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THE CLASS OF FUNCTIONS FULFILLING THE INEQUALITY
IfGe + 2) = £x) = (v + 2) + SO = [x = y] (2]}

Ivo VRkOC, Praha
(Received September 12, 1968)

The condition (1,1) on a function f(x) is considered in connection with the expo-
nential stability [1]. Another condition that can be used for the same purpose is that
f(x) has continuous derivatives. A question arises, namely, what is the relation
between the two mentioned classes of functions. The problem is formulated generally
for transformations from linear spaces with semi-norms [2] into Banach spaces. It
is shown that a transformation fulfilling (1,1) and some weak additional assumptions
permits the unique extension such that the Gateaux differential T, exists and T,
depends continuously on x in the sense of (11,1) (for the exact formulation see
Theorems 1 and 2). ‘

1. Definition and basic concepts. In what follows the symbol meas denotes always
Lebesgue measure in Euclidean space of an arbitrary dimension. Instead of Lebesgue
measurable function we shall speak about measurable function only. Let G be an
open set of the n-dimensional Euclidean space E,. We say that a measurable set D
is almost everywhere (a.e.) in G, if meas (G — D) = 0. An open set G is called the
carrier of D if it is the largest open set such that D is a.e. in G. In case of the one-
dimensional Euclidean space the components of the carrier G will be called carrier-
intervals.

Let A be a linear set. We denote by A(x; hy, ..., h,), x € 4, h; € A the linear set of all

elements of 4 of the form x + ), A;h; where 1; are real numbers. There exists a one-
’ i=1

to-one transformation @ of A(x; hy, ..., h,) onto the n-dimensional Euclidean space E, :
O(x + Y, Ahy) = [A1, ..., 4,] provided that h; are linearly independent. If B is
i=1

a subset of A(x; hy, ..., h,), then O(B) = {0(z) : z € B}.

Let A be a linear set with a semi-norm [2]. We denote by U(x; hy, ..., h,; 6)
a d-neighbourhood of x in A(x;hy,..., h,), ie. U(x;hy, ... h;8)={z:z€
€ A(x; hy, ..., by), |z — x| < 6}.
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Definition 1. Let D be a subset of A. The set D is a.e. in U(x; hy, ..., h,; 6) if
O(D ~ U(x; hy, ..., h,; 8)) is ae. in OU(x; hy, ..., h,;8)) (h; are linearly inde-
pendent).

Definition 2. A subset S of A is called the basis of A4 if every element x € A is a linear
combination of elements of S.

Definition 3. Let 4 be a linear set with a semi-norm, D a subset of 4 and S a basis
of A. The set D has property (A), if there exist positive functions &(x; hy, ..., h,)
defined for all integers n = 2, all x € D and all linearly independent h;€ S,i = 1,...,n
such that D is a.e. in every U(x; hy, ..., hy,; 8(x; hy, ..., h)).

Definition 4. Let A be a linear set with a semi-norm, D, Q subsets of A. The set Q
is called the star-neighbourhood of D if there exists a positive function #(x, h),
x e D, he A such that x + Ah e Q provided that xe D, h e 4, |Ah| < n(x, h).

Definition 5. Let A be a linear set with a semi-norm, D a subset of A with Property
(A4). We denote by ]:(D) the set of all triplets [x, h, 6] where x € D, h € A, 6 is a positive
number such that D is a.e. in U(x; k; &). Denote by L(D) the set

{y:3{[x,h,0], A:[x,h,8]€ D), y = x + Ah, |ih| < &}},

i.e. the set of all points of A4 which belong at least to one interval U(x; h; 6) fulfilling
[x, h, 8] € L(D).

Let B be a Banach space. In this paper we shall deal with transformations f : D - B
fulfilling the inequality

(L1) I + B) = 1) = £(v + B) + )] < | — ] ((])

for xe D, x + he D, ye D, y + he D where w(n) is defined and continuous for
n 2 0, w(0) = 0.

Definition 6. We say that f*(x) is an extension of f(x) on L(D) if f*(x) fulfils (1,1)
on L(D) and f*(x) = f(x) on D. The extension on L(D) is unique if any two extensions

are equal on L(D).

Definition 7. Let f be a transformation f : D — B where B is a Banach space, D is
a subset of a linear set A. Let x € D. If D is a star-neighbourhood of the point x and if

T.h = lim % (F(x + Ah) — £(x))

exists for all he A and T, is a linear operator T, : A — B, then T, is called the
(Gateaux) differential of f at the point x.
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The semi-norm of A4 induces a certain topology on A. Although the topology need
not be Hausdorff topology, we say that a transformation f: D — B, D < A is
locally bounded (locally Lipschitz continuous) if to every x € D there exists a region
G,, x € G, = A such that f is bounded (Lipschitz continuous) in G,.

2. Let [x, h, 5] € L(D) then we can define ¢(x; h; ) = f(x + Ah). The domain of
definition of ¢(x; h; 2) (as a function of A) is O(D n A(x; h)). With respect to Defini-
tion 5, D is a.e. in the U(x; h; &) and this means (Definition 1) that O(D n A(x; h))
is a.e. in some open interval (a, b). The next Lemma enables us to consider only
transformations ¢ : (a, b) - B where (a, b) is an open interval.

Lemma 1. Let A be a linear set with a semi-norm, B a Banach space, D < A,
D have Property (A), f be a transformation f : D — B fulfilling (1,1). Let [x, h, 5] €
€ L(D), then the function o(x; h; 1) is defined on H = O(D n A(x; h)) which is a.e.
in some carrier-interval (a, b) containing 0 and

21 fe(xshs 2+ y) = o(xs bs 2) — o(x; b 1+ 7) + o(x; b p)] <
< |2 = wf 1] (Pl []) = 12 =l @*(])
for \eH, 2+ yeH, peH, p +yeH, o*(n) = |h| max o(l|h]).
The proof follows immediately from Definition 5 anfigfcri’lln the relation (p(x; h; /1)=
= f(x + Ah).

3. For the following result we need some statement about measurable sets.

Lemma 2. Let H be a.e. in an interval (a,b), —o0 < a < b < co. Let numbers
u,v,6 fulfil 0 <u < (b—a)4, 0<v<(b—a)4, ¢20 and let a measurable
set Q fulfil Q = (a,b), meas(Q) = b —a — & Then the set-F ={x:a <x <
< (a +3b)/4, x + ue Q,x +ve H} is measurable and meas (F) = 3(b — a)/4 — .

Proof. Let m,(x) = x — u and n,(x) = x — v. Denote ,(Q) = {y:3{x : x€ Q,
y = x — u}} and similarly n,(H) = {y : 3{x : xe H, y = x — v}}. Obviously

(3.1) F={x:a<x=<(a+3b)4x+uecQ x+veH} =
' = {x:a <x < (a + 3b)4}  n,(Q) N m(H).

Since H is a.e. in (a, b) and 0 < v < (b — a)/4, the set n,(H) is a.e. in the interval
<a, (a + 3b)/4). Since meas (Q) 2 b —a — ¢ and 0 < u < (b — a)/4 we have
meas (Qn{x:a +u<x=u+(a+3b)4}) = 3(b — a)/4 — ¢ and meas (,(Q) N
n{x:a<x=<(a+3b)4})=measm(Qn{x:a +u<x<u+ (a +3b)/4}) =
2 3(b — a)74 — ¢&. From this inequality, (3,1) and from the fact that 7,(H) is a.e. in
{a, (a + 3b)/4> we obtain meas (F) = 3(b — a)/4 — & Lemma 2 is proved.
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4. Lemma 3. Let H be a.e. in an interval (a, b), —0 < a < b < o0, B a Banach
space, ¢(2) a transformation ¢ : H — B fulfilling (2,1) on H. If the function
[¢(2)|| is measurable then ¢ is bounded on H  (a, b).

Proof. We shall assume that ¢ is not bounded on H n (a, b). We choose a num-
ber N such that meas (Q) > 3(b — a)/4 where @ = {A: e H n (a, b), |¢(2)| = N}.
Since ¢ is assumed not to be bounded, hence there exists a number 1€ H n (a, b)
such that |@(7)| > 3N + o*((b — a)/4) (b — a)/4 = M. We shall assume 1€ H N
n (a, (3a + b)/4) without loss of generality. If ¢(2) is bounded on some subinterval
of (a, b) then by Lemma 5 it is locally Lipschity continuous on this subinterval and
by (2,1) is locally Lipschitz continuous on the whole (a, b). The proof of Lemma 5
is independent of Lemma 3. The set 0* = {1: 1€ H n (a, (a + 3b)/4), |@(2)| < N}
has the measure meas (Q*) > (b — a)/2 so that Q* (\(a, (3a + b)/4) is nonempty.
We choose pe Q* (\(a, (3a + b)[4). Using Lemma 2 withu = p —a,v =1 — a we
obtain that the set F = {1: 1€ (a,(a + 3b)/4), [¢(2A + p—a)| SN, A+ 1—ae
€ H} has the measure meas (F) 2 (b — a)/2. Using (2,1) we obtain

o2 + 2 = a) = o() — ¢(A + - a) + o(u)] <

< lu—Tor(2-a) < ";"w*(”— )

4

and

o2+ 2= )l 2 lo(D = [ = ot + &= ] - 22 (2) >

4
>M~2N~b—;—qw*<b—;—a>2N ie. |2+ 2 —a)| >N for AeF.

(1 € Q* which implies [|p(u)| < N).

Theset 0** = {A + 1 — a : Ae F} = m,_;(F) for which meas (Q**) = meas (F)>
> (b — a)/2 is a subset of the complement of the set Q and therefore (b — a)/2 <
< meas (Q*) < meas ({a, b)— Q**) < (b—a)/2. This contradiction proves Lemma 3.

5. We shall need one more statement ébout measurable sets.
Lemma 4. Let H be a.e. in (a, b), then there exists a set H which is a.e. in (a, b) x
X (a, b) and fulfils
i) if (4, u) € H then (u, 1) € H,

ii) if (A,.u) € H and A+ k(u— 2) € (a, b) for any integer k, then A+ k(u— A) € H,
iii) if (4, p) e H, then Ae H, pe H.

Proof. Denote J = (a, b), J*> = (a, b) x (a, b). Let H be the set

H={hp):(hnet? ieH ueH) + {(hn): AcHI, u¢J} +
+{(Ap:r¢T, peHI} + {(Ap): A¢J, néJ}.
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The set H is a.e. in the plane (— 0, ) x (— 00, ). Denote

1
2k — 1

(k= 1) x + ky),

ﬁk‘_—{(’hﬂ):l:

1
2k — 1

”:

(kx + (k — 1)), (x,y)eﬁ}

for every integer k. The sets )24 , are also a.e. in the plane. It means that A = NH, A J?
is a.e. in J2. k
The item i) is fulfilled since all H, fulfil i). Let (4, x) € A and let 2 + k(u — A) e J.

Obviously (4, 1) € H,. By the definition of ﬁk there exists a point (x, y) € i such
that

x=A+kip—2, y=p+k(A-p), (x,y)eH, xeJ

which means with respect to the definition of /& that x € H. Condition iii) is a simple
consequence of conditions 1) ii) since if (1, u) € H we can apply ii) with k = 0. It
implies A € H. To prove that also e H we can use condition i).

6. Lemma 5. Let H be a.e. in (a, b), —o0 < a < b < oo. Let B be a Banach space,
@(4) a transformation ¢ : H — B fulfilling (2,1) on H. If the function |p(2)| is
bounded then ¢ is Lipschitz continuous on H N (a, b).

Proof. First we prove a proposition.

Proposition 1. Let the assumptions of Lemma 5 be fulfilled, then there exists
a number L > O such that

lo(?) — o] < L2 — p| if (el
where H is the set constructed in Lemma 4.

Proof of the Proposition. We choose a number & > 0 such that w*(6) < 4,
8, = 1 min (6, (b — a)/2) and put L = max (1, 2N/5,) where N is the upper bound
of ¢ : ||¢(2)|| < N. Assume that there exists (1, 4,) € H such that |(4,) — ¢(4,)| >
> L|A; — 2| This inequality yields [A; — 2,| < 2N/L < &,. Without loss of genera-
lity we assume A; < A, and 24; < a + b (if 24; > a + b then we consider @(2) =
=¢(—A),d=—b,b=—a, 1y = =2, A, = —Ay;since a + b <21, < 21, we
obtain 21, <21, < d + b so that the additional assumption is fulfilled for
@A), 1, 1,)- We find the largest integer k such that 2, = A, + (k — 1) (2, — 4,) €
€(a,b), 4 < A; + 6. Since 6; < 8/3,8, < (b — a)/6 and A; < (a + b)/2 we obtain

(6,1) 8> M — A =(k—1)(A2 = 24) 2 25,.
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By Lemma 4 we know that 1;e H for i = 1, ..., k and using (2,1) we obtain
le(k) — o(2,)]| =
k-1
= 0 = 1) (90s) = 0()) + X (o(hrs) = o) = 0(02) + o) =

2 (= 1) lols) = o)l = s = AL 0¥ = D]is = 2) >
>(k—=1)LjA, — 44| = |4, — Alikgw*((l e N =
2 i~ A0 - 00— ) - 4D) 2
> )i, - A,lkz_:l(l — *()) = L|A, — Ay (k — 1)2 = 2N .

The two last inequalities follow from (6,1) and from the definition of L. The former
inequality gives ||p(4)] > 2N — |¢(Z,)| = N and finally |¢(4)| > N which is in
contradicition with the boundedness of ¢. Proposition 1 is proved.

Let H* be the set of all A such that (4, u) € H for almost all p € (a, b). Since H is
a.e. in J* we obtain by Fubini’s theorem that H* is a.e. in J = (a, b). By Lemma 4
iii) we have H* < H. Let A, e H*, i =1,2, A, <2,. Put Z, = {1:(4, A)eH,

2

Ay £ A £ A}, i =1,2. The sets Z; are a.e. in (4,, 4,) so that there exists pe ) Z,.

i=1
It means (A, p)e H,i = 1,2, Ay £ p £ A,. Using Proposition 1 we obtain [|p(4,) —
= o(A)] = Jlo(d) = o] + o) — e(4s)| = L(A, — 1) + L — A1) = L(A; —
— 24). We have already proved that ¢(4) is Lipschitz continuous on H*, H* < H, H*
is a.e. in (a, b). It remains to prove that ¢(2) is Lipschitz continuous on H. To prove
this we shall need another proposition.

Proposition 2. For every Ae H — H* there exists a sequence A,, A, € H*, 1, — A
such that ¢(2,) > ¢(2).

Proof of Proposition 2. Suppose that Proposition 2 is not true, then there exists
A€ H — H* and a number § > 0 such that
(6,2) lo(Z) — @(A)| > 6 for ieH*, |1—A<4.

Choose a number 8, 0 < &; < &, 30,(L + w*(3,)) < 6 and pu, pe H* n (1, 1 +
+ 8,/4). Using Lemma 2 (where instead of (a, b) is (4, 1 + 9;), instead of the
sets H, Q is the set H*, u = 0, v = u — 1) we obtain: There exists y fulfilling y €
eH* (1, 1+ 15,), v+ u—AeH* (L1 + 3,). With respect to (2,1) there is

(6.3) lo() = o@D = ot + 1= 1) = o) + 5—21 o @ =

§L|y—1!+%w*<%>§%(L+w*<%))<6. ;
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Butye H* n (1, 1 + &,/2) implies |y — 1| < &,/2 < 8, hence (6,3) is in contradiction
with (6,2). Proposition 2 is proved.
Let 1€ H, 7 € H. By Proposition 2 there exist sequences 7,

) I,-71, LeH*, |o(L)— o) -0
and 4,
Tw= L IeH*, o) — ()] —0.

According to the fact that ¢(4) is Lipschitz continuous on H* we obtain
lo@ — o@D = [e(@) — e + LIz — 7l + lo() — o] -
Thus ¢(2) is Lipschitz continuous on H.

Remark 1. The Lipschitz coefficient L = max (1, 2N/d 1) depends on the length of
the interval (a, b), on w* and on N which bounds ¢(4). The constant N can be
determined by N =inf sup [¢o(2) — z|.

zeB yeH(a,b)

7. Remark 2. Let the statement of Lemma 5 hold. Since the space B is complete
we can extend ¢(1) onto the whole carrier-interval of H (may be (— o0, o)) so that
¢(%) is continuous and locally Lipschitz continuous on the carrier-interval.

Let A;,i = 1, ..., 4 belong to the carrier-interval and 1, — 4; = 1, — 5. Consider
numbers 4, A + A, — A, A + 43 — 44, 4 + A, — 4,. Since H is a.e. in the carrier-
interval there exists a sequence A,, n > 4 such that 4, —» 4, for n —» o0, 4,€H,
by + Ay —Ay€H, Ay + A3 — Ay€H, A, + A, — A, € H (this can be proved similarly
as Lemma 2). As (2,1) is fulfilled for

Ay hy + 20— Ay A+ A3 =24y, A+ — A4

and w* is continuous, inequality (2,1) holds for Ay, 1,, 43, 44, too.

This extension is obviously unique as a continuous extension, but we shall prove
that the extension is unique in the sense of Definition 6. Let (a, b) be a part of the
carrier-interval and () be another extension of ¢. Put 4(1) = ¢(4) — @(4). The
function 4(%) fulfils (2,1) on (a, b) (see Definition 6) and A(2) = O for Ae H, H is a.e.
in (a, b). Let 2€(a, b) — H. We choose yu, pe H n (a, min (b, a + b — 7)). Since
a <min(b,a + b — 7) and H is a.e. in this interval, such p exists. We have p +
+ A —AeHn(a,b) for almost all A, a < A < 1. Since H is a.e. in (a, 1) there
exists a sequence 4,, 4, > 1, L,e H n (a, 1), p + 1 — A, € H. It means 4(4,) = 4(p +
+ 1 — 2,) = A(u) = 0. If we use (2,1) for 4,, 1, u, u + 1 — A, we obtain 4(7) = 0.

8. We have defined the differential of f(x) as an operator. Since the domain of
definition of ¢ is a one-dimensional interval the domain of the differential operator
of ¢ is the real line. It is clear that there exists an element { of B such that T,A= {A.
In case of the transformation ¢ we shall define the derivative ¢'(x) by ¢'(x) = {.
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Lemma 6. Let —o0 < a < b < o0, B be a Banach space, ¢(2) be a transformation
¢ :(a, b) > B. If (%) is Lipschitz continuous and fulfils (2,1) on (a, b), then o (%)
has the derivative ¢'(%) at every point of (a, b) and |¢'(3) — ¢@'(u)| < w*(|2 — ul).

Proof. Let ¢e(a,b) be given. Let & < min (¢ —a, (1 +2(0b — -
— JI1 +4(b — &])2) and let 4, X, i = 1,2 fulfil |2, — & < 8/2, Ay < Ay Iy <
Séshand |1, — & <82, <Xy Ay SES T Put =24, + (k— 1) (4 —
— M), 2y =2y + (I = 1)(1, — Z,). Consider the largest k such that A, e<¢ +
+ /8, &+ 6+ ./6), and the largest I such that 1,e<¢ + /3, & + & + /6.
For 1;, Z; we have
B1) = <02, |- A S0, 6 |h— Ay <25+ 6,

Vo4 -4 225 + /6.
By (2,1) we obtain

Hw(/lk) — o(41) _ o(As) — o(A)

s S or( - 1) - A 5 075 + o),

Ae — Ay Ay — Ay
1) — TN — o3 -1
H(P( 7{)1 - }{)(11) _ <P(/1/Tz) ;('11)1 < 1 - T (s - 1) 1= 24 £ 0% +9).
1 2 — AL — ls=
These inequalities imply
(8.2) ‘P(’12) - q’(ll) _ ‘P(IZ) - <p(11) <
’ Ay — Ay -1 |7
< (p(l;) : ‘:(’11) _ q’('? : ‘;(11)“ + 2w*(7_5 + \/5)
k 1 1 1

Using (8,1) we obtain

‘l‘l’(zt) - ‘P(jq) _ q’(zz) - (P(Zl)
| A=y Ay = Ay

|4 = X — Ay + Xy

= o) = o G— 57 7,

< 2L(26 + (/6)

and by (8,2)

|0(2) — 0(2) _ 9(2) — o(4))
| =2 T, — 1,

+ 2L(26 + /) + 20*(28 + /8) £ 4L(26 + /3) + 20*(26 + /5).

< yl‘s lo(h) — o(hs) — o(k) + (L) +

Thus we have proved the inequality

1 (P('ljz : 1(111) _ ‘P(/Tzzz : gl(zl)l, < 4L(25 + /8) + 20*(28 + 4/6).
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Since B is a complete space there follows from the last inequality that ¢(2) has the
derivative at all points of (a, b). With respect to (2,1) we easily obtain ||¢'(1) —
—o' W] = o*(|2 - u).

9. Now we return to the transformation f(x). We have a set of extended functions
@(x; h; ). We may use this set of functions for the extension of f(x) on L(D) only
if the following condition is fulfilled. Let z e L(D) and let [x;, h;, 8;], A4;, i = 1,2
be given such that [x,, h;, §,]€ L(D), z = x; + Ah;, |Ah|| <8, i=1,2, then
@(x15 hys Ay) = @(x5;5 hy; Ay) (h; linearly independent).

If this condition is fulfilled, we can define the extension of f(x) by f(z) = @(x,; hy;
41). To this.problem the next Lemma is devoted.

Lemma 7. The set of functions ¢(x; h; 1) determines the extension f(x) on L(D).

Proof. Let [xi, h;, 5i], A, 1 = 1,2 have the above formulated properties. Since
x, € D there exists a constant & = &(x,; hy, h,) (cf. Definition 3) such that 0(D n
A A(xq; hy, by)) is ae. in O(U(xy; by, hy; 5)). By Fubini theorem we obtain that
there exists 4, 1 between O and A, such that x; + lh; € D, x; + Ah, + ph,e D
for almost all |u| < 6* where 6* is a positive number. (Since 1 is between 0 and 4, it
belongs to the same carrier-interval as 0 and A,.) Hence there exists a sequence of p,
such that x; + 1h; + p,h, € D and x; + Ah, + p,h, € D, p, — 0. Obviously we
can choose 4, A between 0, 4, such that x; + Ah;e Dand x; + (A + A, — ) hy €
€ D. As these four points belong to D we use (1,1) to obtain

9,1) [f(xy + (A + Ay = D) hy) = f(xy + A4y + pehy)| £
S fGey + (A + A = D) hy) — f(xy + Ashy + pehs) — f(xq + 4hy) +
+ f(xy + Zhy + )| + [ f(xy + ARy) — f(xy + 2Ry + pohy)| £
< (1A =0 x ]l + [maf x [[B2])) (|20 = 2] x [Ba])) +
+ | f(xy + Ahy) — f(xy + Zhy + pehs)| -
Denote f(z) = lim f(z + p,h,). Since x; + A,h = z = x, + A,h,, there is f(z) =

n—w

= lim f(x, + A:h; + p,h;). By (9,1) and by x; + 1h, € D, x, + Ahy + ph, € L(D)

for I;TI < 8*, which means [x; + Ihy, h,, 6*] € L(D), we obtain
92) [fGi+ (A + 2= Dhy) = 7@ = |2 = A x B (|2 = 2] x [[B])) +

+ £ Ger + Ahg) = £y + Ahg)| £ 4 = 2] x [y (oA, = 2] x [[A]]) + L)
Since O(D n A(xy; hy)) is a.e. on O(U(xy; hy; 6,)) we can choose a sequence of 4,

" such that 1, > 1 and x; + A,h, €D, x; + (4, + A; — 1) hy € D. With respect to
(9,2) we obtain lim f(x; + (4, + 4, — 1) hy) = f(z) = lim f(z + p,h,). Since x, +

n—o n—»oo

+ (4, + A; — 2) hy converges to z the uniqueness is proved.
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10. Lemma 8. The set L(D) is a star-neighbourhood of D.

Proof. Let xe D, h e A. Since S is a basis of 4 (Definition 2) there are linearly
independent h;,i = 1,..., n, h; € S such that h = ) 4;h;. Since the set D has Property

i=1

(A) there exists a positive number 5(x; hy, ..., h,) (cf. Definition 3). We shall prove
that the set U(x; hy, ..., h,; 8(x; hy, ..., h,))is a subset of L(D). Let y € U(x; hy, ..., h,;
8(x; hy, ..., b,)). Since O(D n A(x; hy, ..., h,))is a.e.in O(U(x; hy, ..., h,; 6(x; hy, ...
..., h,))) there exists i which is a linear combination of h,, ..., h, and there exists
a number § > 0 such that O(D n A(y; h)) is a.e. in O(U(y; h; 8)). It means that
y belongs to L(D). The statement is proved and from this statement Lemma imme-
diately follows.

11. We have all prepared to present one of the main results.

Theorem 1. Let A be a linear set with a semi-norm, B a Banach space, D a subset
of A having property (A). Let f be a transformation f : D — B fulfilling (1,1) on D.
If the condition:

(@) | f(x + AR)| is a measurable function of A for every xe D, he S for which
the carrier-interval of H = O(D n A(x; h)) containing 0 is nonempty (where S
is basis in A)

is fulfilled, then f can be extended onto the star-neighbourhood L(D) of D and the
extension has the differentials T, at all points of D. We have

(1) Tk -] s [Wlolx - 5]) for xeD, yeb.
The extension of f on L(D) is unique in the sense of Definition 6.

Proof. Let a point z be from L(D). By Definition 5 there exists [x, h, 6] € L(D), 4
such that z = x + Ah, |ih| < & and O(D n A(x; h)) is a.e. in O(U(x; h; 9)). It
means that @(U(x; h; 6)) is a part of the carrier interval containing H = 6(D n
N A(x; h)). The function ¢(x; h; 1) is defined on H. Hence recalling assumption (<)
we can successively apply Lemmas 1, 3, 5. Since the function ¢ is Lipschitz continuous
on H we can extend ¢ on the carrier-interval of H as in Remark 2. Then using Lemma
6 we obtain that ¢ has the derivatives at all points of the carrier-interval of H. By
Lemma 7 we can define f(z) = ¢(x + Ah) where z = x + Ah. We have just extended
the domain of definition of f(x) onto the whole L(D) (we shall denote this extension
by the same letter f).

We pass to the proof that the extension f has the differentials T, at all points of D.
Let points x € D and h € A be given. Since L(D) is a star-neighbourhood of D (cf.
Lemma 8) there exists a positive & such that [x, h, 5] € L(D). We shall consider the
function ¢(x; h; A) = f(x + Ah). By Lemma 6 there exists the derivative ¢'(x; h; 0).
We put T,h = ¢'(x; h; 0). We must still prove that T, is a linear operator.
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1. T, is homogeneous. Let O be a real number, then
T.0h = ¢'(x; Oh; 0) = lim i (o(x; Oh; &) — o(x; Oh; 0)) =
A0

= lim % (f(x + O2) — f(x)) = ©lim % (F(x + 2h) — f(x)) =

A0
= O lim 1((p(x; h; 2) — @(x; h; 0)) = OT,h .
-0 A
2. T, is additive.

T(hy + hy) = lim % (F(x + Ahy + Ahy) — f(x)) =
A=0
= Tim L (f(x + Ahy + Ahs) — f(x + 2h))) + lim & (F(x + Ahy) — £(x)) =
-0 A -0 A

= lim L (f(x + Ahy) — F()) + Tim = (fF(x + Ahy) = F(x)) + him y(x, 4, hy, By)) =
=0 A -0 A -0 .
= ¢'(x; h230) + ¢'(x; hy30) + lim yo(x, A, by, hy) = Tohy + Teh, .
A=0

The last equality holds as
1
Y(x, 4, hy, hy) = E(f(x + Ahy + Ahy) — f(x + Ahy) — f(x + Ahy) + f(x))

and by (1,1) |¥(x, 4, hy, hy)|| < ||hy] (| Ak, ). This proves that the operator T, is
linear. Theorem 1 is proved.

12. We have simultaneously proved

Theorem 2. Let the assunﬁptions of Theorem 1 be fulfilled with exception of
assumption (o) which is replaced by

(B) |f(x + AR)| is locally bounded in A for every xe D, heS for which the
carrier-interval of H = 0(D n A(x; h)) containing 0 is nonempty,

then the statement of Theorem 1 is valid.

The proof of this Theorem follows the same lines as the proof of Theorem 1. We

only start with Lemma 5 since assumption (8) and Lemma 1 makes possible its direct
application.
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13. In this paragraph we introduce some consequences of these Theorems.

Corollary 1. Let A be a linear set with a semi-norm, B a Banach space, D a region
in A, f a transformation fulfilling (1,1) on D. If assumption («) or (B) is fulfilled,
then f has the differential T, at every point of D and (11,1) holds.

This Corollary follows immediately from the fact that the region D has property

(4)-

Corollary 2. Let all assumptions of Theorem 1 be fulfilled except («). If f is locally
bounded in D, then f may be extended on a star-neighbourhood I*(D), D = L¥(D)
< L(D) such that f is locally Lipschitz continuous on L¥*(D), f has the differentials T,
at all points of D, the differentials T, are continuous operators and (11,1) is fulfilled.

Obviously, if f is locally bounded on D, then for every x € D there exists a neigh-
bourhood G,, x€G, = A such that ||f(y)| £ N in G,. Hence |f(x + Ah)| S N
for x + Ah € G,. By Theorem 2 we know that there exists the differential T,. With
respect to Remark 1 the Lipschitz coefficient depends explicitly on N, i.e., all
@(x; h; 2) = f(x + Ah) have the same Lipschitz coefficient. It implies | ¢'(x; h; 0)| <
< L|h|. By Definition T,h = ¢'(x; h; 0) so that T, is a continuous operator. Put
G = U G, and L*(D) = L(D) n G. L*(D) is obviously a star-neighbourhood of D.

xeD
If x € L*(D) then a point y exists, y € D, x € G,. Since the extension of f is bounded
in G, and fulfils (1,1) it is Lipschitz continuous in G, by Lemma 5.

Corollary 3. Let the assumptions of Theorem 1 be fulfilled except () which is
replaced by the assumption that f is locally bounded on D. If A is a Banach space,
then f may be extended (uniquely as a continuous function) onto an open set G,
D = G < A such that f has the differentials T, at every point of G, T, are continuous
operators fulfilling (11,1) on G and f is locally Lipschitz continuous on G.

By Corollary 2 f may be extended onto the star-neighbourhood L*(D) so that f is
locally Lipschitz continuous there. Let x be a given point, x € D. Since L*(D) is the
star-neighbourhood of D there exists a function n(x, h) > O such that Q = {y : y =
= x + Ah, ||AR|| <n(x, h)} = LX(D). We denote Q, = {z:z =x + k(y — x),
y € Q} for any nonnegative integer k. Obviously U Q; = A. Recalling Bair Theorem Q

k

cannot be a thin set. Hence an open set G. exists, x € G1 = 4, such that Q is dense in
G.. Since the extension of f is locally Lipschitz continuous in L*(D) (cf. Corollary 2) an
open set G2, x € G2 exists such that f is Lipschitz continuous in G2. Put G2 = GL N G2.
We shall extend f onto G2. Let y € G2. Since L*(D) is dense in G2 a sequence x,, X, —
— y, x, € L*(D) exists. As f is Lipschitz continuous in G} and B is complete there
exists lim f(x,) and we put f(y) = lim f(x,). Put G = U G. Obviously inequality

.n—© n—o xeD

(1,1) holds on G. Since the extension is locally bounded on G (the extension is
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Lipschitz continuous on every G3), Corollaries 1 and 2 imply Corollary 3 if these
Corollaries are applied on the extension of f on G.

Corollary 4. Let A be a Euclidean space, B a Banach space, G a regionin A, D <
< G, D be a.e. in G and let f be a transformation f : D — B fulfilling (1,1) on D.
If ﬂf(x)“ is measurable on D, then f can be uniquely extended on G so that the
statement of Corollary 3 is valid.

Since A is a Euclidean space, we consider an orthonormal basis h, ..., h,. Let
xo€G, 6 > 0 be given such that [x, + Ah;] € D for almost all 4, [A| < 6 and let
[ f(xo + 24h;)| be measurable for |2| < . Using Theorem 1 we obtain that f(x, + Ah;)
is locally Lipschitz continuous and with respect to (1,1) f(x + Ah;) is locally Lipschitz
continuous in 4 for all x € G. Since A4 is finite dimensional f(x) is locally bounded
and G = L(D). If we used Corollary 2 on the extension of f(x) onto L(D) (i.e. onto G)
we obtain the statement of Corollary 4.

Corollary 5. Let the assumptions of Corollary 4 be fulfilled and let B be a Euclidean
space, then the extension f on G has continuous partial derivatives in G. The
function o (from (1,1)) is the modulus of continuity of all partial derivatives.

This is an obvious consequence of Corollary 4 and of Definition 7.

14. We shall show that under some additional assumption the converse result is
valid.

Theorem 3. Let A, B be linear sets with semi-norms. Let D = A be convex and
let f be a transformation f: D — B which has the differential T, at every point x
of D fulfilling

(14,1) |Tch — T,h|| < |0 @(|x — y|) for x,yeD, he4a

where o(n) is defined and continuous for n 2 0, @(0) = 0. Then the transformation f
fulfils (1,1) on D.

Proof. Assume x, y, z to be given such that xe D, x + ye D, x + ze D, x +
+ y + z e D. Let ¢ be a positive number. Recalling the definition of the differential
(Definition 7) there exists a positive function &(x) for every p, 0 < u < 1 such that

110 + nz + v2) = £(x + 1) = VTuupez] <

g,
fGe+ v oz vz) = f(x + ¥+ pz) = Ve rwz| < e for |v] < 8(u).

(Since the set D is convex the points x + pz and x + y + uz belong to D for 0 <
su=s 1.) We can construct a finite sequence: 0 = po < (o < py <y < ...

512



e < Pyoq < lyy < p, =1 such that piry — i < 8((;). By means of the above
inequalities we obtain

IfGe +2) = f(x) = fx + v +2) + fx + V)] =
§':§:“f(x + /“‘i+1z) —f(x + Niz) —f(x +y+ Hi+1z) +f(x +y+ Hiz)ll =

n—1
= Z,O(Hin — ) | Tesg? — Teryrazl| + 2

and using (14,1) we obtain

1G4 2) = £ = fx + v+ 2) + Sl + )] =
<5 (ires ) [ oD + 20 5 el ollol) + 2.
Since ¢ is an arbitrary number inequality (1,1) is proved.

15. It can be shown that the convexity of D cannot be ommited. This is shown
by the following

Example. We construct the region in the plane which consists from five parts:
Gr={lxy]:lx <2 |y - 3| <4},
G={lxy]:lx -3 <% [y -3 =4},
Gy={[xyl:[x+3/ <4 |y -3 =4},
Gy={[xy]:0<x<2 0<y<l},
Gs={[xy]:-2<x<0,0<y<1},

G = UG;. We define a function f(x, y) on G:
f(x,»)=0 on Gy, f(x,y)=1 on G, f(x,y)=—1 on Gs,
fy)=0-2%Q2y—-1) on G,f(x,y)=-(—-2*QQy—1 on Gs.

We have T, ,(1,0) = 0f/ox =0, T, ,,(0,1) = (of/dy)(x,y) and T, b =
= (3f/dy) (x, y) h, where h, is the second component of he vector h. Since
| Teemah = Tomhl| = |Ba| |(2f0y) (x, ¥) = (8 /0y) (u, v)| < |h] [(8f /0y) (x, y) ~
(of 10y) (u, v)| < ||h]| 6]y — v| + 3|u — x|) < 12]h| x |[x — «, y — v]|, inequality
(14,1) is fulfilled with w(y) = 12n.
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On the other side we choose points [ —3e, 3], [—¢, 1], [&3] for & < %. Easily we
obtain

(=2 8) = S(=3.3) — fe.3) + S )| = 2.
It means (1,1) is not valid.

Conditions («) or () in Theorems 1 and 2, respectively are also necessary. It is
a well known fact that an additive function f(x) exists, f(x + ¥) = f(x) + f(y) which
is defined for all real x but is not continuous. Since additive functions obviously
satisfy (1,1) this function cannot be neither bounded nor measurable according to
Theorems 1 and 2. The other assumptions (i.e., except (o) and (), respectively) of
Theorems 1 and 2 are fulfilled.
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