("‘dds

i,j=1

where v s the outwardly directed normal to D,, and ds is the surface element on
D.(S, = (¢ T — &,) x D, G, = 0on S,). Since G, 0G,[0x;, u are bounded and
(16,4), (16,5) are fulfilled we get from Lebesgue Theorem that the right hand side of
(16,8) converges to zero for m — oo. As G,, are Green functions ( lim z,,(T — &, x) =

= 0) the left hand side of (16,8) converges to u(T, x) for m— co. This contradiction
(u(T, %) > 0) implies u(t, x) = 0.

17. Now we shall prove Lemma 5.
The following proposition will be needed.

Proposition. Let a(x), BY)(x), i = 1, 2 be defined, Lipschitz continuous and bound-
ed in the whole R, and

BM(x) BVT(x) = B®(x) BP(x) .
Denote Z(x) = B®(x) BPT(x). We assume that Z(x) is either positive definite or it
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is the zero matrix and that a(x) = 0 at all points at which Z(x) is the zero matrix.
If x9(t) are solutions of '

(17,1) dx = g(x) dt + BP(x) dw(t)
with the same initial value then x()(t), x®)() are equivalent.

Proof. Let D be the component of the open set where Z(x) is positive definite.
Let from the beginning x(0) have values from D only. We can easily prove that
x((f) are C-processes in D (see [6]). It can be done by means of the semi-group of
operators associated to xV(t) (T{(g(x,)) = E(g(¥"(¢))) where x¥(z) are solutions
of (17,1) with a nonstochastic initial value x,) and by means of the fact that Z(x) = 0
and a(x) = 0 on the frontier of D. Since x‘(t) have the same differential operator,
Conclusion 5,24 §6 Chap. 5 [6] implies that xt(r) are equivalent in this case. Since
for the values x, for which Z(x,) = 0 the solution of (17,1) is x(t) = x, the Proposi-
tion is true in the general case, too.

Proofof Lemma 5. Let u(t, x) be the bounded solution of

0 2
(17,3) M =4 ¥ BT~ 13) BT - 1,%) 0u_
i,J.k i 0X;
ou
+ Za,—(T— t, x) a——-

fulfilling
(17,4) lim u(t,x) =0 for xeD,

-0+
(17,5) lim u(t,x) =1 for t>0, XeD.

X=X

Let G(t, x; 7, y) be the Green function of (17,3) for the region Q. Let ¢(x) be defined
in D, ¢(x) = 0in a neighbourhood of D and let ¢(x) have Holder continuous second
derivatives. Put #(t, x) = [G(t, x; 0, y) ¢(y) dy and u(to, xo) = E(¢(x,(T))) where x,
is the solution of (1,1) with the adhesive barrier D (Definition 3) and with the initial
condition x(T — t,) = X,. We shall prove v(t, x) = (¢, x).

«) First, we consider the case that a(x), B(x) do not depend on t. Let a(x), B®)(x)
be an extension of a(x), B(x) onto R, such that the assumptions of Proposition are
fulfilled. Since Z(x) = B™(x) BM7(x) is positive definite or the zero matrix a sym-
metric positive definite matrix function B®)(x) exists such that B®(x) B»7(x) =
= Z(x) and all other assumptions of Proposition are fulfilled. Finally, we find
a matrix function B®)(x) which is uniformly positive definite and uniformly Holder
continuous in the whole R, and B®(x) = B®(x) for x € D. Denote by xD(1) the
solution of (17,1) for i = 1, 2, 3 with the initial value (T — ¢,) = x,. By Proposi-

601



tion and by Conclusion 11.13 Chap. 11 [6] the solutions x(t) are equivalent.
If x(f) is the part of x*)(¥) in D then x(f) may be considered as the part of x®)(t) in D.
In the case i = 3 we can apply Theorems 5.11 and 13.18 from [6]. These Theorems
imply that there exists a transition density of x(t) and this transition density is the
Green function of

(17.6) — =1 Z B,k(x) B,k(x) -+ za (x)

for the region Q. (The notation in [6] is different, e.g. p(t, x, y) is the Green function.
The relation between this and our notation is p(t, X, y) = G(T — t, x; T, y).)

B) Now we pass to the general case when a, B may depend on t. In this case we
construct the extension B®)(t, x) such that

(17,7) |BF(t1, x) — BP(t,,x)| £ M rl}ja;c_|Bi,.(t,, x) — Byj(t,, %)|
xeD,i,j

where M > 0. We divide the interval (0, T) into m subintervals <k T[m, (k + 1) T[m)
k =0,...,m — 1forevery m. Put a™(t, x) = a(kT|m, x), B™(t, x) = B®(kT|m, x)
for kT/m _S_ t < (k + 1) T/m. Let £™(t) be the solution of

(17.8) dx = a™(t, x) dt + B™(t, x) dw(r)

fulfilling the nonstochastic initial value xo, xo € D (x"™(T — t,) = x,). Let %™(t)
be the part of £(t) in D and x{™ the solution of (17,8) with the same initial value and
with the adhesive barrier D. Put v,(to, xo) = E@(x"(T)) (xI™(T — t,) = x,). Let X(t)
be the solution of (1,1) with B(t, x) = B®(t, x) fulfilling %(T — t,) = x,. Since
50 — #0) = [ (@, 5(2) — @ 7)) de + fo- (B, 5(2) —
— B, ) ) + o (ale, 56) — A, ) de + [y BOG 5(2)
— B™(z, %(r))) dw(t) we obtain from (6,2) and (6,1) [5] (for ¢ = 1, F(f) = 1)
Il — 2l = o Jo [ — 5] de M T 15— S ar s u
max |a(t, x) — a™(t, x)| + M max |B(t, x) — B{’(t, x)|. This inequality yields
& = ||, = VE sup Ix(r) — x> > 0 for m — o as max |a(t, x) —
(T

—a™(t, x)l — 0, max IB(”(I x) — B{™(t, x)I — 0 for m - oo (cf. (17 7).
t,x
Denote by ,,(w) the first exist time of X™ from D. Since (cf. Remark 9)
(17.9) Pl :3{€:%(&)¢ D, ¢ e (t(w), t(w) + h)}, H(w) < T} = P{lw : () < T}

for every h > 0 where t(w) is the first exit time of X from D, we obtain z,,(w) — (o)
in probability. Hence |||x, — x! i
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alent.) We have proved v,(t,x)— t(t, x) for m — co. On the other hand, by the def-
inition of v,, and ¢ we have

(17,10) alt, X) = f G(T—t,x;T, y) o(y)dy =
= jG,,,(T — t,x; T = kT|m, y) .[Gm(T — kT|m, y; T, z) p(z) dz dy =
—J ,,,(T— t,x;T — kT|m, ) v,(kT[m, y)dy for kT/m <1,

where G,(t, x; 7, y) is the transition density of X™(x{™ is the solution of (17,8) with
the adhesive barrier D, #™ is the part of X in D). Recalling the result of section «)
we find that v,,(#, x) is the solution of

(17,11) %’ =13 .Z_ BT — t, x) BGUT - ¢, x)

xi xj
(m ov
+ Ya{™(T - t, x) —
i 0x;

for kT/m <t < (k + 1) T/m fulfilling v,(t, X) = 0 for Xe D the initial values
v,(Tk[m, x) being given by the solution of (17,11) which was determined in the
preceding interval ((k — 1)T/m, kT[m). Finally v,(0, x) = ¢(x). The function

4,(t, x) = #(t, X) — v,(t, x) is a continuous function which is on, every (kT[m,
(k + 1) T/m) the solution of ;

L Ya(T 1) x)f’—‘i +

; 0X; T ’ 0x;

2_

+3 % (BT~ 1.%) BT — 13) = BT~ 1,3) BP(T = 1.9) - 9 (;’
ik ‘ X

[ddd ]

o4

= =13 Z BEUT — t,x) BG(T — ¢, %)

+ 2 (a(T = t,x) — a™(T - t, x))*aﬂ o
! Cox;

with 4,,(1, x) = 0 for Xe D and 4,(0, x) = 0 for x € D. Recalling’ the ‘assumption
about ¢(x), we find (Theorem 5.2 §5 Chap. IV [4]) that 8%5/dx; dx; and 95/dx; are
bounded. It implies 4,(t, x) > 0 for m — co. We have proved v(t x) = i(t, x).
We deduce by the maximum principle that the same is valid if (p(x) is continuous,
¢(x) = Ofor X e D only. Putii(t, x) = 1 — (¢, x), u(t, x) = 1:— v(t, x). The function
ii(t, x) is again the solution of (17,3) fulfilling (17,5) and the initial condition u(0, x) =
= y(x) where y(x) is continuous and y(X) = 1 for X € D. Analogously u(t,, x,) =
= E(Y(%(T))) (where X(t) is the solution of (1,1) with X(T — t,) = x,). Agam u(t, x) =
= ii(t, x). Denote by §(x) the function: §)(x) = 0 for x € D and §/(X) = 1 for X € D.
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The function §(x) can be approximated by functions Vm(x), ¥,,(X) continuous, 0 <
S Yu(x) £ 1, Y(x) = 0 outside of @(2\"‘“, D)y(2 ™+ x;"eighbourhood ;)f ;)
and y,(x) = 1in 0(2™™, D). The corresponding solutions i1,,(t, x) converge as in the
proof of Lemma 2 to the solution #(t, Xx) given by (17,4) and (17,5). The values
u,(T, x) converge to the probability P(B, a, (x), Q). From this immediately follows
that Lemma 5 is true for every density f| (x) in D.

Remark 9. Throughout the proof of Lemma 4 we needed to choose the number ¢
in (5,13) [4] Chap. IV independently of m. From the proof of Theorem 5,4 Chap. IV
there follows that it is possible. We divide the regions D,, on Q®™ @®™ as in [4].
For k e M these regions do not change and for k e 9 the functions h is replaced
by h,, only. Since the functions C(")(x) may be constructed so that they are independent
of m the parameter m occurs in the proof of (5,13) and (5,14) only in Z{™. However,
the frontiers D,, were chosen just in the manner that all necessary estimates of Z{™
are independent of m.

The successive construction of B%(x) in section a) of the proof of Lemma § is used
since it would be impossible to construct directly B‘®(x) which is uniformly positive
definite, Holder continuous and B®(x) = B(x) on D.

The proof of (17,9) is a modification of the proof of Lemma 1 §6 Chap. VIII [7].

References

[1] 1. Vrkoé: Uber eine bestimmte Klasse der zufilligen Prozesse mit absorbierenden Barrieren.
Cas. pro pést. mat. 89 (1964), 402—425.
[2] 1. Vrkoé&: On homogeneous linear differential equations with random perturbations. Czech.
Math. J. T 16 (91), 1966, 199—230.
[3] A. Friedman: Partial differential equations of parabolic type. Prentice-Hall, Inc. 1964.
[4] O. A. Jaowncenckan, B. A. Cosonnuxos, H. H. Yparsyesa: JluHeiiHble W KBa3wIAHEHHbIE
ypaBHeHusl napabommyeckoro tuna. Mi3gar. Hayka, Mocksa 1967.
{51 I. Vrkoé: The weak exponential stability and periodic solutions of Ito stochastic equations
with small stochastic terms. Czech. Math. J. 18 (93) 1968, 722—752.
{6] E. b. Qunxun: MapkoBckue npouecchl. I'oc. M3n. ®du3.-Mart. JIut. Mocksa 1963.
{71 H. H. Tuxman, A. B. Cxopoxod: BBenenne B TeOpHio CilyyailHpIX mponeccoB. M3n. Hayka,
Mocksa 1965.
{81 I. Babuska, M. Prdger, E. Vitdsek: Numerical Processes in Differential Equations. SNTL,
. Prague, 1966.
{91 U. U. Iuxman, A. B. Cropoxod: Croxactmyeckue aubdepeHumansHele ypaBHeHus. W3,
Hayxoga Qymxa, Kues 1968.
{10] W. H. Fleming: Some Markovian Optimization Problems. Journal of Mathem. and Mech.
Vol. 12, 1963, 131—140.

Author’s address: Praha 1, Zitna 25, CSSR (Matematicky tstav CSAV).

604



		webmaster@dml.cz
	2020-07-02T21:28:30+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




