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2. THE MANIFOLD T¥

Let V be a vector space and W < V' its subspace. Vectors X, X,, ..., X, € V will
be called linearly independent over W if, under the canonical projection g : V — V/[W,
the vectors ¢X, gX,, ..., ¢X, are linearly independent.

Now let us introduce the coordinates we shall use in this section.

Theorem 15. For any point x € A> and any admissible R* with the origin x, the
set Uje Ty is a G(x)-covering set of T'}.

Proof. As usual, let us denote by t the Lie algebra of all infinitesimal translations
of A%; put t =t = (0). Let &, be the Stiefel manifold of all triplets {X,, X,, X5},
where X, X,, X; € g are linearly independent over t. Then the manifold &; x t°
can be regarded as a fibre bundle with a projection p : §; x t° — I'}, where the map p
is given as follows: for {X,, X,, X5} € &, X, €t% we put p{X,, {X{, X,, X5}} =
= (Xo, X1, X5, X3)eT5.

With respect to Proposition 1V it suffices to prove the following: for any x e 42
and any admissible R* with the origin x. the set p~ (U3¢ N T'}) is a G(x)-covering
set of &, x t°.

Let X, € t°, {Xl, X, X3} € §; then in arbitrary coordinate system R* we can write

0 0
(61) Xo = u"— + v* —
axﬁ "’yﬁ
0 ) 0 0 0
X =uf— 4+ v — + a’'x* — + bix*— + ¢}y* — + d}y*—
ox* oy* ox* oy* ox* *
i=1,2,3.

*) The first part of the article was published in this Journal 78(1968), 144 —177.
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According to the notation of Part I, Section 4, we have

Aa’ ~

0 0
E;6=( uc), U36={'@€r4|yﬁE;6=0}
gy oy

Because the vectors X, X,, X5 are linearly independent over t, the matrix

aj by ¢ di

a3 by ¢ d

ai by & d5 -
is of rank 3. Let us denote by p} the determinant which arises by dropping the i-th
column of the matrix. Then we see easily that

{Xo,{X1, X2, X3} ep (T3 nU%) ifandonlyif w*=0, pi=+0.

Let us introduce the following notation: if f is a local function on a manifold 9t, put

(62) E(f) = {qgeM; f(q) + 0} .

In this notation we can write p~'(I'; N U%e) = E(u”) x E'(p}), where, of course,
E(u*) = t° E'(p}) = &;. With respect to Proposition III it remains to prove the
following assertions:
For any R* with the origin x € A*

a) E(u) is a G(x)-covering set of t°,

b) E'(p%) is a G(x)-covering set of &;.
Let x € A% and let R* be a coordinate system with the origin x; then we have obvi-

ously
e, 0 0 0
gc(x) = (X" — , X" ‘:(— s ya ) ya P
x* oy* ox* oy*

D

From the formulae (2) follows immediately ad y*(0/0x%) (u”) = v and if Xo(u% v*) €
e t’ u* = 0, we have v* % 0. According to Proposition V the assertion a) holds.

Further let us denote ¢ : g(x) —» X(&;) the Lie algebra homomorphism induced
by the action G,(x) x §; — &;. Using (2) we obtain easily the following table for
the infinitesimal transformations of the functions p} on &;:

|
a | a a
p; 0:1 ‘ p2 ap3 a Oa
123 P2 t 0 Py T Pa —PD3
n% —p% L
Ig p3 ‘ va | a 3
Pi 0 } PS5 s 0

)
—R
~
N
S L 1
]
R




According to Proposition V we deduce from the table that E'(p3) u E'(p3) v E'(p})
is a G/x)-covering set of §; (see (62)) and that E'(p}) is a Gx)-covering set of
E'(p3) U E'(p3) U E'(p;). Now the assertion b) follows from Proposition I, b). This
completes the proof of Theorem 15.

According to Section 7 of the first Part, we have the following practical conse-
quence of Theorem 15: whenever the one-to-one property of a map 2 — {0(%), ...
s 0,(P)}, PeM =Ty, is to be proved, we can limit ourselves to coordinate
systems with a fixed origin, when expressing all the necessary relations. We can
even limit ourselves to an open subset of a coordinate G/x)-type for any xe A%,
Let now 2 eI’} and x e 42 be arbitrary. According to Theorem 15 there is an R*
with the origin x such that 2 e U%, N I';. If we express each vector X € 2 in the
form (1), (we shall omit the index « again) then, in the corresponding coordinate
system &, of g, the block 2 is given by equations of the form

(63) d = au; + bu, + cusy, v=av; + bv, + cvs + uv, .

Here uy, u,, us, vy, Uy, U,, U3 are the coordinates of the block 2 with respect to the
local coordinate system &%¢ or, more briefly, with respect to the coordinate system
R*. (The last abbreviation is possible thanks to the fact that only the coordinates &%,
will be used onI}). Another form of (63) is the following one: for any # eI’} and
any R* such that 2 € U5, the block 2 is determined by its basis

-

i G b ) 0
(64) Xi=x —+wuy —+v,—, Xj=x_—+uy—+

= vy, —,
0x dy dy dy dy Zay
0 0 0 0 0
X°3’=y——+u3y—+v3i, Xf=i+vo—0~.
o0x dy dy O0x ay

Let 2T}, Xe? = t. The set of all d-elements of the form & = (X + 1X,),
where Xg € # nt and A is a real number, will be called a d-line determined in 2
by the vector X, or else, by the directional element n = (X). A vector Y will be
referred to as belonging to a d-line &if (Y) e &. It is obvious that two vectors X, Ye
€(2 = (2 nt)) belong to the same d-line if and only if they are linearly dependent
over t. If X belongs to g, or to g°, then so does any vector Y belonging to the d-line &
determined by X.
Let us introduce

(642) E(P) =Pt for PeTl;.
By (64), in any admissible R*, the d-element £ (2) is generated by the vector X%
Let & be a d-line of # and 7, a d-element of t. Let be given two vectors X, X,

belonging to & and other vectors Y, Y2 € ny. Assume all these vectors to be non-zero.
Then either [X,, Y;| = [X,, Y] = 0, or both [X,, Y;] and [X,, Y,] are non-zero
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and they determine the same d-element { < t. In the former case we write [qo, E] =0
and in the latter [575, £] = (. Let X € g be given, X = u 3/ox + v [0y + ax d[ox +
+ bx(0/dy) + cy(0]cx) + dy(d[dy). Remind that all singularities of X are given by
the system

(12) u+ax+cy=0, v+bx+dy=0,

and the same holds when X € Cg has imaginary coordinates a, b, ..., v. Let X € 2
and let & be the corresponding d-line in 2. By eliminating the coordinates u, v from
(12) and from the second relation (63), we obtain the equation

(65) a(vy — xvg) + b(x + v;) + ¢(vs — voy) + dy = 0.

This equation expresses the union of singularities of all vectors Y e & We shall call
the last set the set of singularities of the d-line &, when there is no risk of confusion.

Proposition 16. Let & be a d-line in 2 e L. Then the following cases are possible:

a) The equation (65) has not any solution.
b) The equation (65) is fulfilled identically.

c) (65) determines a line; each point of that line is a single singularity of a single
d-element from E.

d) (65) determines the pointwise singular line of a unique d-element from C; the
other d-elements from & do not admit any singularity.
The cases a), b), d) will occur if and only if & < g°.

Proof is obvious from the way we have obtained the equation (65).

We shall express ourselves as follows: in the case a): the d-line & does not admit any
singularity; in the case b): the d-line & has a pointwise singular plane; in the cases c)
and d): the d-line & has a pointwise singular line.

Let us remark that if two d-elements &, £, < 2 = &, belong to the same d-line ¢,
they have the same homogeneous coordinates a, b, ¢, d; and inversely. For this
reason the homogeneous coordinates a, b, ¢, d of an d-element & < & will be referred
to as the homogeneous coordinates of the d-line & (with respect to the corresponding
coordinate system).

If a d-line & = 2 satisfies the inclusion & < g,, then we have the relationa + d = 0
for its homogeneous coordinates. From (63) follows

(66) (uy + 1) a + b+ use=0.
The set of singularities of the d-line is given by the equation
(67) a(vy — y — xve) + b(x + v;) + ¢(v; — voy) = 0.
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Consider an invariant decomposition
(68) ry="Mom,,

where M, = {2 el |2 < g,}.

Let us start with the open submanifold 9,. Obviously £ € I, if and only if the
equation (66) does not vanish identically, i.e., if and only if at least one of the numbers
us + 1, u,, uy is non-zero. If this is the case we obviously have dim [2 n g,/¢(2)] =
= 2. If we denote d,2 = [? N g,, Z N g,] (see Note 2), then dim (d,2[(d,? N 1)) =
= 1.

Using (64) we see easily that any d-element ¢ = d,2 is given by a vector of the

form

P A 2 P
(69) Xj=(uy +1) x———y—— +2u3x—0—+2u2y——+m—+n—
ox oy 0y Ox 0x ay

in any coordinate system R*.
The d-element & admits a couple of singular lines (real different, imaginary conju-
gate, or real coincident) with the common equation

(70)  us(x = xo)* = (ur + 1) (x = x0) (v = yo) — sy = yo)* = 0,

where only the point (x,, yo) depends on the choice of ¢ in d,2. (Cf. the formula (3)).
Comequently, with the subspace d,2 (and thus with the block 2 € M,), we can join
a couple k(2) of improper points (real or imaginary conjugate) of the plane CA2.
Using the homogeneous coordinates v,, v, in CAL (see Part I, Section 6) we obtain

(71) k*(2) = ugvi — (ug + 1) vw, — upo; = 0.

Hence k() is an equivariant object from 9, into CA.. Now using (64) again we
find easily that dim (d,2 N t) = dim [d,2, {(2)] = 1. Consider another invariant
decomposition

(72) m, = M v M2,

where MM} = {Z e M, | dim (d,2 nt) =1}, M} = {ZeM, | d,2? > t}. We deduce
easily from the definition that 2 € M} if and only if, in any coordinate system, we have

(73) R =uyp + (uy + 1) vy —uy 0.
Let us denote by '
(74) E(2) = v, ~ vov, =0,

the improper singularity of the d-element £.(2) = (9/ox + vo(8/y)). Then the relation
(73) possesses an additional geometrical signification: R # 0 < (%) ¢ k*(2).
Let now 2 € M? be given.
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Proposition 17. There is exactly one point Q(2) in A*> which is a common singu-
larity for all d-lines &€ = @ n g, This point is given by

A — v,C B — vpA
75 X 3 - B
(73) R Y R

where A = uzv, — uyv3, B = (1 4 uy)vs — usvy, C = (1 + uy)v, — uyv; and R
is given by (73).

Proof. It suffices to find a point [x, y] satisfying (67), whenever the homogeneous
coordinates a, b, ¢ of a d-line fulfil (66). For this it is necessary and sufficient that the

matrix
1+ uy u, us
vy — Y — XUg X 4+ Uy U3 — Upy

be of rank 1. Denote by D(x, y), —D,(x, y), Ds(x,y) the determinants of that
matrix which arise by dropping the first, second or third column. Then we obtain
a system of equations

Dy(x, y) = Dy(x,y) = Dy(x, ) = 0.
The wanted point must satisfy, in particular, the system
Dy(x, y) + voDs(x, ) = 0, Dy(x, y) — voDy(x, ) = 0,

whence (75) follows. On the other hand, a direct calculation shows that the values
(75) actually are solutions of the original system D; = D, = D,, g.e.d.

Let us denote by k(2) the line couple determined by the couple k®(2) of improper
points and by the proper point Q(?). Then k(%) is an equivariant object on MM;. In
each coordinate system with the origin Q(2) we have

(76) k() = usx® — (ug + 1) xy — uyp? =0,
(77) A4 =Dy0,0)=0, B= —D,0,00=0, C=D;0,0)=0.

Proposition 18. Let 2 € M?. Then there is exactly one d-line &' = 2 such that
&, E(#)] = 0. This d-line admits a pointwise singular line

(78) 4(?) = R(y — vox) + voA — (v)* C + (v4)? v, + vov; — v3 = 0.
In any coordinate system with the origin Q(2) we have
(78') 4(?) = R(y — vox) + vo°0; + Voo, — 13 = 0.

Proof. We obtain easily the relations a + voc = 0, b + vyd = 0, d = uja +
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+ u,b + usc, binding the homogeneous coordinates of &'. Hence, exact up to
a proportionality factor,

(79) a = vo(l + uyve), b= vo(us — uyvy)
¢ = —(1 +uywy), d=uw,— uj.

The equation (78) follows from (65), and (78’) will be obtained from (78) and (77),
g.e.d.

Because g(2) passes through the improper point E*(2) (see (74)), it is not parallel
to any line of the couple k(). It is obvious that the d-line &' with coordinates (79)
belongs to g° and according to (78) we have the case d) of Proposition 16. Thus there
is exactly one d-element & € &' having (78) as its pointwise singular line. With regard
to R # O we have a + d + 0in (79). Thus the case f) of Theorem 1 holds. According
to the point k) of our Theorem there is a singulr line of &, different from (78), passing
through any prescribed point of the plane A2. One of those singular lines contains
Q(2) and it will be denoted by «(#). In any coordinate system R* with the origin
QO(#) we have, taking in account (5) and (79), -

(80) «2) = (1 + uy00) y + (ugvg — uz)x =0.

Now we have constructed a sufficient number of equivariant objects for a representa-
tion of M?, and we can prove the following.

Proposition 19. Let be given: a point Qo€ A%, a couple ko of lines (real and
different, or imaginary conjugate, or real and coincident) having a double point
at Q, a real line oy passing through Q,, and another real line q,, which is non-
parallel to oy and also to the lines of the couple k.

Let R* be a coordinate system with the following properties:

a) The origin of R* lies at Q.

b) The coordinate axes x, ; are both non-parallel to q,, %y, and to the lines of
the couple k.

¢) If we denote the lines of ko, taken in any order, by k', k", then the following
relation for the cross-ratia holds:

(81) R(;a k’; ;’ q()) R(;s k”y ;’ qO) :*: R(;a X, ;7 qO) .

Under these assumptions there is exactly one block 2 € W n U%¢ such that Q(?’) =
= Qo, k(2?) = ko, 4(?) = g0, AP) = .

Proof. In the prescribed coordinates we can write Qo = [0, 0], kg = ax?* — bxy _
—y?=0,qg0=y —Box + m=0, ag =y — nx =0 where n + By, a — bf, —
— B3 # 0. From the condition Q(#) = Q, follows (77) and from k(2) = k, we
obtain uy = au,, 1 + u; = bu,. Now we deduce from (77) v; = av,, v; = bo,.
The condition g(#) = q, yields vy = By, (V302 + vovy — v3)/R = m. Becayge

i
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a — bfy — P& =+ 0, it follows from the preceding relations that v, = mu,. Finally,
from the condition o(#?) = o we deduce u,(bf, + nfy — a) = fo — n. As a con-
sequence of the assumption (81), the term in the parentheses is non-zero. Thus
uy = (B — n)|(bBy + nPy — a), and u, + 0 since B, # n. We have determined
certain block 2 € U3¢ n T'}. For its coordinates we have R = u,(vo)* + (uy + 1) vy —
— uy = uy(fg + by — a) + 0. Hence 2 € M and all objects Q(2), k(2), q(?),
%(#?) actually exist. Thus the conditions of our Proposition are geometrically
satisfied, q.e.d.

Theorem 16. The objects Q(2), k(P), 4(?), a(P) form a representing frame on
the manifold MZ.

Proof. Let us denote by R(H, Q(2)) the coordinate H-type consisting of all R*
with the origin Q(%), where H = G(Q(2)). According to Proposition VII it suffices
to prove that the coordinate systems R* satisfying the requirements a), b), c) of
Proposition 19 form a non empty open set in R(H, Q(%)). Obviously it will be
sufficient to show this property for the set of all R* e R(H, (%)) satisfying (81).
But (81) is equivalent to the relation bf, + nf, — a =+ 0. If we denote by ¢ :
19.(0(2)) - 1(R(H, O(2))) the Lie algebra homomorphism induced by the action
G(0(2)) x R(H, O(Z)) » R(H, Q(#)), we obtain ¢(x 3/oy) (bBy + nBy — a) =
= n — B, + 0 in arbitrary coordinate system R*e R(H, Q(#)). (a, b, By, n can be
understood as local differentiable functions on R(H, Q(%).) After Proposition V,
the set of all coordinate systems in question is a H-covering set of R(H, Q(2)), and
hence follows our assertion.

From Proposition 19 and Theorem 16 we obtain the following classification of
orbits on the manifold IM?:

Consider an invariant decomposition

(82) M = UM (i, j, k) = UM, j, k)
where i = sgn [(ug + 1)® + 4u,us] (cf. (76)),
j=/0...Q(g’)eq(ﬂ) k=/0...0((9’)ck(7)
Nl... 0(2) ¢ q(2) Nl o(2?) ¢ k(2) .
Then
M(1, 1, 1), M(—1, 1, 1) consist of oo orbits of dimension 6 each, any orbit is
characterized by a division ratio of three points of the line q(g’),
M(0, 1, 1) consists of 2 orbits of dimension 6, '
M(1,0, 1) and M(—1, 0, 1) consist of o' orbits of dimension 5 each, any orbit
is characterized by a cross-ratio of 4 lines of the pencil with the center Q(2),

M(0, 0, 1) consists of 2 orbits of dimension 5,
M(1, 1, 0) consists of 2 orbits of dimension 6,
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M(—1, 1,0) = 0, M(—1,0,0) = 0,

M(0, 1, 0) is an orbit of dimension S,

M(1, 0, 0) consists of 2 orbits of dimension 3,
M(0, 0, 0) is an orbit of dimension 4.

*

Let us consider now the manifold M. If 2 € M/, then £=(2) € k*(P) (cf. (71), (74)),
and we have R = 0. The couple k*(2) is real. Let us remark first that the d-line &*
from Proposition 18 is defined on the manifold M} U M,, too. Only its homogeneous
coordinates (79) assume, because of R = 0, a simpler form

(83) a=vy, b=0v3, ¢c=—1, d= —v,.

Proposition 20. For ZeM! UM, the d-line E' constructed in Proposition 18
either does not admit any singularity, or it admits a pointwise singular plane. The
last case arises if and only if

(84) W = vov; + viv, — vy =0.

Proof. We apply (67) and (83).
Because of reality of the couple k”(#) we have an invariant decomposition

(85) ML = Mi(1) U MY(0)

according to the sign of the discriminant (u; + 1)* + 4u,u; (see (71)). For any block
2 € M) (1), let us limit ourselves to the coordinate systems R* such that no coordinate
axis passes through a point of k*(2). (Cf. the asumption B 1) of Proposition VI.)
For any admissible coordinate system R* and a block 2 € U5 the coordinates u,, us,
vy of 2 are non-zero. We find easily that the second improper point 7”(#) of the
couple k*(2) is given by

(86) n(P) =v, —wo, =0, w=—u—3, wE .
Uzlo

Here we use admissible coordinates for 2 and the corresponding homogeneous co-
ordinates v,, v, in A, There is exactly one d-element n,(#) < t having the improper
singularity n*(2); it is given by

(37) = (L)

dy
Let us remark that the following relations are valid on the manifold 9 :

(88) Uy = —voWiy, u; +1=—(vp+ w)u,,
(uy + 1)w + ugw? —u3 =0.

Assume in the following that 2 € M}(1).

248



Proposition 21. There is exactly one d-line i* in 2 g, such that [n(2), #'] = 0.
The homogeneous coordinates of that d-line are given by

(89) a=w, b=w?*, ¢c=-1, d= —w
and the corresponding pointwise singular line has the equation

(90) (2?) = (w — vo) (wx — y) + wuy + who, — vy =0.

Proof. For determining 7' we have the system a + we =0, b — wa = 0,

(uy + 1)a + ub + uze = 0, the rank of which is always 2. From the first and
second relation and using the condition a + d = 0 we obtain (89). The formula (90)
follows from (67).

Proposition 22. There is exactly one d-line #* = 2 such that

[&(2).2%] = &(2), [n(2), #%] = nd(?).
This d-line has homogeneous coordinates
(91) a=1+4u; +2upus, b=(1—u)us, c=(1—uy)u,,
d=u; +uj + 2u,u;.

Proof. For determining #* we have the system (a + cvo) vy = b + dv,, (a +
+cw)w = b+ dw, d =uya + u,b + uzc. It is obvious that the values (91)
satisfy these equations. It remains to show that our functions are not all equal to zero
and that the system above is of rank 3. First of all, from the relations a = b = ¢ =
= d = 0in (91) would follow u; = 1, 1 + u,u; = 0, whence (1 + uy)* + 4uu, =
= u3(w — v,)* = 0 — a contradiction. Now let us write the system in the usual form,
where the right sides are all zeros. If both the determinants formed by the coefficients
of the unknowns a, b, d and by the coefficients of the unknowns a, b, ¢ respectively
were zero, we should easily obtain u; =1, u;(u; + 1) + 2uu; = 0 and hence
1 + u,u; = 0 — a contradiction. Thus the system is of rank 3, q.e.d. We can see
easily that the relations [£(2), #*] = 0, [#(%), #*] = 0 can not hold simultaneously
on M, (1); otherwise the coordinates a, b, c, d of n? satisfy the relations a + cv, = 0,
a+cw=0,b+ dvy =0,b + dw = 0, and hence they are all equal to zero. Let us
consider an invariant decomposition

(92) ML) =M, UM, UM,

where '
ZeM, < [&(2). 7] = &(2), [n(2).#*] =n(2),
PeM, «[E(P),#*] =0,
PeM, < [n(?),7*] =0.
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It is obvious that for 2 € M, (1) we have

(93) PeMy<=1 4+ uwy =0, 2eM,<>1+u,w=0.

Proposition 23. Let 2 € M, U M,. Then there is a pointwise singular line s(@)
corresponding to the d-line 42 from Proposition 22. It is given by

(94) S(2) = uy(w — vg) (1 + wuy) [vox — y] +
+ uy(W + vo + 2uywue) vy + uy(2 4+ (W + v) uy) (Wogv, — v3) = 0

Proof. We use (65), (91) and (88). Further we take into account that for 2 € M, U
U M, we have 1 + wu, = 0 (cf. (93)). For any 2 € M, L M,, let us denote by H(Z)
the intersection point of the lines #(2), s(2), defined in (90) and (94). (Those lines
are not parallels because of w =% v,.) Choose a coordinate system R* with the origin
H(2). We obtain

(95) r(@)zy—wx=0, S(P)=y—vex=0
(96) wo; + wio, — vy =0,
(W + v + 2uwe) vy + woo[2 + (W 4+ vo) uz] v, — [2 + (W + vo) us]v; = 0.

Proposition 24. Let # € M ,. Then the following assertions hold:

a) There is exactly one d-element n' e€#f' having singularities in A*. This
d-element is generated, in any coordinate system R* with the origin H(2P), by the
vector

0 0 0 3
97) Z5 = wx — + wix — — y— — wy —.
Ox oy O0x 0

b) There is exactly one d-element n* < #* having a singularity at the point
H(2). n* is generated, in any coordinate system R* with the origin H(%), by the
vector

0 0 0
(98) Z5 = (uy + 1 4 2upusz)x — + uz(1 —u)x — + u(1 —uy) y — +
ox oy 0x
, 0
+ (uy + ui + 2uyusz)y —.
ay
¢) There is exactly one d-element &' < &' such that the d-element [&', n'] has

a singularity at the point H(@). This d-element is generated, in any R* with the
origin H(#), by the vector

0 0 0 w 0 0
(99) Yi = vpx 94 VX =y S~y + (— + w -—)
0x dy Ox Jdy W — g

where the function W is given by (84).
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Proof. ad a) According to Proposition 21 4' < ¢° (cf. (89)) and obviously the
case d) of Proposition 16 holds. Thus there is exactly one d-element ' < #' having
the line () as its pointwise singular line; in particular, having a singularity at H(2).
With respect to our choice of the coordinate origin and with respect to (12) we obtain
u = v = 0 for n'. From (89) we obtain (97).

ad b) We find easily that #* < ¢° if and only if either 2 € M, or 2 € M,,. Thus
we have > ¢ g% and the case ¢) of Proposition 16 holds. From (12) follows u = v = 0
and with respect to (91) we obtain (98).

ad ¢) For any ¢ < &' we have [¢, 1'] < d,2 because &' < g,, fi' < g,. Thus the
d-element [&, '] is generated by a vector of the form (69). Since (u; + 1)* +
+ 4uyuy = uj(w — vo)* + 0, we have [& n'] ¢ g% Thus there is at most one
d-element of the form [¢&, n'] having a singularity at H(#). Expressing it in the form
(69) we obtain m = n = 0. By direct calculation we find that [, #'] possesses that
property if and only if & is given by (99), q.e.d.

Let X, € £(2), Y, € n(2) be arbitrary vectors. From (98) we see that [X,, Z5] =
= (vo — W) uy(1 + uy00) Xo, [Yo, Z5] = (W — vo) us(1 + uw) Y,. Hence follows

Proposition 25. There is exactly one vector Z5 € n* such that [X,, Z3] = X, for
any X, € £(2), and exactly one vector Z5* e n* such that [Y,, Z3*] = Y, for any
Y, € n(2?). Moreover we have

(100) 28 = APV ZE, A(P) = — LTI gy s, -1,
1 + WuZ

M#P) is a point invariant on the manifold m,.
Let us introduce another invariant decomposition

(101) M, = M U M

where M) = {#Z e M, | W = 0}. (Cf. (84)).

Denote by S(2) the set of all d-lines fi = 2 n g° and by Y (?) the corresponding
set of pointwise singular lines. (For the existence of a pointwise singular line it
suffices that 7 # &)

Proposition 26. Let 2 € My. The set y (?) is a one-parametric family of lines
in A?; its envelope is a parabola given by the equation

(102)  p(2) = (w — vo) (1 + wuy) (vox — »)* — 4(1 + vou,) W(wx — y) = 0

in any R* with the origin H(2).

Proof. Any d-line e S(?), #1 + &', 7' can be represented, in any coordinate
system R* with the origin H(Z), by a vector of the form Z* = Z3 + f*Z{ + ¢°Y7,
where f%, g* are real numbers. In fact, we find easily that the vectors Z3, Z3, Y7
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given in (97)—(99) are linearly independent over t. From the inclusion Z%€ g° we
obtain

(103) 797 = (uy)* (1 + uy00) (1 + uyw).

Hence we can see that S(2) is a one-parametric family and that the pointwise singular
line corresponding to a d-line of the family is given by

(104)  foFy(x, ¥) + (f)? Fu(x, ¥) + (u2)* (1 + uz00) (1 + uyw) Fy(x,y) =0,

F,(x, y) denoting the left side of the equation (94), F,(x, y) the left side of (90) and
F;(x, y) = W. Here (96) holds with respect to our choice of coordinates. The equation
of the envelope [F,(x, »)]* — 4(u)* (1 + uy00) (1 + wu,) WFy(x, y) = 0 can be
re-written in the form (102), g.e.d. Let us remark that the parabola p(#) contacts the
line () at the point H(#) and the improper line A}, at the point (2).

Denote now by mt;; the subset of the manifold i)Jl;',‘ determined by the equation
A(P) = 2, where . % 0, —1 is an arbitrary real number. (See Proposition 25.)

Proposition 27. Let p, = A% be a parabola and Hy a point of py. Let /. + 0, —1
be a real number. Let us denote by r, the tangent of p, at Hy, and by s, the line
Jjoining the point H, with the improper point of tangency of the parabola. Further
let R* be a coordinate system with the origin H(P) satisfying the relation

(105) R(rg, 0, X,¥) + 2 % 0

and such that neither of the axes x,y is parallel to ro or so. Then there is exactly
one block 2 € My, A U3q such that p(2?) = py, H(?) = H,.

Proof. From our conditions of coincidence follows, in particular, 1(2) = r,
S(?) = so. Put 7o =y — wox =0, 5o = y — fox = 0. Then there is a number
m # 0 such that py = (y — Box)> — m(wox — y) = 0. The conditions #(%) = r,,
s(?) = so and (95) imply vy = B,, w = w,. With respect to the requirement A(#) = /
we have — (1 + u,f0)/(1 + u,wg) = 2, whence (Awy + Bo) uy + (4 + 1) = 0. Ac-
cording to (105) Aw, + f, + 0, and thus

(106) w = — ~F1 4
‘wo + Bo

because A + 1 * 0. Using the condition p(?) = p, and (102) we obtain
[4(L + u2Bo) WIL(L + wouy) (wo — Bo)] = m, and taking into account (106) we
obtain W= Bov1 + (Bo)* v, — vy = [(Bo — wo) m]/44 + 0. We have found a linear
equation for vy, ¥2, v3. From (96) follow other linear equations

Wovl + (WO)2 v, — 1)3 = 0 ’
(Wo + By + 2u;woPo) vy + WoBo[2 + (Wo + Bo) us] vy —
—[2+ (wo + Bo) uz] vs =
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The determinant of coefficients of the system is equal to (8, — w,)® # 0, whence
vy, v, and vy are uniquely determined. The remaining coordinates u, u; will be
obtained using (88) and (106). It is obvious that the block 2 just evaluated belongs
to 9]&:1 and it satisfies all demands of the Proposition. Especially we have W = 0
and 1 + u,vo # 0, 1 + u,w % 0 follows easily from (106) hence 2 €M, q.e.d.
If we apply Proposition VII to the last one, we obtain

Theorem 17. The equivariant objects p(Z?), H(?)e p(#) form a representing
frame on each submanifold 912:,1. 9)3,,* consists of o' orbits of dimension 5. Each
orbit is determined by the value of the invariant

Wp) = — Ltk
14+ uw

Similarly, let us denote by “Jth,._ [ smﬁ the submanifold determined by the relation
MP) =22 %0, -1

Theorem 18. The lines r(%), s(?) form a representing frame on each manifold
‘JJlg,l. The manifold im‘; consists of co! orbits of dimension 4. Each orbit is determined
by a value of the invariant /1(9’).

Proof is quite similar to that of Theorem 17. Only instead of an additional object
p(2) we have an additional relation W = 0. For the investigation of the manifolds
M, M, we shall need the following Proposition:

Proposition 28. Let 2', ?” be two blocks in T} such that, in a suitable coordinate
system R, we have u; = u7 for i =1,2,3, vy = vy, and v; = ov] for i =1,2,3,
where the triplet (v}, vh, v3) is non-zero (and consequently @ + 0). Let h be the
dilatation from the origin of the coordinate system R* with the modul o. Then

P =h.P".

Proof can be performed by direct computation. Now let us consider an invariant
decomposition

(107) M, = M* LM,

where M = {Z e M, | W = 0}.

Theorem 19. M* is an orbit of dimension 5. MY is an orbit of dimension 4.

Proof. Let ro, S, be two non-parallel lines in 4% with the intersection point H,.
Choose R* with the origin at H, and such that neither of the axes X, ¥ coincides
with ro or with s,. Let 2’, 2" be two blocks from the set M(ry, 5o) = {2 € M) N
AUse | H{P) = ro, s(P) =50} Let us put ro = y — wox = 0, 59 = y — fox = 0.
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From (95) follows vy = vg = B, w = w" = w, and with regard to (91) we obtain
uy = uy = —1/B,. From (88) we have uy = u% = w,, uj = uj = —wy/f,. The
relations (96) give two independent linear equations for vy, v,, v3 and since W’ = 0,
W" =% 0, the triplets (v}, v, v3), (v}, v, v3) are non-zero and proportional to each
other. According to Proposition 28 there is a dilatation & from H, in A? such that
2" = h.2". Thus the set M(ro, 5o) = {2 € M | (P) = 1y, s(P) = s5,} is an orbit
of dimension 1 in M. Now all configurations {ro, s,} form an orbit of dimension 4
in 4%; consequently M is an orbit of dimension 5, q.e.d.

Further we can show easily that the objects (%), s(2) form a representing frame on
the manifold MM and thus IM? is an orbit of dimension 4. It will be very natural to
join this orbit to the one-parametric system {‘Jﬁg,{} as the element corresponding to
the value /(%) = 0. (See (100).)

On the other hand we have not any reason for joining the orbit M to the system
{93}, (Their isotropy groups are of different types.)

*

Let us consider the manifold 9M,,. We start with the following problem: Find all
the d-lines n = 2 for which A* is a pointwise singular plane. For the homogeneous
coordinates of the wanted d-lines we obtain the system (see (65)): b — av, = 0,
d — cvg =0, auy + bu, + cuy = d, avy, + bv, + cv; = 0. Now from the relations
R =0,1+ u,w = 0 follows u; = vy, uy + uv, = 0 on the manifold M. Then
our system of equations can be re-written as a new one, consisting of the relation
d = auy + bu, + cuy and of two equations

(108) b—avy =0, a(vy + vevy) + cv3 =0.
Let us consider an invariant decomposition
(109) m, =M LM

according to the rank of the system (108).

Let 2 € M2, then the numbers v, + vov,, U3 are not both equal to zero and there
is exactly one d-line #> meeting our demands. Its homogeneous coordinates are
given by

(110)  a= —vy, b= —vovs, c¢=1v;+ oy, = —vo(vy + vov)-

Now there is exactly one d-element ((#) < t such that [((2), #°] = 0. This
d-element is determined, in any R*, by the vector

z% = ( +vv)a+va
= (v —_ .
T 1 Ozax 3ay
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Assume that neither of the coordinate axes of R* is singular with respect to the
d-element {(2); then {,(#) can be represented by a vector

) a
(111) =" — ., z =0;/(r; + vov,) .

0x dy

Let us denote by (¥(#) the improper singularity of the d-element ((2); then we
have

(112) ((2)=v,— 20, =0.
Further, consider an invariant decomposition defined as follows:
(113) M2 = MEF O MEY U M2
M* = {(2eM, | (7(2) ¢ k”(2)}
M = {PeM] [ {(2) = &*(2))
M = {2 e M. | (°(2) = n™(2)}
(Cf. (112), (74), (86).) Obviously 2 € M2 * if and only if z + w and = * v,.

Proposition 29. Let 2 € M2 *. Then there is exactly one d-line i* = P such thar
[1(2), 7*] = 0, [((2), #*] = ((P). This d-line has homogeneous coordinates

(114) a=w, b=wz, ¢c=-1, d=—=z
and it admits a pointwise singular line
(115) r(2) = (vo — z) (y — wx) + wo; + wzo, — 03 =0.

Proof. First we solve the system a + we = 0, b + wd = 0, (a +cz)z=b + zd,
d = uja + u,b + usc, which is of rank 3. Then we use (65). Choose a coordinate
system R, with the origin lying on #(2) (see (90)). Then we have r(#) = y — wx = 0,
wo; + w?p, — vy = 0 and

(115") r(?) = (vo — z) (y — wx) + woy(z —w) = 0.

Now z — w = (v — vyw — vov,W)[(v; + vev,) holds and with respect to wv; +
+ w?v, — vy = 0 we obtain z — w = wo,(z — vp)(vy + vov;) + 0. Hence wo, + 0
and wo,(z — w) # 0. According to (115') r(2) | r(2) but r\(2) £ 1(2).

Proposition 30. Let be given two real parallels r, & rio = A* and two improper
points &F £ (5 different from the improper point of ro. Let R* be a coordinate
system with the origin lying on ry and such that neither of the axes X,y is parallel
to ro or passes through one of the improper points &5, (5. Then there is exactly
one block # € ML* A Ujg such that r(P) = ro, ri(P) = ri0, E7(P) = &5, (P(P) =

= (7.
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Proof. Assume that ro = y — wox =0, rio =y — wox + ¢ =0, a # 0; £ =
= v, — Bov, = 0,(§ = v, — zov, = 0. With respect to (90), the condition (%) = r,
means that w = wq, wovy + (Wo)? v, — v3 = 0. From the coincidence of improper
points follows vy, = B, z = z,. Finally the requirement r;(#) = ry, implies, accord-
ing to (115"), wov,(z9 — wo)[(Bo — zo) = a; hence we obtain v, # 0. According to
(111), the relation = = z, can be re-written as zov; + zofo, — vy = 0. Hence and
from the equation wov; + (wo)* v, — v3 = 0 we obtain the values of v, and vs.
Finally uy, u,, u; will be obtained from the relations vy = Bo, w = wy, 1 + wo, = 0
and from (88). We can see easily that the evaluated block & satisfies all our demands,
q.e.d.

Theorem 20. The lines r(2), ry(2) and the improper points (), (*(P) form
a representing frame on the manifold ML* with values in A U AL. M2™* is an
orbit of dimension 5.

Proof follows from Proposition 30 and from Propositions VII and IX.

Theorem 21. The manifolds 2", M2 are orbits of dimension 4.

Proof. Let us start with 9" We can see easily that the coordinates u%, u3, u%, v
of a block 2 € M2 n U3, are uniquely determined by a given position of the line
(2) and of the improper point £*(2) = (*(2). (See (88), (90), (93).) Moreover, if
the origin of our coordinate system lies on r(#), then the triplet (v, v,, v3) is non-zero
and it is determined exact up to a proportionality factor by the independent relations
woby + (Wo)? vy — v3 = 0, Bovy + (Bo)? v — v3 = 0. (The last one is a consequence
of z = v,.) According to Proposition 28, any two blocks 2, 2’ € M2 with the same
position of r(?) and £*(2) correspond to each other in a dilatation of A% from
a centre lying on r(W) Hence follows easily our first assertion. Let us now consider
the submanifold 9MM2™. If we prescribe 1(2), E*(2) and a coordinate system R*
with the origin lying on #(<), then from the relations z = w, z # v, follows v, = 0.
Besides that we have another equation wyv; — v; = 0, while the coordinates
uy, Uy, Uz, Uy are uniquely determined. We can use Proposition 28 again to obtain
the second assertion.

Theorem 22. The line r(2) and the improper point £(2) form together a repre-
senting frame on the manifold M), (See (109).) The manifold M), is an orbit of
dimension 3.

Proof. For the coordinates of a block 2 € M. we have four characteristic relations,
namely u; = vy, Uy + U090 =0, v3 =0, vy + v,0, = 0. We find easily that if we
prescribe a position to #(2) and ¢*(2) we obtain three additional conditions, which
are independent of the former ones and determine uniquely the block £. Some
details are left to the reader. '
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Let us consider the manifold 9}(0) determined in I'; by the relations R = 0,
W = v, or using (88) by the relations

(116) uy = —uy(v)?, uy + 1= —2uv,.
Consider an invariant decomposition
(117) MO0) =N, UN,,

where we put # e M, if and only if 2 contains an infinitesimal dilatation of 42 from
a point. With respect to (64) and (116) we see that 2 e %, if and only if u; = 1 or
1 + U,V = 0. Thus

(118) Ny ={2ely|uy + 1, 1+ vou, + 0, (116) holds} .
Let us consider an invariant decomposition
(119) N, =NRToNY,

where MY = {Z e N, | W= 0}. (See (84).) Let Z €N, be given. Denote by S(2)
the set of all d-lines # = 2 n g° and by ) (?) the set of corresponding pointwise
singular lines.

Proposition 31. Let 2 € Y. Then Y () is a one-parametric family of lines. Its
envelope is the parabola p(?) given by

(120) (1 + u09)? (» — tx) + Ax + By + C = 0,
(121) A = —=2(uz + vy) G — 4H — du,v,v,
B = 2(ug — uyv0) G + 4uqvov, — 4u,H

C = G* — 4v,H
G = uyv3 — Uz, + vy,
H = uvy — uszvq.

Proof. Let us choose an admissible ®*. To determine the envelope p(2), let us
limit ourselves to the d-lines of ) (#) having the homogeneous coordinate a # 0 and
let us assume that @ = 1. From the condition = g° n 2 follows d = u; + bu, +
+ cus, u; + bu, + cuy — be = 0. Hence d and ¢ can be expressed by means of the

coordinate b. From (65) we obtain the equation of a general line from ) (#) in the
form

(122) b2(x + uyy + vy) + b[(uy — uyvp) y — (us + vo) x + G| +
+ (H + vousx — vouy) = 0.

Now the equation (120) can be derived in usual manner. We find easily that 4 +
+ voB = 2(1 + u,v,)* W+ 0 and thus p(#) really is a parabola.
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Proposition 32. Let p, = A2 be a parabola and u$ # 0 a real number. Let R*
be a coordinate system with the origin lying on p, and such that neither of the

axes ;, ; passes through the improper point of tangency of the parabola. Then for
a general choice of R, there is exactly one block 2 € W} n U%q such that p(#) =
= Po, Ul = u3. (By a general choice of ®* will be meant its choice in an open subset
of a coordinate G (x)-type, where x € p,.)

Proof. The equation of the parabola can be written in the form
(123) Po = (¥ — Box)* + Aox + Boy =0, Ay + foBo + 0.

If we compare the leading terms in (120) and (123) we obtain v, = f,, and from the

relations (1 + u,v0)% A = Ao, (1 + u,v,)? B = B, we obtain, putting u, = u3,

_ ”(z’Ao — B,
(1 + ”(2)/30)4

i = WS+ Bo) By + (ui — u3ho) Ao
21+ b

(124) — 2B,

+ (Bo)* s -

Here u$, u3 are the values of u,, u; determined by (116). For a general choice of R
we have obviously 1 + u3f, = 0 and the relations (124) are sensible.
From the equation C = 0 and from (124) follows easily

_ —(u34y — B,)?
2(1 + u3Bo)° (Ao + BoBo)

For determining of vy, v; we have the system (124). The determinant of coefficients
of the unknowns vy, vy is equal to (1 + u3f,)> # 0. (Cf. (121).) This completes our
proof.

Now let us find all vectors X € g such that the parabola p, is a singular set for X.
We can see easily that the coordinates of the vectors in question satisfy the relations

v

(125) Bola—d)— b+ (B)?c=0
a+ 3fc—2d=0
20 — 2Bou = Bod — (Ao + 2BoBy) ¢
Aou + Byv = 0.

Hence a, ¢ may be supposed arbitrary and the other coordinates depend on the former
ones. (The independence of the 3-rd and 4-th equation of the system follows from
Ay + BoBo + 0.) Let R* be a general coordinate system in the sense of Proposition
32; then the coordinate u} is a local function on U%s n NY. To any vector X(a, b, c,
d, u, v) € g satisfying (125) we have a fundamental vector field on the submanifold
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Ni(po) = (PeNT| p(2)
according to the rule

Il

Poj; the function u3 is transformed on WNj(py) N U3,

L Y+ foc) w31 + Bou).

(126)

We find easily that a + f,c = 0 if and only if the vector X belongs to a block 2 €
e Ni(po) N U%e. Whenever this is the case, X belongs to each block 2 € Wi(p,). If
we choose X ¢ 2 for p(2) = py, wehave a + Boc = 0, and (126) is a special equation
by Riccati. By integration we find that the group G(X) acts transitively on the
variable u3 & 0 on the submanifold NY(py) N Us. Any two blocks 2, 2, € N}
can be brought into the same U3¢ by a suitable choice of R*. Thus the group G(X)
acts transitively on M(p,) (See Proposition 32). Hence and from Proposition 32
follows

Theorem 23. The manifold W is an orbit of dimension 5.

Proposition 33. Let 2 € W}, then all lines of the family Y (?) pass through a point
M(2) given by the relations
— U0y + UL, vy + Vv,

127 x o=t Tt
(127) 1 + uyv, 1+ uyv,

Proof. Owing to the relation W = 0 (see (119)) the values (127) make all coeffi-
cients of (122) equal to zero, q.e.d. Let us denote by m(#) the line joining the point
M(2) with the improper point E*(2).

Proposition 34. Let m,, be a line in A% and Myem, a point. Let R* be a coordinate
system with the origin My and such that neither of the axes ;,; coincides with my.
Let u3 + 0 be a real number. Then for a general choice of the coordinate system R*,
there is exactly one block 2 € M| N Usq such that m(P) = my, M(P) = M,,
ul = ud.

Proof. With respect to our choice of R* we can put my = y — fox = 0 and
M, = [0,0]. From the condition M(#) = M, and because of W = 0 we obtain,
with regard to (84) and (127), vy = v, = v; = 0. The condition m(#) = m, implies
vo = Po. According to (116), from the condition u, = uJ follows uz = —u3(B,)?,
u; + 1 = —2p,ul. Finally, for a general choice of R®* 1 + u3f, #+ 0 holds, and thus
we have 1 + u,v, #+ 0 for the block 2 just evaluated. Consequently, 2 € N?, q.e.d.

Let us consider u3 as a local function on the submanifold R{(my, M) = {Z? €
eN] | m(P) = my, M(?) = M,}. If we choose R* as in Proposition 34, we can
show easily that any group G(X) of dilatations from the line m, acts transitively on
the coordinate u% # 0. Hence it follows that G(X) acts transitively on R{(m,, M,).
Finally we obtain
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Theorem 24. N is an orbit of dimension 4.

Let be given 2 e R,. With respect to the relation 1 + vou, =1 + wu, = 0 we
can proceed likewise as we did above discussing the manifold 9,,. Then we obtain the
relations (108) once again and we can consider an invariant decomposition

(128) R, = Ny(1) U N(2)

according to the rank of the system (108). For 2 € 9,(2) we obtain the equivariant
object {*(#) as in (112). Here we have (*(2) = £*(2) if and only if W = 0. There-
fore, let us consider another invariant decomposition

(129) R(2) = RE) L RY)

where NI(2) = {2 eN,(2) | z = vy = W = 0}.

Let us start with R3(2). We show easily that the object r((2) (see (115)) is defined
on the manifold 9,(2). If we prescribe the position of the line ry(#) and of the
improper point {*(#) and if the origin of a coordinate system R* lies on r,(Z), then
the block 2 e M3(2) N Uje is uniquely determined exact up to a proportionality
factor for the triplet (vy, vy, v3). This last triplet is always non-zero since W = 0.
According to Proposition 28, any group of dilatations of the plane A2 from a point
of the line r,(#) acts transitively on the submanifold {2 eN3(2)|r(2) = ry,,
{*(2) = (7'}. Hence it follows easily that 93(2) is an orbit of dimension 4.

For Z € ‘.722(2) let us consider a d-line 4#° < 2 consisting of all those infinitesimal
dilatations of the plane A* from a centre that are elements of 2. (See (117).) The
corresponding pointwise singular line is

(130) hP?) =y —vox +v,=0.

In fact, the d-line 4#° has homogeneous coordinates a = d = 1, b = ¢ = 0. Now, if
we prescribe the position of h(#) and choose the origin of a coordinate system #*
on the line h(#), then the coordinates uy, u,, us, v, are uniquely determined and
for vy, v,, v3 we have two relations v, = 0, W = 0 determining the triplet (vy, v5, v3)
exact up to a proportionality factor. That triplet is non-zero since at least one of the
terms vy and vy + vyv, is non-zero. According to Proposition 28 the set {# e
e NJ(2) | h(Z) = ho} is an orbit of dimension 1 and consequently N3(2) is an orbit
of dimension 3.

Finally, we have the same equivariant object h(%) on the manifold 9,(1), and
besides that five independent relations among the coordinates:

up + 1= =200uy, us= —(vo) s, 1 +uwo=0, v3=0, vy + v, =0.

We find easily that h(2) is a representing frame on 9M,(1) and thus R,(1) is an orbit
of dimension 2. Let us summarize our results:
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Theorem 25. The manifold W5(2) is an orbit of dimension 4. The manifold NY(2)
is an orbit of dimension 3. The manifold M,(1) is an orbit of dimension 2.

Consider the manifold M, determined by the relations u; + 1 = u, = u; = 0.
(Cf. (68).) Let us have an invariant decomposition

(131) Mm, = M* U M

where M = {2 e M, ] W = 0}. Our method will be the same as that we have applied
to the manifold N,. Namely, we construct the parabola p(#) in case of IM; and the
point M(2) together with the line m(2) in case of M. (See the equations (120) and
(127).) In comparison with the manifold %, we have one relation more, namely
u, = 0.

Proposition 32 holds literally for the manifold MM and Proposition 34 holds
literally for the manifold 9 with the only difference that we omit the requirement
u, = u3. Hence we obtain

Theorem 26. The parabola p(@) is a representing frame on the manifold MY
The point M(2) and the line m(2) passing through M(2) form together a repre-
senting frame on the manifold 2. M7 is an orbit of dimension 4 and MY is an orbit
of dimension 3.

3. THE MANIFOLD T2

Let us choose a fixed point p € A% and an admissible coordinate system R* with
the origin p. Consider the subalgebras t = (0/ox, 0/dy) n = (0/dx, d[dy, x(]ox) +
+ 3(2]y)). adp) = (x(8/0x). x0fay. y(2Jox). y(2[oy)). aulp) = (x(2fox) — y(afo),
x(0/0y), y(0]0x)) and the corresponding connected Lie subgroups T, N, G(p), G.(p)
of G = GA*(2). Obviously we have a direct decomposition g = n @ g,(p), where
we consider g as a vector space and n, g,.(p) as its vector subspaces. Let us denote
by p:g—mn, q:g— g.(p) the corresponding projections. For Yen, X eg we
obviously have [Y, X] et. Thus for any £ eI'; holds [n, 2] < 2 since t = 2. If
we denote by @, : g — x(I'}) the Lie algebra homomorphism induced by the action
®:G x I'; - I';, then for each Yen holds ®,(Y) = 0 identically on I'J. If X e g,
then @, (X) = @, (pX) + Pu(qX) = @(qX). Hence it follows easily that the action ¢
induces the same diffeomorphism group on the manifold T'Z as the action of the
subgroup G, (p) = G. Our classification problem then reduces to the following one:
classify all orbits of the manifold I'; with respect to the adjoint action of the isotropy
troup G, (p)! The set of all coordinate systems R* with the origin p is divided into
more coordinate H,-types, where H, = G,(p). We shall choose one of them, for
instance R(H,), and call the coordinate systems belonging to R(H,) admissible.

Let us consider an invariant decomposition

(132) ;="M UM,



where 2 €M, or 2 €M, according to dim (2 N g.(p)) = 1 or 2, respectively.
Let us remark that dim (2 N g, (p)) = dim (2 N g,) — 2 and thus the decomposition
(132) does not depend on the choice of the origin p.

Theorem 27. Denote H, = G,(p). For any admissible coordinate system R*
a) M, " Uiy is an H -covering set of the manifold M,
b) M, N U%g is an H,-covering set of the manifold I,.

Proof. Let §, be the Stiefel manifold of all couples {Xl, X,} of linearly inde-
pendent vectors of ) = g(p). Then §, can be made into a fibre bundle with the base
T and projection p : §, — I} given by the rule p{X,, X,} = (8[ox, 9/dy, X, X,) =
= (t Xy, X,). Put M, = p~ (M), Wi, = p~'(M,) (see (132),

Ugs = Pﬂ(Ugﬁ N Fczt) s Uis = P_l(Uis N l—i) .

With respect to Proposition IV it suffices to prove the following

Proposition 35. For any admissible coordinate system R*

a) My 0 U% is an H,-covering set of My

b) M, N U% is an H -covering set of M,.

Proof of the Proposition: let X, X, € ) and let R* be an admissible coordinate

system. Then we can write

]

0 0
X;=a1x"— + ... + da[y“;, X, = a"z‘x“é—a—i- coo + d3y”

x* y X ay*

If moreover X and X, are linearly independent, we have {X,, X,} € &,, and af, ...
..., d}, a3, ..., d3 are local coordinates of the couple {X{, X,} on the manifold &,.
Let us consider the Pluecker’s coordinates pj; of the couple {X;, X,}, which are
differentiable functions on &,. Let ¢ : H, — x(&,) be the Lie algebra homomorphism
induced by the action H, x &, — &,. From (2) we obtain the following table for
the infinitesimal transformations of pj;:

E F o

X —
i ¢ ax Y Oy
I

Py2 —Pi2 P23 — Pra 0

P13 P13 0 Pi3+ Pia

P1a 0 ‘ P13 — P34 P24 — Py2

P23 0 ‘ P13+ P3a Past+ Py

Paa —Pza | Pia+ Pra 0

P3a P3a ’ 0 —Pio + P23
I
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(For the sake of simplicity we omit the index «.) Let E(f) be the symbol introduced
in (62) where f is a local function on the manifold &,. Put E(f) = E(f) n M;
for i = 1, 2. We find easily that {X,, X,} € 9, if and only if we have simultaneously
aj + di =0, a5 + d3 = 0, or in Pluecker’s coordinates,

(133) Pia=0, piy—pla=0, pi—pi,=0.

Let us remind that Uje = {Pely |2 N Ei =0, B3 = (x*(0fox*), y*(0]oy™)).
Hence USg = E(p3;) and similarly Ujs = E(p%,). From (133) follows Wi, =
= Ei(Pla) U Eq(p}s — P3a) U Eq(pis — p1,), and since the Pluecker’s coordinates
of a couple {X,, X,} € §, cannot be all equal to zero, we obtain from (133) M, =
= Ey(pis + P3a) U Ex(P34 + p5,) U Ey(p33). From our table and from Proposition
V we ﬁrld easily that E(p7,) is an H,-covering set of i, and E,(p5,) is an H,-covering
set of 9>, q.e.d.

Theorem 28. The manifold M, consists of two orbits of dimension 2 and of one
orbit of dimension 1.

Proof. Let R* be an admissible coordinate system (see our convention about
coordinates). Then each block 2 e I'; n U% is determined by two equations of the
form

(134) a=ub+u,c, d=uvb+ vy,

where a, b, ¢, d denote the last four coordinates of a vector X € g in the coordinate
system &,. (We shall omit the index o if there is no risk of confusion.) The manifold | A
is of dimension 4. Thus if we restrict the coordinate system &3¢ : U3¢ — R® to the
intersection U3¢ N T3, we obtain a map of the form 2 — (uy, u,, 0,0, vy, v, 0, 0),
i.e.,amap &% : T2 n U% — R* which is a local coordinate system on the manifold
I'2 induced by the coordinate system R*. According to Theorem 27 the coordinates 5%
are H-covering on IM,. Now for 2 € M, n U3, holds Z < g, and one has additional

relations
(135) u; +v, =0, u, +v,=0.

ar

Thus by restricting the chart €5 to the set M, N U, we obtain a local chart S
on M,. M, is of dimension 2 and uF, uj can be taken for local coordinates expressing
PeM, n Us.

Suppose Z € MM, and let us look for all complex d-elements ¢ =« CZ such that
ad — bc = 0. Using Theorem 27 we can find an R* such that 2 € U%,. In local
coordinates, we have to determine all groups (a, b, ¢, d) of complex numbers
satisfying the relations (134) and ad — bc = 0. Hence we deduce a condition

(136) (ug)* % + (1 + 2uquz) be + (uy)* > = 0.

If we add another requirement ‘¢ < Cgc(P), ie., u = v = 0, we obtain exactly two
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d-elements. They can be real different or imaginary conjugate or real and coincident.
The relation ad — bc = 0 is invariant on Cg and thus the couple of complex
d-elements just constructed is a well defined object. There is a couple of pointwise
singular lines corresponding to our couple of d-elements; it is given by the equation

(137) (P) = upx? + xy —uyp* =0.

Neither of the equations (136), (137) can vanish identically. We have obtained an
equivariant object on the whole M.

Proposition 36. Let %, be a couple of lines in CA%, which are real and different,
or imaginary conjugate, or real and coincident, and have a double point at p € A%
Let R* be an admissible coordinate system such that the following conditions are
satisfied:

a) If the lines of the couple x, are mutually different, then they are not harmoni-
cally separated by the axes X,y.")

b) If the couple x, is a double line, then the axes X,y are different from that line.

Under these conditions there is exactly one block 2 €M, n U5y such that
HP) = x,.

Proof. Let us write the equation of 5, in the coordinates R* in the form d;x? +
+ dyxy + dyy* = 0. With respect to our assumptions a), b) we always have d, = 0.
The rest of the proof is trivial.

Proof of Theorem 28. The coordinate systems R* that are admissible in the sense
of Proposition 36 form an open subset of the H, -type of all admissible coordinate
systems. According to Proposition VII () is a representing frame on I, with
respect to the group H, = G, (p). Now it remains to discuss the domain of values of
the frame.

Let us consider some £ € I,. According to Theorem 27 there is an admissible
coordinate system R* such that 2 € U;. Then £ is given by two equations of the
form

(138) b=ua+ud, c¢c=va+uv,d.

Here uy, us, vy, v, are to be considered as coordinates of the block 2 € Uj;. We
can also obtain these local coordinates by restricting the chart G%5 : U%s — R® to the
intersection U%s N M,. Now the d-element & = Z N |, admits a singularity at p

') We say that a line couple {p, ¢} separates harmonically another line couple {r, s} if
R(p,r,q,5)= —1.
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and a couple k(.@) of singular lines given by the equation (3). In local coordinates we
obtain from (3), (139) and from the relation a + d = 0

(139) K2) = (u; — uy)x* — 2xy — (vy — v,) y* = 0.

Denote by Cg, the set of all complex vectors from Cg satisfying the invariant relation
ad — bc = 0. Let us consider an invariant decomposition

(140) M, = Mo M

where M) = {2 e M, | CZ = Cg°}. If 2 € M, N Ujs, then a complex d-element ¢
belongs to CZ2 n Cg° if and only if the homogeneous coordinates of ¢ fulfil the,
relation

(141) uwia® + (ugv, + uug — 1) ad + uyv,d® = 0.

This is an immediate consequence of (138). It is obvious that 2 € MY if and only if
the equation (141) vanishes identically. The d-element 2 N ), belongs to g°, and the
object k(ﬂ’) is a double line in this case.

Let us consider the submanifold 9i}. In this case the equation (141) completed
by the condition ¢ < Cg(p) determines exactly two complex d-elements. These
d-elements are real and different, or imaginary conjugate, or real and coincident,
and they have a double point at p. The corresponding couple of pointwise singular
lines will be denoted by (%) again; in local coordinates we have

(142) (W P) = uyx* — (1 + ugvy, — uyvq) xy + 0> = 0.

(The last formula follows from (4), (138), (141).)

Let us introduce the following notation: sgn k() = 1, —1, 0, according to the
sign of the discriminant of (139). The symbol sgn () will have the analogous
signification. We consider an invariant dexomposition as follows:

(143) My = UM, j), i,j=1,-10,

i
where M(i, j) = {# € MT | sgn k(Z) = i, sgn «(?) = j}.

Proposition 37. M7(0, —1) = 0.

Proof. If sgn k(#) = 0, then accordiitg to Theorem 1, h), the real d-element
P N, satisfies the relation ad — be = 0 and consequently, it is one of the d-elements
defining the object %(#). Thus one of the lines of the object %(2) coincides with the
double line k(#?) and hence both lines of %() are real, sgn »(?) = 1 or 0, q.e.d.

Let 2 € M. Choose an admissible R* such that

a) 2 € Ujs; b) if sgn »(2) =+ 0, then the axes X,y do not separate harmonically
the lines of #(2); c) if sgn #(2) = 0, then neither of the axes X, y coincides with x().
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A choice like this is possible according to Theorem 27. With respect to b) and c)
the equations (139) and (142) can be written in the form

(144) dyx? = 2xy —d,y? =0, dx* —xy+d, > =0,
where
(145) Uy =u, +dy, vy =10,+d,.

In view of (142), (144) the triplets (d,, —1, d,), (uy, — (1 + dyv; — dyuy), vy — d,)
are proportional to each other, which leads to the system

(146) (1 + dydy)uy — dydyoy = dy, dydyug + (1 — dydy) vy = dy + d,
The determinant of the system (146) is
(147) D=1+d,d; —d,d,.

If we denote by A the resultant of the left sides of (144), we find easily the following
expression:

(148) A = (1 + dyd,) (1 — 4d,d,) — D*

Proposition 38. Let kg, %, be two line couples of CA% given in an admissible
coordinate system R* by the equations (144). Then

a) If ko and »y taken together consist of four mutually different lines, we have
D = 0 if and only if the couples in view separate harmonically each other.

b) If both ko and x, are formed by non-parallel lines but not all lines of the
configuration are mutually different, we have D =% 0.

Proof. The assertion a) can be verified by direct computation, the assertion b)
follows from the signification of the resultant and from the formula (148).

Proposition 39. Let 2 € MM, sgn k(Z) * 0, sgn #(2?) * 0. If the couples k(2), «(2)
have not a common line, then they do not separate harmonically each other. If
sgn k(2) + 0, sgn #(2) = 0, then the double line x(%) does not coincide with any
line of the couple k().

Proof. Let ®* be an admissible coordinate system such that the objects k(2), »(2)
are given by equations of the form (144). If D = 0, then from the solvability of the
system {(145), (146)} follows d(1 + dyd,) = 0, dy(1 + d,d,) = 0. Since D = 0 it
is impossible that d; = d, = 0 and hence d;d, = —1 and sgn k(%) = 0. Thus
whenever sgn k(%) + 0 we have D = 0. From part a) of Proposition 38 follows our
first assertion and from the formula (148) we obtain the rest of the proof.

Proposition 40. Let ko, %, be two couples of mutually non-parallel lines (real or
imaginary conjugate) crossing at p, and such that they do not separate harmonically
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each other. Let R* be an admissible coordinate system such that the axes X,y do not
separate harmonically any of the couples ko, #,. Then there is exactly one block
2 e M} n Uss such that k(2) = ko, (P) = x,.

Proof. With respect to our choice of R* the equations of the couples kg, %, can
be written in the form (144). To determine the coordinates of the block £ consider
the system composed of (145) and (146), where D = 0 with regard to both parts of
Proposition 39. Thus the system in view has a single solution 2 € M,. Now it is
impossible that 2 € MY, In fact, in this case the coordinates uj, u,, vy, v, would
make zero all coefficients of (141) and from (145) we should obtain 1 + dd, = 0,
i.e., sgn ko, = 0 — a contradiction. Hence 2 € M7, q.e.d.

Theorem 29. The equivariant objects k(2), »(?) form a representing frame on
the union ) MI(i, j). Each of the manifolds MY(1, —1), MI(—1, 1) consists
i, j==x1
of oot orbitsj of dimension 3. The manifold MM(1, 1) consists of o' orbits of dimen-
sion 3, of two special orbits of dimension 3, and of an orbit of dimension 2. The
manifold MY(—1, —1) consists of o' orbits of dimension 3 and of an orbit of
dimension 2.

Proof. The first assertion follows from Propositions VII, 39 and 40. Then we
have to investigate, separately for each component, the domain of values of the
representing frame. Particularly, we have to consider all possibilities of coincidence
of the couples k(Z), (). Let us remark that the general part of each M(i, j) is
a one-parametrical orbit family, and any orbit of that family is determined by a cross
ratio of 4 mutually different lines.

Proposition 41. Let k, be a couple of non-parallel lines (real or imaginary
conjugate) with an intersection point at p, and let %, & ko be another real line
passing through p. Let R* be an admissible coordinate system such that its axes do
not separate harmonically the couple k, and such that neither of them coincides
with the line x,. Then there is exactly one block # € MY N Ujs such that k(?) = k,,
HP) = x;.

Proof. The couple k, and the double line (x,)* are described by equations of the
form (144). Since A % 0 and 1 — 4d,d, = 0, it follows from (148) that D = 0 and
the system composed of (145) and (146) has only one solution. We can show as in
the preceding Proposition that the block 2 e M, justobtained belongs to M} and
that the coincidence requirements are satisfied in a geometrical sense.

From the last assertion of Proposition 39 we obtain

Theorem 30. The couple k(%) and the double line x(2P) form together a represent-
ing frame on the manifold Mi(1, 0) U M}(—1, 0). Each of the manifolds Mi(1, 0),
MI(—1,0) is an orbit of dimension 3.
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In case that sgn k(2) = 0 the objects k(2), #(#) do not form a representing frame
and we have to find another equivariant object. Let us start with the case sgn »(2) =
= 1. As we have shown in the proof of Proposition 37, one of the d-elements deter-
mining the object %(#) coincides with the direction element 2 N . The other one
does not belong to b, it is real and it can be “provided” by two real singular lines
a(2), B(2). The equations of o(2) and B(#) are of the form (4) or (5), respectively.
Here a(2) is pointwise singular and belongs to the couple %(2) whereas B(2) is
a new equivariant object. Let us remark that o(#) and f(2) are always non-parallel
and they pass through the point p. %(2) consists of the lines «(#2) and k(2). Because
one of the d-elements determined by the relations (141) and u = v = 0 is 2 N |,
we deduce that one solution of (141) is @ + d = 0. Hence the other solution is of the
form

(149)  uyvia + uyvad =0, uywy *+ uyv,, (uy — uy) (vg —vy) = —1.

Here the last relation expresses the condition sgn k(#) = 0, or else the inclusion
k(#?) = »(2). Using (4) and (5) we derive easily

(150)  a(?) = uyx — vy(uy —uy)y =0, B(P) = upx — vy(uy —u)y =0

in any admissible 8*; moreover we can see that

(151) K2)=(uy —u))x —y=0.
Now we have k(2) £ o(?), k(?) % B(?); otherwise from the relation (u; — u,).
.(vy — v,) = —1 would follow u,v; = u,v, — a contradiction.

Proposition 42. Let ko, oo, By be three mutually different real lines in A> with
common intersection point p. Let R* be an admissible coordinate system such that
neither of the axes X,y coincides with any of the lines ko, 0y, Bo. Then there is
exactly one block 2 € M{(0, 1) n Uy such that k(?) = ko, o(2P) = o, B(Z) = B,.

Proof is a routine and it is left to the reader. Let us only remark that the relation
u,vy * u,v, must be verified for the block 2 formally evaluated. Hence we obtain

Theorem 31. The objects k(2), «(?), p(?) form a representing frame on the
manifold M(0, 1). The manifold M7(0, 1) consists of two orbits of dimension 3.

The manifold SRT(O, —1) is an empty set according to Proposition 38; it remains
to investigate the submanifolds MT(0, 0), MY. If 2 € M(0, 0) then k(2) = (),
and in arbitrary admissible R* such that 2 e U5 we have invariant relations

(152) (uy — uy) (v; —vy) =1
(153) U0y = UyDy .
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Here both sides of (153) are non-zero. For 2 € M the formulae (152), (153) hold,
too, with the only difference that u,v; = u,v, = 0. From the preceding relations and
from (138) follows

(154) ad — bc = —uyv,(a + d)?

for any vector X € 2, 2 € M}(0, 0) U M.

Propositon 43. The ratio A(2?) = (ad — bc) : (a + d)? is the same for all vectors
X(u,v,a,b,c,d),Xe? (g = g,), and all admissible R*.

Proof. From (154), (153) we have
(155) NP) = —uw; = —uy0,.

Thus if we choose a fixed admissible R* such that 2 e U}, the assertion holds with
respect to that coordinate system. On the other hand the set 2 N (g = g,) does not
depend on the coordinates and thus A(#) depends only on 2 € M7(0, 0) U MY, g.e.d.

Thus A(2) is a well-defined function on the manifold MT(0, 0) U M. Moreover

#(2) is a point invariant under the group H,. In fact, the functions ad — be, a + d
are point invariants on the manifold g under H, and for he H, we have h. 2 n
N (g~ g.) = h[Z (3~ g.)] The value of A(Z) cannot be arbitrary. In fact,
from (152), (153), (155) we derive easily (ug + u,)* = (u; — u,)* (I — 44(2));
hence A(2) < 1.

Proposition 44. Let k, be real line passing through the origin p and let . < } be
a real number. Assume that R* is an admissible coordinate system such that neither
of the axes X, ; coincides with ky. For . < % there are exactly two blocks 2 €
€ [MF(0, 0) U MT] A Uis and for i = § there is exactly one block 2 € [M}(0, 0) U
U MT] " Uis such that K(P) = ko, (2) = 2.

Proof. The equation of the double line (ky)? in the coordinate system R* is of the
form px? — 2xy + y*[u = 0. The condition k(%) = k, yields two relations
Uy — uy = g, v, — vy = 1/p and from the condition A(#) = . we obtain uv, =
= — A, u,v, = — A With respect to the inequality 4 < 1 we obtain two real solutions
given by

(156) ug = (1 £ /(1 = 42), uy = u(—1 + /(1 — 42)).

Proposition 45. The function sgn {]uf — |u§|} is independent of the choice of an
admissible coordinate system R* such that # € Uys.

Proof. We can see from (156) that sgn {|u| — |u3|} = 0 for A = 1. Let % <
< M7(0,0) U M) be an open submanifold of M(0,0) U M determined by the
inequality A(?) < }. Assume that 2 € N. The admissible R* such that 2 € U%; are
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just those satisfying x % k(#), ¥ % k(#). The set of all those coordinate systems is
divided into four connected components with regard to the topology of the group H,.
The continuous function sgn {|u°{| - ]u%[} #+ 0 is constant on each component an
we find easily that its value is preserved by the transformation x' =y, y' = —x
belonging to H,. But the last transformation mediates a passage among the compo-
nents, q.e.d.

Now we find easily from (156) that the manifold 9t splits into two invariant sub-
manifolds *, N~ determined by the relations sgn {|uf| — |u}|} = %1.For (2) < }
the two blocks 2 € I given in Proposition 44 belong to different orbits. Finally we
obtain

Theorem 32. The manifold MT(0, 0) U M] consists of two one-parametric systems
of orbits of dimension 1 and of another orbit of dimension 1. Each orbit is completely
determined by the numbers sgn {|uy| — |u,|}, A(2), and sgn {Ju| — |u,|} + 0
implies that it belongs to one of both the orbit systems generating M* and N~.
A block 2 belongs to the special orbit if, and only sgn if {Ju;| — |u,|} = 0, (2) =
= }. Otherwise we have A(?) < 1, the invariant J(P) being given by (155).

To conclude, we shall give a summary of results of this Chapter.

A) A table of orbit types of the manifold T,.

[~ . I 7 i
4 \Manlfold I‘g E ri 1 ri
Orbits T~ ; { -
4 x x? ’ //
dim 6 8 x oo! 2% x! i —
8 special 4 special :///
dim S 1% ! 3% x! _—
’ 3 special 8 special ) //
— —
dim 4 2 special 1% ot —
------ 6 special ///
dim 3 " ! 3 special 4 % oot
/ | 6 special
/ H .
dim 2 1 special ‘ 1 special 4 special
(subalgebras) {
I
dim 1 /: //} 2 x w!
| " .
/ | _— 2 special
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B) Invariant decompositions of the manifolds T'3, T'3.

e
|(36)
rm r90)
| | | T
n rog) = Mm N, €, 2,
e | o9
0 i |
b o N1 N(=1) N0
(41) !(42) Uy,
- v
IN*(; i |
HW ¢ mo1, 1) MO0, 0) (50
LD (=1 €,,0)
r;
T(BZ)
oy n,
) (140)
my me
' (143)
()]
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C) An invariant decomposition of the manifold Tj.

|

ri
(68)
m,
‘ (131)
m, | |
7 mE mo
(72) e p
! i
UM G, Jj, k)
(83) i=1-1,0
T =01
ML) mL0) k=01 :
' a1
: i
€N, €N,
(119) D)
, T |
bk N9 N,(1) N, (2)
o Lamy
NE2)
(90)
m, m, m,
(101) i
‘ } (109)
|
| |
m* Mo ml m2
(107) | (13)
| T
t})ﬂﬁ;h Umg, m* mo M2 * mze m2w
A
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