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Czechoslovak Mathematical Journal, 18 (93) 1968, Praha 

ORBITS OF TRANSFORMATION GROUPS ON CERTAIN 
GRASSMANN MANIFOLDS 

OLDRICH KOWALSKI, Brno 
(Received November 3, 1966) 

{ContinuationY) 

2. THE MANIFOLD г"̂ ]̂ 

Let V be a vector space and Ж cz ]/ its subspace. Vectors X^, X2, ..., Xj^e V will 
be called linearly independent over Ж if, under the canonical projection q : V-^ VJW^ 
the vectors qX^, Ц^г^ •••, q^k ^^^ linearly independent. 

Now let us introduce the coordinates we shall use in this section. 

Theorem 15. For any point x e A^' and any admissible Ш"^ with the origin x, the 
set C/26 ^ Г4 is a GJ^xycovering set ofT\. 

Proof. As usual, let us denote by t the Lie algebra of all infinitesimal translations 
of Л^; put t^ = t -̂  (0). Let ^3 be the Stiefel manifold of all triplets {Х^,Х2Лъ]у 
where X^,X2,X^ e g are linearly independent over t. Then the manifold JÇ3 x t^ 
can be regarded as a fibre bundle with a projection jP : 5з x t^ -> Г4, where the map p 
is given as follows: for {Xj, X^, X3} e JÇ3, XQ e t^ we put P{XQ, [X^, X ^ , Z3}} = 

= (-^05 -^1? ^ 2 ? ^ 3 ) ^ Г 4 . 

With respect to Proposition IV it suffices to prove the following: for any x e A^ 
and any admissible W with the origin x the set p~^(V\^ n Г4) is a Gc(x)-covering 
set of 5з X t^ 

LetXo G t^, {Xi, X2, X3} G (^з; then in arbitrary coordinate system 9?°̂  we can write 

(61) Xo = u'- -^- + v"" — 
ex'' dy^ 

dx^ of- dx^ dy"" dx"" dy'' 

/ - 1,2, 3 . 

*) The first part of the article was published in this Journal 75(1968), 144— 177. 
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According to the notation of Part I, Section 4, we have 

Ele = (-^^, f ~ ) \ , Vie = {^ e Г , I ^ n El, = 0} . 
\dy oy^] 

Because the vectors X^, X2, X-^ are linearly independent over t, the matrix 

(a\ Ъ\ c\ df\ 
al bl cl dl 
A bl c\ dV 

is of rank 3. Let us denote by p''^ the determinant which arises by dropping the f-th 
column of the matrix. Then we see easily that 

{Xo, {Xi, X2, X3}} G p~\Tl n Ul^) if and only if Î/" Ф 0 , pi ^ 0 . 

Let us introduce the following notation: i f / i s a local function on a manifold Ш, put 

(62) E{f)^{qem;f{q)^0}. 

In this notation we can write р~^{Г1 n L/^e) = E{u'^) x £'(^4), where, of course, 
E{U°') CZ t^, E'(PX) CZ §3. With respect to Proposition III it remains to prove the 
following assertions: 
For any 9̂ °" with the origin xe A^ 

a) E(if) is a G J^x)-cover in g set of t^, 
b) E'i^pX) is a G^{xycovering set of ^ з . 

Let X e A^ and let W be a coordinate system with the origin x; then we have obvi­
ously 

9cW ,x-
oy ' ^^'^' 

^ 
гу 

From the formulae (2) follows immediately ad y'^^djäx'') {и"") == v"" and if XQ(^U'', V"") G 
e t°, u^ = 0, we have v^" Ф 0. According to Proposition V the assertion a) holds. 

Further let us denote cp : QX^) ~^ Х((5з) the Lie algebra homomorphism induced 
by the action G^x) x 5з ~̂  5з- Using (2) we obtain easily the following table for 
the infinitesimal transformations of the functions pi on 5з : 

Pl 
p\ 
p% 
p\ 

4^"i) 
0 
p\ 

-p% 
0 

'(-è) 
Pi 
0 

p\ + Pi 
p\ 

' ( ' ' - .^ ) 

Pi 
p\ + P\ 

0 
p% 

'^"b) 
0 

-Pi 
Pi 
0 
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According to Proposition Y we deduce from the table that E'{pl) u E'{pl) и E'(pl) 
is a G^(x)-covering set of 55з (see (62)) and that E'(pl) is a Gc(x)-covering set of 
E'(pf) u £ '̂(^3) ^ ^'(^4)- Now the assertion b) follows from Proposition I, b). This 
completes the proof of Theorem 15. 

According to Section 7 of the first Part, we have the following practical conse­
quence of Theorem 15: whenever the one-to-one property of a map 0^ -^ {Oi(^), . . . 
..., ОД^)} , 0^ еШ с Г4, is to be proved, we can limit ourselves to coordinate 
systems with a fixed origin, when expressing all the necessary relations. We can 
even limit ourselves to an open subset of a coordinate Gj^x)-type for any xeA^, 
Let now 0 ET\ and xe A^ Ы arbitrary. According to Theorem 15 there is an %^ 
with the origin x such that 0 EU\^ n Г4. If we express each vector X e ^ in the 
form (1), (we shall omit the index a again) then, in the corresponding coordinate 
system 6^ of g, the block 0 is given by equations of the form 

(63) d = au^ + bu2 + CU2, , V = av^ + bv2 + cv^, + HVQ , 

Here u^, U2, W3, VQ, V^, VJ, V^, are the coordinates of the block 0 with respect to the 
local coordinate system S26 or, more briefly, with respect to the coordinate system 
t̂"". (The last abbreviation is possible thanks to the fact that only the coordinates S26 

will be used onГ4). Another form of (63) is the following one: for any 0 еТ\ and 
any W^ such that 0 e Ul^, the block 0 is determined by its basis 

/^.4 x̂ <v ^ д д ^^^ д д д 
(64) Х^ = х ^ + и^у -- + v^ — , Х2 = х— + и2У —- + V2--, 

дх ду ду ду су ду 

^га ^ д д ^^„ д д 
Х1 = У-- + u,y-- + v,--, X? = + г; 

дх ду ду дх ду 

Let 0еТ1, X е0 ~ t The set of all d-elements of the form ^ = (X + ^XQ), 
where XQ E 0 n i and Я is a real number, will be called a d-line determined in 0 
by the vector X, or else, by the directional element r\ — (X). A vector Y will be 
referred to as belonging to a J-line | if (7) e ^. It is obvious that two vectors X,YE 
E{0 ~ {0 r\ t)) belong to the same (i-line if and only if they are linearly dependent 
over t. If X belongs to ĝ  or to g^, then so does any vector У belonging to the cf-line t, 
determined by X, 

Let us introduce 

(64a) ^l0) = 0 ni for 0ET\. 

By (64), in any admissible "W, the ^f-element ^^(^) is generated by the vector X^. 
Let ^ be a J-line of 0 and ÎJQ a J-element of t. Let be given two vectors X^, X2 

belonging to I and other vectors Y^, У2 ̂  '/o- Assume all these vectors to be non-zero. 
Then either [X^, Y^] = [X2, У2] = 0, or both [X^, Y^] and [X2, У2] are non-zero 
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and they determine the same J-element С ̂  t. In the former case we write [t]^, ç] = 0 
and in the latter [?/o, | ] = C- Let Z G g be given, X = и djdx + v ôjôy + ax djôx + 
+ bx(dldy) + cy{dldx) + dy(dldy). Remind that all singularities of Â  are given by 
the system 

(I2) и + ax + су = 0 , V + bx + dy = 0 , 

and the same holds when X e Cq has imaginary coordinates a, b, ..., v. Let X e iß 
and let ^ be the corresponding J-line in ^. By eliminating the coordinates u, v from 
(12) and from the second relation (63), we obtain the equation 

(65) a{i\ — XVQ) + b(x + ^2) + ф з — Voy) + dy = 0 , 

This equation expresses the union of singularities of all vectors Ye c. We shall call 
the last set the set of singularities of the d-line ^, when there is no risk of confusion. 

Proposition 16. Let ^ be a J-line in ^ еГ1. Then the following cases are possible: 

a) The equation (65) has not any solution. 

b) The equation (65) is fulfilled identically. 

c) (65) determines a line; each point of that line is a single singularity of a single 
d-element from | . 

d) (65) determines the pointwise singular line of a unique d-element from c; the 
other d-elements from J do not admit any singularity. 

The cases a), b), d) will occur if and only if | с g^. 

P roo f is obvious from the way we have obtained the equation (65). 
We shall express ourselves as follows: in the case a): the d-line I does not admit any 

singularity; in the case b): the d-line | has a pointwise singular plane; in the cases c) 
and J): the d-line ^ has a pointwise singular line. 

Let us remark that if two J-elements ^^^ ^2 ^ ^ ~ ^x belong to the same ti-line c, 
they have the same homogeneous coordinates a, b, c, d; and inversely. For this 
reason the homogeneous coordinates a, b, c, d of an J-element (̂  <= | will be referred 
to as the homogeneous coordinates of the d-line ä, (with respect to the corresponding 
coordinate system). 

If a J-line I с ^ satisfies the inclusion | с g ,̂ then we have the relation a + d = 0 
for its homogeneous coordinates. From (63) follows 

(66) («1 + 1) a + U2b + W3C = 0 . 

The set of singularities of the J-Hne is given by the equation 

(67) a{vi — у — XVо) + b(x + V2) + c(v2 — t^oj) = 0 • 
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Consider an invariant decomposition 

(68) Ti = Ш, u Ш, , 

where Ш, = {^еГЦ^ ci g J . 
Let us start with the open submanifold Ш^. Obviously ^ e ЭЛ^ if and only if the 

equation (66) does not vanish identically, i.e., if and only if at least one of the numbers 
W| + 1, U2, W3 is non-zero. If this is the case we obviously have dim [^ n gj(^^(^)] = 
= 2. If we denote d^^ = [^ n g ,̂ ^ n g J (see Note 2), then dim [d^^]{d^^ n t)) = 
= 1. 

Using (64) we see easily that any J-element ^ с d^^ is given by a vector of the 
form 

(69) Ĵ 2 - («1 + l ) h c - : - - -> ' - ; - - + lu^x -~~- + 2u2y -z- + m— + n — 
\ ex dyj cy ox ox oy 

in any coordinate system 9̂ "". 
The J-element ^ admits a couple of singular hues (real diiferent, imaginary conju­

gate, or real coincident) with the common equation 

(70) Мз(х - Xof ~ {ui + 1) (x - Xo) {y ~ Jo) - ^42{y - УоУ = 0 , 

where only the point (XQ, >'O) depends on the choice of с in d^è^. (Cf. the formula (3)). 
Consequently, with the subspace d^^ (and thus with the block ^ e Ш,), we can join 
a couple /c°^(î ) of improper poi?7ts (real or imaginary conjugate) of the plane CÄ^. 
Using the homogeneous coordinates v^, Vy in CA]^ (see Part I, Section 6) we obtain 

(71) /c-(^) = u,vl - [u, + 1) v^Vy ~ U2VI = 0 . 

Hence fc'^(^) is an equivariant object from Ш^ into CA]^. Now using (64) again we 
find easily that dim (J^^ n t) = dim [J^^, ^т(^)] è 1- Consider another invariant 
decomposition 

(72) m\ = ml u ш^, 
where Ш1 = {^ e Ш, \ dim {d,0> n t) = l} , Ш^ = [^ e Ш, \ d,^ з t}. We deduce 
easily from the definition that ^ e Ш^ if and only if, in any coordinate system, we have 

(73) R = U2vl + (wi + 1) 1̂0 - W3 Ф 0 . 

Let us denote by 

(74) r ( ^ ) ^ t ^ , " - t ; o t ^ , = 0 , 

the improper singularity of the ti-element ^X^) = {djdx + VQ{d\dy)). Then the relation 
(73) possesses an additional geometrical signification: Я ф 0 <^ ^'^(^) ф k'^(^). 

Let now ^ e Ш^ be given. 
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Proposition 17. There is exactly one point Q{^) in A^ which is a common singu­
larity for all d'lines | cz ^ n g .̂ This point is given by 

(75) x = î̂ ^ ,̂ y^lzJ^, 
R R 

w here A = U2,V2 — 1/2̂ 3? ^ = (l + u^) v^, ~ u^Vi, С = (1 4- u^) V2 — U2V1 and R 
is given by (73). 

Proof. It suffices to find a point [x, j ] satisfying (67), whenever the homogeneous 
coordinates 0, b, с of a dAiriQ fulfil (66). For this it is necessary and sufficient that the 
matrix 

/1 + Wi W2 ^3 \ 

\^i " У " ^^0 X + V2 Vs - VoyJ 

be of rank 1, Denote by D^{x, y), ~D2{x,y), 1)з(х, j^) the determinants of that 
matrix which arise by dropping the first, second or third column. Then we obtain 
a system of equations 

^I(A% >0 = ^2(x, y) = D,{x, y) = 0. 

The wanted point must satisfy, in particular, the system 

D^(x, y) + VoD^{x, y) = 0, D2{x, y) - VQD^{X, j ) = 0 , 

whence (75) follows. On the other hand, a direct calculation shows that the values 
(75) actually are solutions of the original system D^ = D2 = i^a, q.e.d. 

Let us denote by k{^) the line couple determined by the couple /c°°(^) of improper 
points and by the proper point ß ( ^ ) . Then k(^) is an equivariant object on Ш^. In 
each coordinate system with the origin Q(^) we have 

(76) k{^) = u^x^ - (wi + l)xy - U2y^ = 0 , 

(77) A = D,{0, 0) = 0 , ß - -1)2(0, 0) - 0 , С = D^{0, 0) = 0 . 

Proposition 18. Let ^ еШ^. Then there is exactly one d-line l^ a ^ such that 
[(f\ CT(^)] — Ö- ^^^^ ^-hne admits a pointwise singular line 

(78) q{^) = R{y - Vox) + I'o^ - (I'o)' С + {v^f V2 + v^v, - v, = 0 , 

In any coordinate system with the origin Q{^) we have 

(78') q{^) = R{y - Vox) + î̂ ô t;̂  + v^v, - v^ = 0 . 

Proof. We obtain easily the relations a + I'oc = 0, b -{- Vod = 0, d = u^a -h 
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+ ^2^ + ^3^» binding the homogeneous coordinates of (̂ 4 Hence, exact up to 
a proportionality factor, 

(79) a = t̂ o(l + ^̂ 2̂ o) , b = Vo{u^ - u^v^ 

с = - ( 1 + U2VQ) , J = Wii'o - "3 • 

The equation (78) follows from (65), and (78') will be obtained from (78) and (77), 
q.e.d. 

Because g(^) passes through the improper point Ç^{0^^ (see (74)), it is not parallel 
to any line of the couple /c(^). It is obvious that the J-Hne |^ with coordinates (79) 
belongs to g^ and according to (78) we have the case J) of Proposition 16. Thus there 
is exactly one d-element ^ e ^̂  having (78) as its pointwise singular line. With regard 
to i? Ф 0 we have a + (i Ф 0 in (79). Thus the case f) of Theorem 1 holds. According 
to the point k) of our Theorem there is a singulr line of (J, different from (78), passing 
through any prescribed point of the plane Ä^. One of those singular lines contains 
ö(£^) and it will be denoted by a(^) . In any coordinate system Зг"" with the origin 
б ( ^ ) we have, taking in account (5) and (79), 

(80) а{^) = (1 + u^v^ у + (wjî o - W3) X = 0 . 

Now we have constructed a sufficient number of equivariant objects for a representa­
tion of Ш1̂ , and we can prove the following. 

Proposition 19. Let be given', a point QQEA^, a couple UQ of lines {real and 
different, or imaginary conjugate, or real and coincident) having a double point 
at QQ, a real line OLQ passing through QQ, and another real line qg, which is non-
parallel to (XQ and also to the lines of the couple k^. 

Let ^^ he a coordinate system with the following properties: 
a) The origin of ^^ lies at QQ, 
b) The coordinate axes x , у are both non-parallel to QQ, CCQ, and to the lines of 

the couple kg. 
c) If we denote the lines of kg, taken in any order, by k\ k'\ then the following 

relation for the cross-ratia holds: 

(81) R{x, k\ 'y, qo) R(x, k", jT, ^o) + R(X, GCQ, J , ^0) • 

Under these assumptions there is exactly one block ^ e Ш] n IJ\^ such that Q{^) ^ 
= Go, k{^) - ко, q{^) = qo. < ^ ) = ^о-

Proof. In the prescribed coordinates we can write QQ = [0, 0], ^o — ^^^ "" -̂̂ Ĵ  — 
— y^- = 0, qo = у ~ ßgx -{- m = 0, ŒQ = у — nx = 0 where n ^ ßg, a — bß^ _ 
- ßl Ф 0. From the condition Q{^) = Qg follows (77) and from /c(^) = k^ ,we 
obtain M3 = au2, 1 + ŵ  = bw2- Now we deduce from (77) v^ = av2, Vi = bv 
The condition q(^) ~ q^ yields VQ = ßg, {vlv2 + VgV^ — v^)lR = m. Because 
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ä — bßo — ß^ ^ 0, it follows from the preceding relations that V2 = mui- Finally, 
from the condition a(.^) = a we deduce 1/2(̂ ^0 + ^ßo ~ ^) ~ ßo ~~ '̂ - ^^ ^ con­
séquence of the assumption (81), the term in the parentheses is non-zero. Thus 
^̂ 2 = (^0 "~ ^^)\{^ßo + ^ßo ~~ ^)^ ^^^ U2 Ф 0 since ^0 Ф n. We have determined 
certain block ^ e Щ^ n Г4. For its coordinates we have R = 1̂ 2(̂ 0)̂  + {u^ + 1)VQ — 
- W3 = U2{ßl 4- hßo - of) Ф 0. Hence ^ ЕШ1 and all objects Q{^), k{^), q{0>\ 
a(^) actually exist. Thus the conditions of our Proposition are geometrically 
satisfied, q.e.d. 

Theorem 16. The objects ß ( ^ ) , k{^\ Q{^), OC(^) form a representing frame on 
the manifold Ш^. 

Proof. Let us denote by ЩН, Q{^)) the coordinate Я-type consisting of all 91'' 
with the origin ß ( ^ ) , where H = G^ß(^)) . According to Proposition VII it suffices 
to prove that the coordinate systems ^^ satisfying the requirements a), b), c) of 
Proposition 19 form a non empty open set in ЩН, Q{^)). Obviously it will be 
sufficient to show this property for the set of all 91°" e ЩН, Q{^)) satisfying (81). 
But (81) is equivalent to the relation bßo + nßQ — a ф 0. If we denote by cp : 
• 9c{Q{^)) -^ х{ЩН, ß(^))) the Lie algebra homomorphism induced by the action 
Gc{Q{^)) X m{H, e ( ^ ) ) -^ ЩН, Q{^% we obtain ф д\ду) {bßo + nßo - а) = 
— n — ßo Ф О in arbitrary coordinate system dl"" e ЩН, Q{^)). {а, Ь, ßg, n can be 
understood as local differentiable functions on ЩН, Q{^).) After Proposition V^ 
the set of all coordinate systems in question is a Я-covering set of ЩН, ô(^)) , and 
hence follows our assertion. 

From Proposition 19 and Theorem 16 we obtain the following classification of 
orbits on the manifold Ш^: 

Consider an invariant decomposition 

(82) дЯ^ = оЩи], к) = (J4iJ, к) 

where i == sgn [(и^ + 1)^ + 4м2"з] (cf. (76)), 

. _ / О .. . ß ( ^ ) E q{^) , _ / 0 ... a (^) c: /c(;^) 
•̂  ~ \ 1 ... Ö(̂ ) Ф q{^) ~ \ l ... a(V) Ф /c(V) . 

Then 
Ш{\, 1, 1), Ш[—\, 1, 1) consist of 00^ orbits of dimension 6 each, any orbit is 

characterized by a division ratio of three points of the line q{^), 
9Л(0, 1, 1) consists of 2 orbits of dimension 6, 
5Ш(1, 0, l) and S0?(~1, 0, 1) consist of 00^ orbits of dimension 5 each, any orbit 

is characterized by a cross-ratio of 4 lines of the pencil with the center Q{^), 
9Л(0, 0, 1) consists of 2 orbits of dimension 5, 
SOl(l, 1, 0) consists of 2 orbits of dimension 6, 
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m(--h и 0) = 9,ш{-1, о, 0) = 0, 
9Л(0, 1, 0) is an orbit of dimension 5, 
SR(l, 0, 0) consists of 2 orbits of dimension 5, 
Ж(0, 0, 0) is an orbit of dimension 4. 

Let us consider now the manifold Ш^. If ^ e Ш1, then ^'^{^) e fe^(^) (cf. (71), (74)), 
and we have R = 0. The couple /c'°(^) is real. Let us remark first that the <i-line |^ 
from Proposition 18 is defined on the manifold Ш1 u Ш^, too. Only its homogeneous 
coordinates (79) assume, because of Я = 0, a simpler form 

(83) a = VQ , Ь = f0 , с = —1 , d = ~VQ , 

Proposition 20. For ^еШ^иШ^ the d-line |^ constructed in Proposition 18 
either does not admit any singularity, or it admits a pointwise singular plane. The 
last case arises if and only if 

(84) W = VQVI + vlv2 - v^ = 0 . 

Proof. We apply (67) and (83). 
Because of reahty of the couple /c^(^) we have an invariant decomposition 

(85) ml = ml{ii) u ml(o) 
according to the sign of the discriminant (w^ + 1)^ + 4^21/3 (see (71)). For any block 
0^ 6 9ЛД1), let us limit ourselves to the coordinate systems Ш^ such that no coordinate 
axis passes through a point of /c°°(^). (Cf. the asumption В l) of Proposition VI.) 
For any admissible coordinate system 91^ and a block ^ e C/26 ^^e coordinates U2,u^, 
VQ of ^ are non-zero. We find easily that the second improper point ?|°°(-^) of the 
couple k^{^) is given by 

(86) Ц'^{0>) = V^ - WV^ = 0 , W = - - ^ , W Ф VQ, 
U2V0 

Here we use admissible coordinates for ^ and the corresponding homogeneous co­
ordinates v^, Vy in Л^. There is exactly one J-element f]^{0^) ci t having the improper 
singularity Yf^{0^)\ it is given by 

(87) ' ni^) = (I- + >- ^ 
\dx oy 

Let us remark that the following relations are vaHd on the manifold Ш1 : 

(88) W3 = ~VQWU2 , Wi + 1 = ~ (î o + >v) "2 . 

{ui + 1) w + W2Ŵ  — 1/3 = 0 . 

Assume in the following that 0^ G Ш\(У), 
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Proposition 21. There is exactly one d-line fj^ in # n ĝ  such that [^t(^)» ^^] = 0. 
The homogeneous coordinates of that d-line are given by 

(89) a = vv, b = w'^ , с = —1 , d = —w 

and the corresponding pointwise singular line has the equation 

(90) r (^ ) = (w - VQ) (WX ~- y) + wv^ + w^V2 - Î;3 = 0 , 

Proof. For determining fj^ we have the system a + wc = 0, b ~ wa = 0, 
(ui + I) a + Uib + W3C = 0, the rank of which is always 2. From the first and 
second relation and using the condition a + ti = 0 we obtain (89). The formula (90) 
follows from (67). 

Proposition 22. There is exactly one d-line Y\^ CZ # such that 

This d-line has homogeneous coordinates 

(91) a = 1 + Wj + 2W2W3 -> Ь = (1 — Wi) M3 , с = (1 — t/i) 1/2 » 

Proof. For determining /7̂  we have the system (a + CVQ) VQ = h + dv^, {a + 
+ cw) w = Ь + ö̂ w, d = u^a + «2^ + W3C. It is obvious that the values (91) 
satisfy these equations. It remains to show that our functions are not all equal to zero 
and that the system above is of rank 3. First of all, from the relations a = b = с = 
= d = 0 in (91) would follow ŵ  = 1, 1 + U2U2 = 0, whence (1 + u^Y + 4и2^з = 
= ul(w — VQY = 0 — a contradiction. Now let us write the system in the usual form, 
where the right sides are all zeros. If both the determinants formed by the coefficients 
of the unknowns a, b, d and by the coefficients of the unknowns a, b, с respectively 
were zero, we should easily obtain u^ = 1, Ui^u^ + 1) + 2W2W3 = 0 and hence 
1 + U2U2, = 0 — a contradiction. Thus the system is of rank 3, q.e.d. We can see 
easily that the relations [f X^), ^^] = 0, [rj^(^), /7 ]̂ = 0 can not hold simultaneously 
on Ш1(^1); otherwise the coordinates a, b, c, d of ?7̂  satisfy the relations a + CVQ ~ 0, 
a + cw = 0, Ь + dvQ — 0,b + dw ~ 0, and hence they are all equal to zero. Let us 
consider an invariant decomposition 

(92) Ш1{1) = Ш^ u Ш, u m^, 

where 
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It is obvious that for ^ e Ш1{1) we have 

(93) .^ e Ш, о 1 + t/2?;o = 0 . ^^ '^K <> 1 + 1/2̂ ' =- 0 . 

Proposition 23. Let ^ еШр^ Ш^. Then there is a pointwise singular line s(ßP) 
corresponding to the d-Ymt r]^ from Proposition 22. It is given by 

(94) s{^) = U2{w ~ vo) (1 + WU2) \voX - j;] + 

+ U2{w + 1̂0 + 2U2WVQ) V^ + 1̂ 2(2 + (w + VQ) U2) {WVQV2 — V^) = 0 

Proof. We use (65), (91) and (88). Further we take into account that for ^ e Шр u 
u Ш, we have 1 + ww2 Ф 0 (cf. (93)). For any ^^еШ^и Ш,, let us denote by Я ( ^ ) 
the intersection point of the lines r (^) , s(^), defined in (90) and (94). (Those lines 
are not parallels because of w Ф VQ.) Choose a coordinate system 9Î°̂  with the origin 
H(i^). We obtain 

(95) r (^ ) ~ y - wx = 0 , s{^) ^ y - VQX = 0 

(96) wvi + w'^V2 — 1̂3 = 0 , 

(w + I/O + 2W2WÎ;O) î̂ i + WVQ\_2 + (W + î o) "2] t̂ 2 — [2 + (w + v^ U2~\ v^ = 0 . 

Proposition 24. Let ^ e Шр. Then the following assertions hold: 
a) There is exactly one d-element r}^ G fj^ having singularities in A^. This 

d-element is generated, in any coordinate system W^ with the origin Я ( ^ ) , by the 
vector 

/гл-г\ r^a д J д д д 
(91) Z^ = wx h w^x y wy — . 

дх ду дх ду 
b) There is exactly one d-element rf" a If having a singularity at the point 

H{^). rf is generated, in any coordinate system SK^ with the origin Я ( ^ ) , by the 
vector 

(98) Z2 = (wi + 1 + 2W2W3) X h Мз(1 — Wi) X h «2(1 ~~ " i ) y h 
ox ' ду дх 

+ (wi + Ui + 2U2U2) у — . 
ду 

c) There is exactly one d-element ^-^ с |^ such that the d-element [^ ,̂ f/̂ ] has 
a singularity at the point Я ( ^ ) . This d-element is generated, in any Ш"^ with the 
origin Я(^ ) , by the vector 

/ППЧ л.а д 2 ^ (^ ^ W [d d' 
ox ду ox cJy w — VQ \dx dy^ 

where the function W is given by (84). 
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Proof, ad a) According to Proposition 21 f]^ с g^ (cf. (89)) and obviously the 
case d) of Proposition 16 holds. Thus there is exactly one J-element ?|̂  с fj^ having 
the line r{^) as its pointwise singular line; in particular, having a singularity at H{tP). 
With respect to our choice of the coordinate origin and with respect to (12) we obtain 
M = у = 0 for î^^ From (89) we obtain (97). 

ad b) We find easily that f\^ с g^ if and only if either PJ^ e Ш^ or [^ e Wl,^. Thus 
we have fj^" ф g^ and the case c) of Proposition 16 holds. From (12) follows и = v = 0 
and with respect to (91) we obtain (98). 

ad c) For any (̂  с ^̂  we have [(J, rj^l^ с d^^ because |^ с g ,̂ fj^ a g .̂ Thus the 
d-element [ĉ , ц^^ is generated by a vector of the form (69). Since {u^ + 1)^ + 
+ 4ы2^з = u\{w — Vof Ф 0, we have [c, щ^^ ф g°. Thus there is at most one 
J-element of the form [c, ?̂ ]̂ having a singularity at Я (^ ) . Expressing it in the form 
(69) we obtain m == n = 0. By direct calculation we find that [ĉ , ?/̂ ] possesses that 
property if and only if с is given by (99), q.e.d. 

Let XQ E ^,{^), YQ G ri,{^) be arbitrary vectors. From (98) we see that [XQ, ZÇ] = 

= (VQ — w) 1̂ 2(1 + i^2î^o)^o? [^0? ^ï] = (w — VQ) 1̂ 2(1 + «2^) ^0- Hence follows 

Proposition 25. There is exactly one vector Z* G rj^" such that 1_XQ, Z * ] = XQ for 
any XQ e ^г{^)^ ^^^ exactly one vector Z** e /7̂  such that [YQ, Z * * ] = YQ for any 
YQ e f]^{^). Moreover we have 

(100) z f - ;{^) zt, A ( ^ ) = - Ü 1 M 2 ^ я(^) Ф 0, - 1 . 
1 + WU2 

is a point invariant on the manifold Шр, 
Let us introduce another invariant decomposition 

(101) Шр = 9Ji* u ml 

where Ш^ = (^ e Ш^ \W= 0}. (Cf. (84)). 
Denote by S(^) the set of all d-lines fj a ^ n Q^ and by X ( ^ ) ^^^ corresponding 

set of pointwise singular lines. (For the existence of a pointwise singular line it 
suffices that fj Ф ^4) 

Proposition 26. Let ^ e SOI*. The set X (^ ) "̂̂  ^ one-parametric family of lines 
in A^\ its envelope is a parabola given by the equation 

(102) p{^) = (w - t̂ o) (1 + WW2) {vo^ - }f - 4(1 + V0U2) W{wx - y) = 0 

in any SH" with the origin H{ßP). 

Proof. Any (i-line f] e S{ßP), fj Ф ç^^fj^ can be represented, in any coordinate 
system 9i" with the origin Я ( ^ ) , by a vector of the form Z^ = Z2 + / ' 'Zi + g^Y^, 
where f^", g"^ are real numbers. In fact, we find easily that the vectors Z\.,Z\^ Yl 
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given in (97) —(99) are hnearly independent over t. From the inclusion Z'^eg^ we 
obtain 

(103) f'g' - {u^Y (1 + u^Vo) (1 + t/2w) . 

Hence we can see that S{^) is a one-parametric family and that the pointwise singular 
line corresponding to a J-Hne of the family is given by 

(104) Г^2(х, у) + {f^f F,(x, y) + {u^f (1 + U2V0) (1 + U2W) F,{x, y) = 0, 

F2{x, y) denoting the left side of the equation (94), Fi(x, y) the left side of (90) and 
^з(^? у) = ^- Here (96) holds with respect to our choice of coordinates. The equation 
of the envelope [^2(х, y)Y ~ 4(1^2)̂  (l + 2̂1̂ 0) (l + ^^2) l^i^i(^5 3̂ ) = 0 can be 
re-written in the form (102), q.e.d. Let us remark that the parabola p(^) contacts the 
line r (^) at the point Я ( ^ ) and the improper line A]^ at the point ^'°(^). 

Denote now by ЗЛ*̂  the subset of the manifold Ш1* determined by the equation 
i ( ^ ) = Я, where Я ф 0, — 1 is an arbitrary real number. (See Proposition 25.) 

Proposition 27. Let po, cz A^ be a parabola and HQ a point of PQ, Let л ф 0, — 1 
be a real number. Let us denote by Гд the tangent of PQ at HQ, and by SQ the line 
joining the point HQ with the improper point of tangency of the parabola. Further 
let 9̂ "" be a coordinate system with the origin H{iP) satisfying the relation 

(105) jR(ro, 5 o , x , j ) + Я Ф 0 

and such that neither of the axes x , jT is parallel to rQ or SQ. Then there is exactly 
one block ^ E Ш1*я n Щ^ such that p{^) = PQ, H{^) = HQ. 

Proof. From our conditions of coincidence follows, in particular, r(^) = rQ, 
s{ßP) ~ SQ. Put Го ^ у — WQX = 0, So = >̂  — ßQX = 0. Then there is a number 
m Ф 0 such that PQ ~ [y - ß^xY - m(woX - >') = 0. The conditions r (^) = TQ, 
s{^) ~ SQ and (95) imply VQ = ßQ,w = WQ. With respect to the requirement k{^) = X 
we have - (1 + ^2/?о)/(1 + W2W0) = Я, whence {hvQ + /?o) W2 + Q^ + 1) = 0. Ac­
cording to (105) XWQ + ^Q Ф 0, and thus 

(106) t/2 - - --A±_L_ Ф 0 
IWQ + ßQ 

because Я + 1 Ф 0. Using the condition p{^) = PQ and (102) we obtain 
[4(1 + W2̂ o) Wlilli^ + W0W2) (wo - ßQ)] = m, and taking into account (106) we 
obtain W = ßov, + {ß^Y V2~ v^ = [{ßQ - WQ) m]/4A Ф 0. We have found a Hnear 
equation for v^, V2, v^. From (96) follow other linear equations 

Wo î + {WQY t̂ 2 - ^3 = 0 , 

(>Vo + ^0 + 2u2WQßQ) V, + Woi^oP + (wo + ßQ) U2] V2 -

- [2 + (wo + До) "z] v^ = 0, 
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The determinant of coefficients of the system is equal to [ßo — WQY Ф 0, whence 
Vi,V2 and VT, are uniquely determined. The remaining coordinates u^, 1/3 will be 
obtained using (88) and (106). It is obvious that the block ^ just evaluated belongs 
to Шр;^ and it satisfies all demands of the Proposition. Especially we have ÎF ф 0 
and 1 + U2V0 Ф 0, 1 + U2W Ф 0 follows easily from (106) hence -^ e 9Л*, q.e.d. 
If we apply Proposition VII to the last one, we obtain 

Theorem 17. The equivariant objects p[^), H{^) e p{^) form a representing 
frame on each submanifold 9Л*д. 9Л* consists of 00^ orbits of dimension 5. Each 
orbit is determined by the value of the invariant 

1 + U2W 

Similarly, let us denote by Ш^;^ a ЗЛ^ the submanifold determined by the relation 
4 ^ ) = Я;Я Ф 0, - 1 . 

Theorem 18. The lines r(-^), s(^) form a representing frame on each manifold 
Ш^2.- The manifold M^pConsists of 00^ orbits of dimension 4. Each orbit is determined 
by a value of the invariant. 

Proof is quite similar to that of Theorem 17. Only instead of an additional object 
p{^) we have an additional relation W — 0. For the investigation of the manifolds 
9Jĉ ,, Ш^, we shall need the following Proposition: 

Proposition 28. Let 0^', 0^" be ty^o blocks in Tj such that, in a suitable coordinate 
system 91^ we have u\ = u'l for i = \,2,Ъ, V'Q = VQ, and и- == QV] for i = 1, 2, 3, 
where the triplet (v[, V2, v^) is non-zero [and consequently g ф 0). Let h be the 
dilatation from the origin of the coordinate system 91^ with the modul g. Then 

0' = h .0". 

Proof can be performed by direct computation. Now let us consider an invariant 
decomposition 

(107) Ш, = 9JÎ* u ЭЯ^, , 

where 9Л^ = {0 e Ш, | Ж = 0}. 

Theorem 19. 9Л* is an orbit of dimension 5. Ш^ is an orbit of dimension 4. 

Proof. Let Го, SQ be two non-parallel lines in Ä^ with the intersection point Я^. 
Choose Ш"" with the origin at HQ and such that neither of the axes x, у coincides 
with Го or with 5o. Let 0', 0" be two blocks from the set Ш\гс^, SQ) = {0 e Ш"^ n 
n 1/26 I r{0) = Го, s(^) = So}. Let us put Гд ^ у - WQX = 0, SQ = }' ~ ßoX = 0. 
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From (95) follows VQ = VQ = ßg, w' = w" = WQ and with regard to (91) we obtain 
K'^ = и2 = —ijßo- From (88) we have u'^ = u^ == WQ, U\ = u'[ = —w^lßu. The 
relations (96) give two independent linear equations for v^, V2, v^ and since W ф 0, 
W Ф 0, the triplets [v[, Vj, 1̂ 3), (v'[, v'2, v'Ç) are non-zero and proportional to each 
other. According to Proposition 28 there is a dilatation h from HQ in A^ such that 
,r = h . ^", Thus the set Ш1(го, ^o) = {0" e Ш^ \ r{0) = TQ, S{^) = SQ} is an orbit 
of dimension 1 in 9JI*. Now all configurations (го, SQ] form an orbit of dimension 4 
in A^; consequently 9Jl* is an orbit of dimension 5, q.e.d. 

Further we can show easily that the objects r (^) , s[0) form a representing frame on 
the manifold Ш^, and thus Ш^ is an orbit of dimension 4. It will be very natural to 
join this orbit to the one-parametric system {Ш^;} as the element corresponding to 
the value л(^) = 0. (See (100).) 

On the other hand we have not any reason for joining the orbit Ш1* to the system 
{Ш1*д}. (Their isotropy groups are of different types.) 

Let us consider the manifold Ш^. We start with the following problem: Find all 
the d-lines fj a 0 for which Ä^ is a pointwise singular plane. For the homogeneous 
coordinates of the wanted J-lines we obtain the system (see (65)): b — avQ = 0, 
d — CVQ = 0, aui + bu2 + CW3 = d, av^ + bv2 + с^з = 0. Now from the relations 
R = 0, 1 -\~ U2W = 0 follows W3 = VQ, и I + U2V0 = 0 on the manifold Ш^^. Then 
our system of equations can be re-written as a new one, consisting of the relation 
d = aui + bu2 + CM3 and of two equations 

(108) b — avQ = 0 , a[vi + VQV2) + CÎ;3 = 0 . 

Let us consider an invariant decomposition 

(109) m^ = Ш1; u an^ 

according to the rank of the system (108). 
Let ^ e Ш1, then the numbers v^ + i^o^i. ^̂ з are not both equal to zero and there 

is exactly one rf-line fj^ meeting our demands. Its homogeneous coordinates are 
given by 

(110) a = -v^ , b = -VQV^, , с = v^ + VQV2 , d = -1̂ 0(1̂ 1 + ^̂ 0̂ 2) • 

Now there is exactly one ri-element U^) с t such that [U^), f] = 0. This 
rZ-element is determined, in any W, by the vector 

ox ay 

254 



Assume that neither of the coordinate axes of W is singular with respect to the 
d'-element C^(.̂ ); then Ст(^) can be represented by a vector 

(111) Z: = f + z f , z = v,l{v, + v,v^ . 
ox oy 

Let us denote by СГ(^) the improper singularity of the fi-element Cx{^)l then we 
have 

(112) Ci^)^v^-zv, = 0. 

Further, consider an invariant decomposition defined as follows: 

(113) ml = ml;; и ml''и ml:-
mi"" = {^e ml I с"И Ф k^{^)] 
ml'' = {0>e ml I с"И ^ с"И} 
да^'" = [^e ml I r{^) = ^7"(-^)} 

(Cf. (112), (74), (86).) Obviously 0> e ml'"" if and only if z Ф w and z Ф VQ. 

Proposition 29. Let 0^ e Ш1 '̂*. Then there is exactly one d-line fj"^ с .0 such thai 
[rjr{0), fj^^ = 0, [CT(^)5 "̂̂ 1 = CT(^)- '̂ ^^^ d-line has homogeneous coordinates 

(114) a = w , b = wz , c = — 1 , d = ~z 

and it admits a pointwise singular line 

(115) r i ( ^ ) = (i;o - z){y - wx) + wi;i + wzuj - v^ = 0 , 

Proof. First we solve the system a + wc = 0, Ь + wJ = 0, (a + cz) z = Ь + zd, 
d = u^a + U2b + W3C, which is of rank 3. Then we use (65). Choose a coordinate 
system 9?̂  with the origin lying on r (^) (see (90)). Then we have r (^) = у — wx = 0, 
wvi + w^'V2 — 1̂3 = 0 and 

(1150 ^i(^) = (̂ 0 - ^)(y- ^x) + wi;2(z - w) = 0 . 

Now z — w = (г;з — v^w — г^о^2^)/(^1 + ̂ 0^2) holds and with respect to wv^ + 
+ w^'V2 — 1̂3 = 0 we obtain z — w = wi;2(z ~ t^o)/(^i + ^o^'i) + 0- Hence wt?2 Ф 0 
and wv2{z - w) Ф 0. According to (115') r i (^ ) || r(V) but r^{0) ф r (^) . 

Proposition 30. Let be given two real parallels FQ Ф / Ю ̂  ^^ ^^d two improper 
points (̂ ^ Ф C? different from the improper point of TQ. Ler W be a coordinate 
system with the origin lying on TQ and such that neither of the axes x,y is parallel 
to Гд or passes through one of the improper points ^0% Cô - Then there is exactly 
one block 0> G 9}1 '̂* n Щ^ such that r{0>) = TQ, r,{0) = r ^ , Г{^) = ^ ? , Г{^) = 
= bo • 
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Proof. Assume that TQ = y — WQX = 0, r^ = y — WQX + a = 0, OC ф 0; ^^ = 
= Vy - ßov^ = 0, C^ = Vy - ZQV^ = 0. With respect to (90), the condition r (^ ) = r^ 
means that w = WQ, WQVJ^ + {WQY V2 — V^ = 0. From the coincidence of improper 
points follows VQ = ßo, Z = ZQ. Finally the requirement r^(^) ~ r ^ implies, accord­
ing to (US'), WoV2{zo — y^o)l{ßo — ^0) = ^? hence we obtain V2 Ф 0. According to 
( i l l ) , the relation z = ZQ can be re-written as ZQV^ + Zoĵ ô a — t̂ 3 = 0. Hence and 
from the equation WQV^ + (WQ)^ V2 — v^ = 0 we obtain the values of Vi and ^3. 
Finally Wi, t/2, W3 will be obtained from the relations VQ = î o, >V = WQ, 1 + W0W2 = 0 
and from (88). We can see easily that the evaluated block ^ satisfies all our demands, 
q.e.d. 

Theorem 20. The lines r (^ ) , r^{^) and the improper points ^°^(^), C°^(^) form 
a representing frame on the manifold SOÎ̂ '* with values in A^ u Л^. 9}î,̂ '* is an 
orbit of dimension 5. 

P roo f follows from Proposition 30 and from Propositions YII and IX. 

Theorem 21. The manifolds Ш1'\ Ш1̂ ;̂ ' are orbits of d imension 4. 

Proof. Let us start with 9Л '̂̂ '. We can see easily that the coordinates w ,̂ i/^, W3, v^ 
of a block ^ E SOÎ̂ '"" r\lJ%6 ^^^ uniquely determined by a given position of the line 
r (^ ) and of the improper point (^^(^) - C^(^). (See (88), (90), (93).) Moreover, if 
the origin of our coordinate system lies on r{ßP), then the triplet (v^, V2, v^) is non-zero 
and it is determined exact up to a proportionality factor by the independent relations 
WQÎ I + (^0)^ ^'2 ~~ ^3 = 0? î o î + (i^o)^ ^2 ~ ^3 = 0- (The last one is a consequence 
of z = VQ.) According to Proposition 28, any two blocks ^ , ^' e Ш^'"" with the same 
position of r(i^) and ^'^{^) correspond to each other in a dilatation of A^" from 
a centre lying on r(i^). Hence follows easily our first assertion. Let us now consider 
the submanifold Ш^'""'. If we prescribe r (^ ) , i'^^^) and a coordinate system W 
with the origin lying on r (^) , then from the relations z = w, z Ф VQ follows V2 = 0. 
Besides that we have another equation WQV^^ — V^ = 0, while the coordinates 
Ui, U2,U^,VQ are uniquely determined. We can use Proposition 28 again to obtain 
the second assertion. 

Theorem 22. The line r(ß^) and the improper point ^"^{^^ form together a repre­
senting frame on the manifold Ш]^. (See (109).) The manifold 501̂  is an orbit of 
dimension 3. 

Proof. For the coordinates of a block ^ e 9Л^ we have four characteristic relations, 
namely u^ = VQ, Ui + U2V0 = 0, v^ = 0, v^ + 2̂1̂ 0 = 0- We find easily that if we 
prescribe a position to r (^) and (^°^(^) we obtain three additional conditions, which 
are independent of the former ones and determine uniquely the block ^ . Some 
details are left to the reader. 
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Let us consider the manifold Ш1{0) determined in Г4 by the relations -R = 0, 
w = VQ, or using (88) by the relations 

(116) W3 = -U2{vof , Wi + 1 - -2U2V0 • 

Consider an invariant decomposition 

(117) ml{o) = ш, u9^2, 
where we put ^ e Ш2 if and only if ^ contains an infinitesimal dilatation of A^ from 
a point. With respect to (64) and (116) we see that ^ e^2 if ^^^ only if ŵ  = 1 or 
1 + U2V0 = 0. Thus 

(118) ^ i = {^eTl I i/i Ф 1, 1 + V0U2 Ф 0 , (116) holds} . 

Let us consider an invariant decomposition 

(119) Ш, - 9 1 Î U 9 1 Î , 

where Ш"! = {^ESI^\W= O). (See (84).) Let ^ e ^ l ^ be given. Denote by S(^) 
the set of all r/-lines /7 c: ^ n g° and by X ( ^ ) ^h^ ^̂ ^ ^^ corresponding pointwise 
singular lines. 

Proposition 31. Let ^ e 9 l * . Then X (^ ) ^̂  ^ one-parametric family of lines. Its 
envelope is the parabola p{^) given by 

(120) (1 -I- U2Vof (y - Vox) + Ax + By + C-= 0 , 

(121) A - -2(^3 + i;o) G ~ 4H - 4u^VoV2 

В = 2(wi -- W2̂ o) ^ + 4wiî o^2 ~ 4^2^ 

с = G^ ~ AV2H 

G = U2V2, — U2V2 + t^i , 

u^v, *3^1 

Proof. Let us choose an admissible 9̂ °". To determine the envelope p(^) , let us 
limit ourselves to the d-lines of Y,{^) having the homogeneous coordinate a ф 0 and 
let us assume that a = 1. From the condition rj cz ^^ n ^ follows d = u^ + bu2 + 
+ CW3, Wi 4- bi/2 + CW3 — be = 0. Hence d and с can be expressed by means of the 
coordinate b. From (65) we obtain the equation of a general line from YX^) i^ ^^^ 
form 

(122) b^{x + W2>' + ^2) + b[(wi - U2V0) у - (w3 + %) X + G] + 

+ (Я + г^о^з^ "" ^o^ij) = Ö . 

Now the equation (120) can be derived in usual manner. We find easily that A + 
+ VQB = 2(1 + и2^оУ 1^ Ф 0 and thus p{^) really is a parabola. 
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Proposition 32. Let PQ a A^ be a parabola and u\ ^ (^ a real number. Let W 
be a coordinate system with the origin lying on PQ and such that neither of the 
axes X, y passes through the improper point of tangency of the parabola. Then for 
a general choice of Ш"", there is exactly one block ^ e 91* n L/26 ^^^^ ^^^^ P{^) = 
= PQ, U\ ~ ^2- {^y ^ general choice of W will be meant its choice in an open subset 
of a coordinate G^[x)-type, where x e pg.) 

Proof. The equation of the parabola can be written in the form 

(123) Ро = {у - ßo^y + ^0'^ + ВоУ = 0, Ao + ßoBo Ф О . 

If we compare the leading terms in (120) and (123) we obtain VQ = ßg, and from the 

relations (1 + ^2^0)^ ^ = ^O' (^ + ^h^oY ^ = ^0 we obtain, putting U2 = u^, 

(124) G = - " 1 ^ ^ ^ ^ : ^ - 2^o^2 • 

H = (̂ 3̂ + ßo) Во + (l/? - и%) ÄQ . . 42 ^ 

Here и^, Ыз are the values of w ,̂ W3 determined by (116). For a general choice of 9̂ "" 
we have obviously 1 + 1/2̂ 2 + 0 and the relations (124) are sensible. 

From the equation С = 0 and from (124) follows easily 

~{uUo - BoY 
2(1 + u%f {Ao + i^o^o) 

For determining of v^, v^ we have the system (124). The determinant of coefficients 
of the unknowns v^, v^ is equal to (1 + U2ßoY + ^- {^^- (121).) This completes our 
proof. 

Now let us find all vectors X e Q such that the parabola po is a singular set for X. 
We can see easily that the coordinates of the vectors in question satisfy the relations 

(125) ßo{a - J) - Ь + {ßoY с = О 

а + 3ßoC - 2d = О 

2v ~ IßoU = Bod - {Ao + IßoBo) с 

AQU + BQV = О . 

Hence a, с may be supposed arbitrary and the other coordinates depend on the former 
ones. (The independence of the 3-rd and 4-th equation of the system follows from 
AQ + ßoBo 4= 0.) Let IR'' be a general coordinate system in the sense of Proposition 
32; then the coordinate u^ is a local function on U^^ n 91*. To any vector X(a, b, c, 
d, w, V)G Q satisfying (125) we have a fundamental vector field on the submanifold 
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9l*(po) = { P e 9 î t I p{^) = Po} I the function ul is transformed on *î lt(ĵ o) ^ '̂20 
according to the rule 

du 
(126) - ^ = i(a + î o )̂ /̂"2(1 + ßou 

dt 

We find easily that a + j^o^ = 0 if and only if the vector X belongs to a block # e 
e ^t(Po) ^ Щб' Whenever this is the case, X belongs to each block ^ e '^tiPo)- ï̂  
we choose X ^ ^ for p(^) ~ Po, we have a + ßgC Ф 0, and (126) is a special equation 
by Riccati. By integration we find that the group G(X) acts transitively on the 
variable W2 Ф 0 on the submanifold ^î(po) ^ Щб- Any two blocks ^ 1 . ^ 2 e^^î 
can be brought into the same 1/26 by a suitable choice of Ш"". Thus the group G(^X) 
acts transitively on S^t(po) (See Proposition 32). Hence and from Proposition 32 
follows 

Theorem 23. The manifold 91* is an orbit of dimension 5. 

Proposition 33. Let 0^ e ^Z ,̂ then all lines of the family Yj^^) pass through a point 
M ( ^ ) given by the relations 

(127) X = -^^2t^i + u^V2 ^ ^1 + ^0^2 
1 + U2VQ 1 + UyVQ 

Proof. Owing to the relation W = Q (see (119)) the values (127) make all coeffi­
cients of (122) equal to zero, q.e.d. Let us denote by m(^) the line joining the point 
M(^) with the improper point c°°(^). 

Proposition 34. Let ntg be a line in A^ and Мдетд a point. Let ^"^ be a coordinate 
system with the origin MQ and such that neither of the axes x,y coincides with nig. 
Let и2 Ф 0 be a real number. Then for a general choice of the coordinate system 9Г, 
there is exactly one block 0^e^^ n Щв suvh that m{0) = niQ, M(^) = MQ, 
ul = ul. 

Proof. With respect to our choice of W we can put niQ = у — ß^x = О and 
MQ = [0, 0]. From the condition M(^) = MQ and because of Ж = 0 we obtain, 
with regard to (84) and (127), v^ = V2 = v^ = 0. The condition m(^) = mQ imphes 
VQ = ßQ. According to (116), from the condition t/2 = U2 follows W3 = —i^iißoy^ 
Wi + 1 = — 2^o^2- Finally, for a general choice of Л*̂  1 + u^ßo Ф О holds, and thus 
we have 1 + 1/2̂ 0 + ^ ^^^ the block 0 just evaluated. Consequently, ^ e %^, q.e.d. 

Let us consider u^ as a local function on the submanifold ^^^(mo, MQ) = ( ^ G 
e91î I ̂ ^K^) = ^0^ M{^) = Mo}. If we choose W as in Proposition 34, we can 
show easily that any group G(X) of dilatations from the line Шо acts transitively on 
the coordinate u'^ Ф 0. Hence it follows that G{X) acts transitively on ^^^(wo, Mo). 
Finally we obtain 
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Theorem 24. 9lJ is an orbit of dimension 4. 
Let be given ^ G 3 ^ 2 - With respect to the relation 1 + VQU2 = 1 + ww2 = 0 we 

can proceed likewise as we did above discussing the manifold Ш^. Then we obtain the 
relations (108) once again and we can consider an invariant decomposition 

(128) ^2 = ^2(1) ^ Щ2) 

according to the rank of the system (108). For ^ e %2{^) we obtain the equivariant 
object C^^t^) as in (112). Here we have Г{^) = (^^(^) if and only if W = 0. There­
fore, let us consider another invariant decomposition 

(129) ^12(2) = nt{2) u Щ2) 

where 91^(2) = {.̂  G 912(2) \z = Vo^W=0}. 
Let us start with ''Jll(2). We show easily that the object r i ( ^ ) (see (115)) is defined 

on the manifold 9l2(2)- If we prescribe the position of the line r i ( ^ ) and of the 
improper point C'^(^) and if the origin of a coordinate system Ш"" lies on r^ißP), then 
the block ^ e "^^{2) n 1/26 is uniquely determined exact up to a proportionality 
factor for the triplet {vi,V2,v^. This last triplet is always non-zero since Ж 4= 0. 
According to Proposition 28, any group of dilatations of the plane A^ from a point 
of the line r j (^ ) acts transitively on the submanifold {^ G 912(2) I r i ( ^ ) = r^o, 
C*(^) = C^}. Hence it follows easily that 9l2(2) is an orbit of dimension 4. 

For ^ e 912(2) let us consider a J-line ц^ с ^ consisting of all those infinitesimal 
dilatations of the plane A^ from a centre that are elements of ^. (See (117).) The 
corresponding pointwise singular line is 

(130) h{^) = у - VQX + 1̂1 = 0 . 

In fact, the cMine fj^ has homogeneous coordinates a = d=l,b = c = 0. Now, if 
we prescribe the position of h(^) and choose the origin of a coordinate system ^'^ 
on the line h(^), then the coordinates i/^, t/2, W3,1̂ 0 ^re uniquely determined and 
for v^, V2, V2, we have two relations v^ = 0, W = 0 determining the triplet (v^, V2, V2) 
exact up to a proportionality factor. That triplet is non-zero since at least one of the 
terms г̂ з and v^ + VQV2 is non-zero. According to Proposition 28 the set {.̂  e 

0} is an orbit of dimension 1 and consequently 9l2(2) is an orbit 
of dimension 3. 

Finally, we have the same equivariant object h(^) on the manifold 9^2(1), and 
besides that five independent relations among the coordinates: 

u^ + 1 = —2VQU2 , W3 = —{voY ^2 5 I + ^2^0 = 0 ? ^3 = 0? ^i + % '̂2 = Ö . 

We find easily that h(^) is a representing frame on 9l2(l) and thus 9l2(l) is an orbit 
of dimension 2. Let us summarize our results: 
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Theorem 25. The manifold Ш^{2) is an orbit of dimension 4. The manifold 9l2(2) 
IS an orbit of dimension 3. The manifold ^l2(0 ^^ ^^ orbit of dimension 2. 

Consider the manifold Ш^ determined by the relations Wj + 1 = 1/2 = ^з = 0. 
(Cf. (68).) Let us have an invariant decomposition 

(131) m, = mt и m^^ 
where 9Л^ - {.̂  e Ш, \W= 0}. Our method will be the same as that we have apphed 
to the manifold З^^. Namely, we construct the parabola p{^) in case of 9Л* and the 
point M(^) together with the Hne m(^) in case of Ш^. (See the equations (120) and 
(127).) In comparison with the manifold Ш^ we have one relation more, namely 
U2 = 0. 

Proposition 32 holds literally for the manifold Ш1* and Proposition 34 holds 
literally for the manifold Ш^ with the only difference that we omit the requirement 
и2 = и2- Hence we obtain 

Theorem 26. The parabola p{^) is a representing frame on the manifold 9Л*. 
The point M ( ^ ) and the line m(^) passing through M(^ ) form together a repre­
senting frame on the manifold Ш'^. 9Л* is an orbit of dimension 4 and Ш^ is an orbit 
of dimension 3. 

3. THE MANIFOLD г | 

Let us choose a fixed point p e Ä^ and an admissible coordinate system 9Г with 
the origin p. Consider the subalgebras t = {pldx, djdy) n = [djdx, djdy, x{djdx) + 
+ у{Щду)1 Ф) = {xidjdxl xajdy, yidjdx), y{dldy)l Oec(p) = (4^1^^) - 3 (̂̂ /̂ 3 )̂, 
x{dlôy), y{ôldx)) and the corresponding connected Lie subgroups Г, iV, G^(p), G ^ p ) 
of G = Gy4'̂ (2). Obviously we have a direct decomposition g = n © Qec{p)^ where 
we consider g as a vector space and n, ^ec{p) ^s its vector subspaces. Let us denote 
by ;? : g -> n, ^ : g -^ Üec{p) the corresponding projections. For Yen, X e q we 
obviously have [У, A ]̂ e t. Thus for any ^ ETI holds [n, ^ ] с ^ since t с ^ . If 
we denote by Ф^ : g -> х{Г1) the Lie algebra homomorphism induced by the action 
cp :G X rl-^rl, then for each Yen holds Ф^(У) = 0 identically on T^. If X G g, 
then Ф:^{Х) = Ф^,(рХ) + Ф^{qX) = Ф (̂<^^ )̂. Hence it follows easily that the action cp 
induces the same diifeomorphism group on the manifold Г4 as the action of the 
subgroup G^^[p) с G. Our classification problem then reduces to the following one: 
classify all orbits of the manifold Г4 with respect to the adjoint action of the isotropy 
troup Gg^{p)l The set of all coordinate systems Ш"" with the origin p is divided into 
more coordinate i/^-types, where H^ = G^p) . We shall choose one of them, for 
instance ЩН^), and call the coordinate systems belonging to ЩН^) admissible. 

Let us consider an invariant decomposition 

(132) r^ = Ш, u ^ 2 
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where 0^ e дЛ^ or ^ e Ш2 according to dim {0 n Qec{p)) = 1 or 2, respectively. 
Let us remark that dim ( # n g^cCp)) = dim ( ^ n g )̂ - 2 and thus the decomposition 
(132) does not depend on the choice of the origin p. 

Theorem 27. Denote H^ = G^^{p). For any admissible coordinate system î̂"" 

a) Ш^ n 1/45 ^^ ^^ H ̂ -covering set of the manifold Ш^, 
b) ^2 ^ ^36 ŝ ^^ Hg-coüering set o/ the manifold Ш2' 

Proof . Let §2 be the Stiefel manifold of all couples {X^,X2] of linearly inde­
pendent vectors of I) =-- ôc(p)- Then (52 can be made into a fibre bundle with the base 
Г4 and projection p : S2 -^ ^\ given by the rule p(Xi, X2} = (ö/öx, ö/öy, X^, X^) = 
= (t, Z i , X2). Put §^1 = p~4^-^^)' 5̂̂ 2̂ = i>~4^2) (see (132), 

With respect to Proposition IV it suffices to prove the following 

Proposition 35. For any admissible coordinate system W 

ci) *tOti П 1/45 is an H ̂ -covering set of Mi 
b) Ш2 (^ Щб ^^ ̂ ^ H ̂ -covering set of Шг-

Proo f of the Proposition: let X^, X2 e ï) and let 9Г be an admissible coordinate 
system. Then we can write 

X, = aW 
dx^ 

If moreover X-^ and X2 are linearly independent, we have {X^,X2} G SI-» ^i^d ^i? ••• 
, . . , d\, «2, ..., й?2 are local coordinates of the couple (X^, X2} on the manifold ^z-
Let us consider the Pluecker's coordinates p^j of the couple {Xi,X2}, which are 
differentiable functions on ^ i - Let cp : H^ -> xi'Si) be the Lie algebra homomorphism 
induced by the action H^ x ^2 ~̂  Si- From (2) we obtain the following table for 
the infinitesimal transformations of p^j: 

P12 
Рхъ 
Pl4 
Ргъ 
PIA 

РЪ4 

( ' Л 
^\^f,-y^yj 

-Pi 2 
Pi3 
0 
0 

-P24. 
P34. 

( л 
Л'^у) 

P23 -PIA. 
0 

Pi3 - РъА 
Pl3 + РзАг 
PiA. + P24. 

0 

f Л 1 4^^J 1 
0 

Pl3^rPi4. 
P24.-P12 
P2Ar^ Pl2 

0 
~Pl0^rP23 
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(For the sake of simplicity we omit the index a.) Let E{f) be the symbol introduced 
in (62) where / is a local function on the manifold 52- Put £,(/) = £ ( / ) n S | . 
for i = 1, 2. We find easily that ( Z j , X2} e ^ 2 if and only if we have simultaneously 
a1 + dl = 0, al + dl = 0, or in Pluecker's coordinates, 

Let us remind that U^^ = {^ЕГ^\^ n E\^ = 0}, £"36 = {x\dldx% / ( ^ / 5 / ) ) . 
Hence С75б = E{pl^) and similarly 17̂ 5 = £(/14). From (133) follows Ш^ = 
= £i(Pi4) ^ ^ i ( / i 3 - Р34) ^ ^i(P24 - PÏ2), and since the Pluecker's coordinates 
of a couple {Xj, X2} e ^2 cannot be all equal to zero, we obtain from (133) Ш2 = 
= E,{p\, + /34) u £2(^54 + P\2) u £2(^23). 

From our table and from Proposition 
V we find easily that £1(^14) is an Я^-covering set of Ш?1 and £2(^23) is an Я^-covering 
set oïMz^ q.e.d. 

Theorem 28. The manifold Ш2 consists of two orbits of dimension 2 and of one 
orbit of dimension 1, 

Proof. Let 9̂ "" be an admissible coordinate system (see our convention about 
coordinates). Then each block ^ еГ1пЩ^ is determined by two equations of the 
form 

(134) a = u^b + U2C , d = v^b + V2C , 

where a/b, c, d denote the last four coordinates of a vector X e g in the coordinate 
system 6^. (We shall omit the index a if there is no risk of confusion.) The manifold Г4 
is of dimension 4. Thus if we restrict the coordinate system 6^6 • Ef'ze ~^ ^ ^ to the 
intersection IJ\^ n Г4, we obtain a map of the form ^ -> (wj, «2? 0, 0, v^, V2, 0, 0)^ 
i.e., a map S'^e • Г4 n Ul^ -> R'̂  which is a local coordinate system on the manifold 
Г4 induced by the coordinate system Ш"". According to Theorem 27 the coordinates 63°^ 
are Hg-covering on 9Л2. Now for ^ e Ш2 n U^e holds ^ c: ĝ  and one has additional 
relations 

(135) Wj + i;̂  == 0 , U2 + V2 = 0 . 

Thus by restricting the chart (B'^e to the set Ш2 n Ul^, we obtain a local chart (^^6 
on 9Л2. Ш2 is of dimension 2 and w", u^ can be taken for local coordinates expressing 
^ G Ш2 n 1/̂ 6-

Suppose ^ E Ш2 and let us look for all complex d-elements ""^ с C^ such that 
ad — be = 0. Using Theorem 27 we can find an W such that # G IJ%^. In local 
coordinates, we have to determine all groups [a, b, c, d) of complex numbers 
satisfying the relations (134) and ad — be — 0. Hence we deduce a condition 

(136) {u,f b^ + (1 + 2wiii2) be + {u2f c- = 0 . 

If we add another requirement ""^ с Сс^^р), i.e., и = i; = 0, we obtain exactly two 
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c^-elements. They can be real different or imaginary conjugate or real and coincident. 
The relation ad — be = 0 is invariant on Cg and thus the couple of complex 
J-elements just constructed is a well defined object. There is a couple of pointwise 
singular lines corresponding to our couple of J-elements; it is given by the equation 

(137) x{^) = U2X^ + xy - u^y^ = 0 . 

Neither of the equations (136), (137) can vanish identically. We have obtained an 
€quivariant object on the whole Ш2. 

Proposition 36. Let XQ be a couple of lines in CA^, which are real and different, 
or imaginary conjugate, or real and coincident, and have a double point at p e A^. 
Let Ш^" be an admissible coordinate system such that the following conditions are 
satisfied: 

a) If the lines of the couple XQ are mutually different, then they are not harmoni­
cally separated by the axes ^,y. ^) 

b) If the couple XQ is a double line, then the axes x, у are different from that line. 
Under these conditions there is exactly one block 0^ e Ш2 n JJ\^ such that 

x{^) = xo. 

Proof. Let us write the equation of XQ in the coordinates W in the form diX^ 4-
+ d2xy + d^y^ = 0. With respect to our assumptions a), b) we always have ^2 + Ö. 
The rest of the proof is trivial. 

P r o o f of Theorem 28. The coordinate systems W that are admissible in the sense 
of Proposition 36 form an open subset of the Я^-type of all admissible coordinate 
systems. According to Proposition VII x[^) is a representing frame on Ш2 with 
respect to the group H^ = G^^(p). Now it remains to discuss the domain of values of 
the frame. 

Let us consider some ^еШ^. According to Theorem 27 there is an admissible 
coordinate system Ш"^ such that # e 11%^. Then ^ is given by two equations of the 
form 

(138) b — u^a + 1̂ 2̂  , с = v^a + V2d . 

Here Ui, ^2, t^i, V2 are to be considered as coordinates of the block ^ e U\^. We 
can also obtain these local coordinates by restricting the chart 845 : C/45 -> R^ to the 
intersection и^^пШ^. Now the J-element ĉ  = ^ n ^^ admits a singularity at p 

^) We say that a line couple {/?, q\ separates harmonically another line couple {r, s\ if 
R{p,r,q,s)= - 1 . 
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and a couple k(0) of singular lines given by the equation (3). In local coordinates we 
obtain from (3), (139) and from the relation a + d = 0 

(139) k(^) = (wi - и2) x^ - 2xy - (v^ ~ V2) y^ = 0 . 

Denote by CQQ the set of all complex vectors from Cg satisfying the invariant relation 
ad ~ be = 0. Let us consider an invariant decomposition 

(140) Ш, = ^Zt u 9Л? 

where 1Ш? = {0^ e Ш^ \ C0 a Cg°}. If ^ G Ш^ n Щ^, then а complex J-element 'ç 
belongs to C ^ n Cg° if and only if the homogeneous coordinates of ""c fulfil the, 
relation 

(141) u^v^a^ + {u^V2 + U2Vi — 1) a J + ^2^2^^ = 0 • 

This is an immediate consequence of (138). It is obvious that 0 G Ш\ if and only if 
the equation (141) vanishes identically. The J-element ^ n I)̂  belongs to g^, and the 
object k{0) is a double line in this case. 

Let us consider the submanifold Ш\. In this case the equation (141) completed 
by the condition ""^ с Cg(|?) determines exactly two complex (i-elements. These 
J-elements are real and different, or imaginary conjugate, or real and coincident, 
and they have a double point at p. The corresponding couple of pointwise singular 
lines will be denoted by x(.^) again; in local coordinates we have 

(142) x(,^) = u^x^ - (1 + u^V2 - U2V1) xy + 1?2У̂  = 0 . 

(The last formula follows from (4), (138), (141).) 
Let us introduce the following notation: sgn/c(i^) = 1, —1,0, according to the 

sign of the discriminant of (139). The symbol sgn x(^) will have the analogous 
signification. We consider an invariant dexomposition as follows: 

(143) ШХ^\]ШХ{1^), / , j = 1 , - 1 , 0 , 

where Ш\{1,]) = [0 e ШХ \ sgn k{0) = /, sgn %(#) = ./}. 

Proposition 37. mX{Q, -1) = 0. 

Proof. If sgn /c(^) == 0, then according to Theorem 1, h), the real (i-element 
0^ n l)g satisfies the relation ad — be — Ç^ and consequently, it is one of the J-elements 
defining the object x(^) . Thus one of the lines of the object к{^) coincides with the 
double line /c(^) and hence both lines of x(^) are real, sgn x(^) = 1 or 0, q.e.d. 

Let 0 E Ш^. Choose an admissible 91"̂  such that 
a) ^ e 1/45; h) if sgn %(^) ф 0, then the axes x , y^ do not separate harmonically 

the lines of к(^^); с) if sgn x(^) = 0, then neither of the axes x , y^ coincides with x(-^). 
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A choice like this is possible according to Theorem 27. With respect to b) and c) 
the equations (139) and (142) can be written in the form 

(144) d^x^ ~- 2xy - d2y^ - 0 , dix^ - xy + 52>'' = 0 . 

where 

(145) i/i = 1/2 + <̂ i , ^\ = V2 + d2 . 

In view of (142), (144) the triplets (d^, —1, Л2), (MJ, — (l + d^v^ — ^2^1)5 ^1 ~ ^2) 
are proportional to each other, which leads to the system 

(146) (1 + ^2^1) ^1 ~ ^i^it^l = ^1 , <̂ /2̂ 2̂ 1 + (1 ~ ^^1^2) ^1 = <̂2 + ^2 

The determinant of the system (146) is 

(147) D = 1 + d.d^ - dj2 • 

If we denote by Л the resultant of the left sides of (144), we find easily the following 
expression: 

(148) A = (1 + ^1^2) (1 - ^3^2) ~ D^ 

Proposition 38. Let kg, XQ be two line couples of CA^ given in an admissible 
coordinate system "W by the equations (144). Then 

д) / / /CQ and XQ taken together consist of four mutually different lines, we have 
D = 0 if and only if the couples in view separate harmonically each other. 

b) If both ко and XQ are formed by non-parallel lines but not all lines of the 
configuration are mutually different, we have D ф 0. 

Proof. The assertion a) can be verified by direct computation, the assertion b) 
follows from the signification of the resultant and from the formula (148). 

Proposition 39. Let ^ e 9Лt, sgn /c(^) Ф 0, sgn x{^) ф 0. If the couples k{^), x{^) 
have not a common line, then they do not separate harmonically each other. If 
sgn /c(^) Ф 0, sgn x(^) = 0, then the double line x(^) does not coincide with any 
line of the couple k{^). 

Proof. Let ^"^ be an admissible coordinate system such that the objects k{^), x{0^) 
are given by equations of the form (144). If D = 0, then from the solvability of the 
system {(145), (146)} follows d^{\ + d^2) = 0. ^2(1 + ^1^2) = 0. Since D = 0 it 
is impossible that d^ = J2 = 0 and hence ^1^2= ~~^ ^^^ sgn /c(^) = 0. Thus 
whenever sgn k{^) ф 0 we have D Ф 0. From part a) of Proposition 38 follows our 
first assertion and from the formula (148) we obtain the rest of the proof. 

Proposition 40. Let kg, XQ be two couples of mutually non-parallel lines {real or 
imaginary conjugate) crossing at p, and such that they do not separate harmonically 
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each other. Let W be an admissible coordinate system such that the axes x,y^ do not 
separate harmonically any of the couples /<o, ^o- Then there is exactly one block 
.^em't n L/̂ 5 such that k{^) ~ ko, x(f) = Xg. 

Proof. With respect to our choice of 9̂ °" the equations of the couples kg, XQ can 
be written in the form (144). To determine the coordinates of the block ^ consider 
the system composed of (145) and (146), where D ф 0 with regard to both parts of 
Proposition 39. Thus the system in view has a single solution ^еШ^. Now it is 
impossible that ^ЕШ^. In fact, in this case the coordinates w ,̂ t(2, t^i, t̂ 2 would 
make zero all coefficients of (141) and from (145) we should obtain 1 + ^1^2 = Ö, 
i.e., sgn /co = 0 — a contradiction. Hence ^ e Ш^, q.e.d. 

Theorem 29. The equivariant objects /c(^), x(^) form a representing frame on 
the union (J Wfl^^^i, j). Each of the manifolds 501*(l, —1), 9Jl*(—1, 1) consists 

of 00^ orbits of dimension 3. The manifold S[R*(l, 1) consists of 00^ orbits of dimen­
sion 3, of two special orbits of dimension 3, and of an orbit of dimension 2. The 
manifold 9}Z*(—1, —1) consists of 00^ orbits of dimension 3 and of an orbit of 
dimension 2. 

Proof. The first assertion follows from Propositions VII, 39 and 40. Then we 
have to investigate, separately for each component, the domain of values of the 
representing frame. Particularly, we have to consider all possibihties of coincidence 
of the couples /c(^), x(^) . Let us remark that the general part of each 9Л*(/*, j) is 
a one-parametrical orbit family, and any orbit of that family is determined by a cross 
ratio of 4 mutually different lines. 

Proposition 41. Let kg be a couple of non-parallel lines [real or imaginary 
conjugate) with an intersection point at p, and let XQ ф kg be another real line 
passing through p. Let 5Ĥ  be an admissible coordinate system such that its axes do 
not separate harmonically the couple k^ and such that neither of them coincides 
with the line XQ. Then there is exactly one block ^ e Ш1* n I/45 such that /c(^) = /CQ, 
X{^) = XQ. 

Proof. The couple kg and the double fine (XQY are described by equations of the 
form (144). Since Л Ф 0 and 1 - 4did2 = 0, it follows from (148) that D Ф 0 and 
the system composed of (145) and (146) has only one solution. We can show as in 
the preceding Proposition that the block ^ еШ^ justobtained belongs to Ш1* and 
that the coincidence requirements are satisfied in a geometrical sense. 

From the last assertion of Proposition 39 we obtain 

Theorem 30. The couple /c(^) and the double line x{^)form together a represent-
ing frame on the manifold S[R*(1, 0) u 9Л*(~1, 0). Each of the manifolds Ш\{1, 0), 
9Л*(~~1, 0) is an orbit of dimension 3. 
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In case that sgn k(^) = 0 the objects /c(^), x(^) do not form a representing frame 
and we have to find another equivariant object. Let us start with the case sgn x{^) = 
= 1. As we have shown in the proof of Proposition 37, one of the J-elements deter­
mining the object x(^) coincides with the direction element ^ n l) .̂ The other one 
does not belong to 1)̂ , it is real and it can be '^provided" by two real singular lines 
a (^) , ß{^). The equations of a(^) and ß{^) are of the form (4) or (5), respectively. 
Here a (^) is pointwise singular and belongs to the couple x(^) whereas ß{^) is 
a new equivariant object. Let us remark that a(^) and ß{^) are always non-parallel 
and they pass through the point p. x(^) consists of the lines a(i^) and /c(^). Because 
one of the J-elements determined by the relations (141) and w = i; = 0 is ^ n ^^, 
we deduce that one solution of (141) is a Л- d = 0. Hence the other solution is of the 
form 

(149) u^v^a + U2V2d = 0 , u^v^ ф «2^2 > (^i ~ ^2) (^i ~~ ^2) = ~^ • 

Here the last relation expresses the condition sgn k{^) = 0, or else the inclusion 
k{ßP) cz %(^). Using (4) and (5) we derive easily 

(150) a{^) ~ ii^x - V2{ui ~ U2) >• = 0 , ß{^) = Ы2Х - î^i(wi - Ui) >' = 0 

in any admissible W\ moreover we can see that 

(151) k{^) = {u^ - 112) X - y = 0. 

Now we have k{i9) ф a(^) , k{ßP) ф ß{^); otherwise from the relation [u^ - и2). 
• (^1 ~ ^2) = — 1 would follow u^v^^ = U2V2 — a contradiction. 

Proposition 42. Let /CQ, OCQ, ßo be three mutually different real lines in A^ with 
common intersection point p. Let 91^ be an admissible coordinate system such that 
neither of the axes x^y coincides with any of the lines k^^a^^ßQ. Then there is 
exactly one block ^ e 9Л^(0, 1) n Ul^ such that k{^) ~ /CQ, a(^) = ao, ß{^) ^ ßo. 

Proo f is a routine and it is left to the reader. Let us only remark that the relation 
UiVi Ф 2̂1̂ 2 must be verified for the block ^ formally evaluated. Hence we obtain 

Theorem 31. The objects /c(^), a(^) , ß{^) form a representing frame on the 
manifold 9}l*(0, 1). The manifold 9Jl*(0, 1) consists of two orbits of dimension 3. 

The manifold ^^^(O, —1) is an empty set according to Proposition 38; it remains 
to investigate the submanifolds Ю1 (̂0, 0), Ш^. If ^ G Ш^^О, 0) then k{^) = x{^), 
and in arbitrary admissible Ш"" such that ^ e t/45 we have invariant relations 

(152) (lil - U2){V2 - V^) = 1 

(153) Uj^Vi = U2V2 • 
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Неге both sides of (153) are non-zero. For 0^ e Ш\ the formulae (152), (153) hold, 
too, with the only difference that U{Ü^ = Ujih = 0. From the preceding relations and 
from (138) follows 

(154) ad — be = —u^v^i^a + dy 

for any vector Xe0, ^e 9Л^(0, 0) u 9Л^ 

Propositon 43. The ratio X{^) = {ad — be) : [a + dy is the same for all vectors 
X(u, V, a, b, c, Й?), X e ^ n (g — g^), and all admissible W. 

Proof. From (154), (153) we have 

(155) X{0^ - - W i ^ i = -U2V2 • 

respect to that coordinate system. On the other hand the set ^ n (g — g )̂ does not 
depend on the coordinates and thus l(i^) depends only on ^ G 9Л*(0, 0) u Wl\, q.e.d. 

Thus /t(^) is a well-defined function on the manifold 5[R*(0, 0) u Ш\. Moreover 
/ ( ^ ) is a point invariant under the group Я^. In fact, the functions ad — be, a Л- d 
are point invariants on the manifold g under H^ and for h e H^ we have h . 0 n 
n (g ~ g )̂ = /г[^ n (g ~ g^)]. The value of /l(^) cannot be arbitrary. In fact, 
from (152), (153), (155) we derive easily (w^ + ^2)^ = (wi - ^ 2 ) ^ ^ " 4Я(^)); 
hence Я(^) S i-

Proposition 44. Let /CQ be real line passing through the origin p and let / ^ | be 
a real number. Assume that W is an admissible coordinate system such that neither 
of the axes x,y coincides with kg. For Я < ^ there are exactly two blocks 0E 
G [mt(0, 0) u 9Л?] n t/^5 and for Я = i there is exactly one block 0^ G рЛ^(0, 0) u 
u Ш"^ n l]\^ such that k{0) = k^, M^) = Я. 

Proof. The equation of the double line (/CQ)^ in the coordinate system 9Г is of the 
form jix^ — 2xy + y^jpi = 0. The condition k{0) = k^ yields two relations 
и I — и 2 = fi, V2 — Vi = IjiÂ and from the condition Я(^) = Я we obtain u^v^ = 
= — Я, U2V2 = — Я. With respect to the inequality Я ^ ^ we obtain two real solutions 
given by 

(156) u, = ^ß{\ ± 7 ( 1 - 4Я), U2 = M - 1 ± V ( l - 4Я)). 

Proposition 45. The function sgn {|u |̂ — \u°^\] is independent of the choice of an 
admissible coordinate system W such that 0 e Ul^. 

Proof. We can see from (156) that sgn {\ul\ - \ul\} = 0 for Я = J. Let 91 cz 
c= ^lt(0, 0) u 9}l? be an open submanifold of Ю1 (̂0, 0) u 9Л? determined by the 
inequality Я(^) < ^. Assume that 0 e 91. The admissible Ш"" such that .^ G L/45 are 
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just those satisfying x ф k[^), у ф /c(i^). The set of all those coordinate systems is 
divided into four connected components with regard to the topology of the group H^. 
The continuous function sgn [\ul\ — \ul\} ф 0 is constant on each component an 
we find easily that its value is preserved by the transformation x' = y, y' = ~-x 
belonging to H^. But the last transformation mediates a passage among the compo­
nents, q.e.d. 

Now we find easily from (156) that the manifold 91 splits into two invariant sub-
manifolds 9̂  "*", 9̂  ~ determined by the relations sgn {|wi| — \ul\} = ±1 .РогЯ(^ ) < J 
the two blocks ^ еШ given in Proposition 44 belong to diff"erent orbits. Finally we 
obtain 

Theorem 32. The manifold 9Jl*(0, 0) u Ш^^ consists of two one-parametric systems 
of orbits of dimension 1 and of another orbit of dimension 1. Each orbit is completely 
determined by the numbers sgn {|i/j| — |w2|}? ^{^)y (^^^d sgn {\ui\ — |м2|} =̂  ^ 
implies that it belongs to one of both the orbit systems generating ^^ and 91". 
Ä block 0^ belongs to the special orbit if, and only sgn / / ( | t / i | — \u2\} = 0, Я(^) = 
= ^. Otherwise we have X{ßP) < ^, the invariant A(^) being given by (155). 

To conclude, we shall give a summary of results of this Chapter. 

A) A table of orbit types of the manifold Г4. 

"̂ -̂--...̂ ^̂  Manifold 
Orbits ^^^^^^----^ 

dim 6 

dim 5 

dim 4 

dim 3 

dim 2 

dim 1 

p 4 
A 0 

4 X CO 
8 X 00^ 

8 special 

1 X 00^ 

3 special 

2 special 

^ ^ ^ - ^ ^ 

1 special 
(subalgebras) 

^ ^ ^ - ^ 
^^--"""^ 

^^^ 

Tl 

1 X X ^ 

4 special 

3 X x-^ 
8 special 

1 X 00^ 
6 special 

3 special 

1 special 

^^^^ 
^^^^^^ 

i - " " " " ^ 

'1: 

/-'""' 
^ 

^ ^ 
^^--^^\ 

--^^^^^^^^^^^ 

^^.^--"'"^\ 
4 X 00^ 

6 special 

4 special 

2 X 00^ 

2 special 
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в) Invariant decompositions of the manifolds Г4, Г4. 

(36) 

Г2(1) 
I (37) 

Ш 
(37) 

(41) 

U^*(/,y) 

1(42) 

m^(\,i) 3}?^o, 0) 

1 4 

(132) 

г2(0) 
(54) 

r^d) -̂  93? 

(49) 

U ^ / / 

(50) 

Щ 
(140) 

^ / / - 1 ) 

9)?. 

(55) 

îll,(l) 9 l 2 ( - l ) 5b(0) 

«//0) 

I (143) 

^!(/,у) 

ш?; 
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с ) An invariant decomposition of the manifold Г4. 

^Ui) 

(90) 

Ш„ 
(101) 

^Jl* ml 

W^t^ UK pX 

Tl 

(68) 

Ш, 

(72) 

ml 
(83) 

(117) 

^ 1 

(119) 

911 

9J?., 

(107) 

ma 

m^ 
(131) 

U ;̂(̂ -/̂ )̂ 
(i= 1 , -1 ,0 
y - 0Л 

I ̂  = 0, 1 

9)?! m2 

91? 

9J^^ 

(128) 

91,(1) ^2(2) 
(129) 

911(2) 91?(2) 

9Л 

(109) 

mi 
(113) 

9J?, 2 , * m 2,v ^ll 
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