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Czechoslovak Mathematical Journal, 17 (92) 1967, Praha

ON CARATHEODORY OPERATORS

KAREL KARTAK, Praha

(Received February 18, 1956)

1. This note represents a direct continuation of section 2 of [1]; definitions and
notation of that paper are used here throughout. Our aim is to prove the following
assertion:

Theorem A. Let T be a Carathéodory operator on C(I; G). Then there exist
classical Carathéodory operators T, i€ N such that for each ¢ e C(I; G),
lim o(T;¢p, Tp) = 0.

2. First we prove some auxiliary results on polynomials in n variables. Let m,(x) =
= XX ... X, A real polynomial P, in x, ..., x, is said to be distinguished iff it is
of the form

(2.1) Pu(x1yon ,,)-om:(x)+2/3,n(x)+ z "(") +zax re

.l

The same definition applies also to other sets of variables.

In what follows we prove that distinguished polynomials in x,, ..., x, have with
respect to n-dimensional cubes properties analogical to those of linear functions on
segments.

We shall use the following convention: the symbol X; signifies that x; does not
enter as a variable in our considerations.

3. Lemma. Let P,(x,, ..., x,) be a distinguished polynomial in x,, ..., x,, and let
9.9, 1 =r=n, be real numbers. Then P,xy,...,9%;,...,9;,...,x,) is
a distinguished polynomial in x, ..., %;, .., %X, , ..., X,

Proof. It is sufficient to prove this for » = 1, but then is it obvious.

4. Put K =<0,1) x ... x <0,1> (n times), N = 2", and given je{l,.., n},
SeR, let {x; =9} = {[xy,..., x,] € #"; x; = 9}. Let {j,...,J,} be a non-empty
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subset of {1, ..., n},and let 9, = Oor 1 for k = 1, ..., r; then the (n — r)-dimensional
sides of K, denoted K{x; =9, .. Xx;, =9,}, are defined by the formula K n
n{x;, =% n...n{x; =95 If r=n, we get the vertices of the cube K, N in
number; otherwise we have positive-dimensional sides of K, considered in the sequel

as lower- dimensional cubes.

5. Lemma. Let v;, j = 1, ..., N, denote the vertices of K, and let a;e R for j =
= 1,..., N. There exists one and only one distinguished polynomial P, in x4, ..., X,
such that

(5.1) Pv)=a;, j=1,..,N

Proof. If we put ¢ = P,(0,0,...,0), §; = P(1,0,...,0) — ¢, etc., then it is
from (2.1) clear that all coefficients may be successively determined for (5.1) to be
satisfied.

The numbers a; corresponding to the vertices v; of K, j = 1, ..., N, are considered
to be fixed in some further sections; thus, the above polynomial will be denoted simply
by P,(x,, ..., x,; K).

6. Lemma. Let 1 <r <n —1,andlet Q = K{x;, = 9,...,x
r-dimensional side of K. Then

=39,_,} bean

Jn-r

(6.1) P(xq, ..., x,3 K) | Q =P(X1, s Kjps o Kjpp_ppooes X3 Q)

Proof. In virtue of Lemma 3, the left-hand side is a distinguished polynomial in

X135 .oy Xj 5 200 X, s --» X, taking on the prescribed values. Now we apply Lemma 5.

7. Lemma. For each j = 1, ..., n, we have

(71)  Pfxp o X3 K) = (1= X)) Pacy(gs s Ky oo % K{x; = 0}) +
4 XPyo(Xgs oo Xy oon X5 K{x; = 1)

Proof. In virtue of Lemma 5 it is sufficient to note that the right-hand side is
a distinguished polynomial in x, ..., x, taking on the prescribed values.

8. Lemma. For each & = [&4, ..., £,] € K, we have

(8.1) min {ay, ..., ay} £ P&, ..., {3 K) < max {ay, ..., ay}

Proof. For n = 1 is it clear. Suppose the assertion is true for n — 1. As a con-
sequence of (7.1), we have

P,,(fl, v énK) = (1 = &) Puoi(&s s Cum s Kix, = 0}) +
+ &Py (Eyy o o KX, = 1))
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Using induction assumption, we get from it e.g.

P&, & K) S (1 = &) max {ay, ..., ay} + &, max {a,, ..., ay} =

= max {dy, ..., ay}

9. Let i € A". The division &} of & of the i-th rank is the set of all points of the
form k 27¢, where i € A4 and k is an integer. The division 27 of #" of the i-th rank is
the set 2} x ... x 2} (n times); from now on, we write merely 9,, instead of 2.
It is clear that 2; induces a decomposition of £” into non-overlapping cubes, with
the edge 277 each. Let {2,} denote the set of all these cubes.

10. After the preliminaries, we are going to prove the theorem stated in section 1
Here, P(xy, ..., X,; dy, ..., ay) is a new notation for the polynomial P, of Lemma 5
Also, if f denotes a point of " or a vector function, then f, j = 1, ..., n, denotes
the j-th component of it. The vector-space operations on " are denoted in the usual
manner.

Let i e 4. For each ve Z; N G, let f, be a vector function on I such that [£,] =
= Tp. Let us now define a vector function f; onI x G, generating a classical Carathéo-
dory operator. The construction will be carried out for £ only; for other components
of f; is it analogous.

Let Ko € {2;} be such that Ko = {xe #"; 0 < x — v < 27}, for some ve ;.
Suppose that

(10.1) KonG+0

and let v; = v, v,, ..., vy denote the vertices of K. Let us define the finite functions
a;|Lj =1,..., N, asfollows: if v; € G, put a(t) = f{})(¢); otherwise put a(t) = v§".
Now, letfortel, x € K,

(10.2) D(t, x) = PRI(xD — V), .., 21(x" — oP); ay(t), ..., an(t))

and similarly for f{”, j = 2, ..., n, and all cubes of {2}, satisfying (10.1). It follows
from Lemma 6 that using (10.2), f; may be well-defined on I x G; we show that it
generates a Carathéodory operator, i.e., it satisfies the conditions of Theorem (2,4)
in [1].

Let x € G. Then f(., x) is measurable on I, as a “polynomial” of measurable
functions. Let ¢t €I. Then f(t, .) is continuous on G, as a simple consequence of
(10.2) and Lemma 6.

We are going to prove that, for each ¢ € C(I; G), lim ¢([ f; - ¢], Ty) = 0; thus, to
prove the theorem, it suffices to put T,p = [f;0 ¢].

Let ¢ € C(I; G). Given i € A", there exists §; > 0 such that

(10.3) [t = 1| <&, t.t'el=|o(t)— ()] <27
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Let o =1<7 <..<7=t+amax{t,—t;_y;j=1..,k} <d.Invirtue
of (10.3), for each j = 1, ..., k, there exists s,(j) € 2, such that
(10.4) telt_y, ;) = |o(t) — s{i)] <27

Let us define s; |1 = §(1)|<t0,7,) ® ... ® §(k) | {ti—1, T). From (10.4) we
infer that s; converge to ¢ uniformly on I. For each i € A/, it holds

o(To, Tip) < o(To, Ts;) + o(Tsi, Tisy) + o(Tisi Tip)

As a consequence of the definition of T, o(Ts;, T;s;) = 0. In virtue of Lemma (2,6)
of [1], lim o(Te, Ts;) = 0. Thus, it is sufficient to prove that
(10.5) lim o(T;s;, Tip) = 0

Let v = 3", and let ¢, ..., &, be the points of 2" such that ¢, k = 1,...,v, j =
=1,..., n,equals to —1, 0 or 1, independently.

First we prove an estimation, which could easily be made more precise but which
suffices for our purpose. In virtue of Lemma 8, we have for i e A", teI and each
j=1,..,n

(10.6) £ (1, 0(1)) — £ (1, s(1))] gklil] D, st) + 27'%) — fO (1, si(t) + 2778,

Now, put s,(f) + 27 ', = s,(t; k). The step functions s(.; k) | I thus defined evidently
converge to ¢ uniformly on I, foreach k = 1, ..., v.
We have from (10.6)

£t o(1)) ——fvi(t, s(t))] = max {|fO(..) = fO(.), ) =
< max { “21 |£0(t, si(t; k) — FO sds: D)), ..} <

“zzl max {...} = k,zv;1 |£it, sdt; k) — £i(t, st )|

IIA

Hence we get

min (1, |Tip — Tisi|) £ Y min (1, [Tisi(.5 k) — Tisi(-5 1))
k,l=1
k<l
so that

v

oTip, Tisy) < . 12_:1 oTisi(-3 k), Tis( -5 1) =

;¢<l
= X oTs5 k), Ts( D) = X oTsi(-5 k), To) +
kicl<_t1 kic’<_11
+ IZIQ(Tq), Tsy(.5 1))
k,l=
k<1

Now, (10.5) follows in virtue of Lemma (2,6) of [1]. This proves Theorem A.
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11. Theorem B. Let T be a Carathéodory operator on C(I; G) and let {fi} be the
sequence of vector functions on I x G defined in the proof of Theorem A. Suppose
that there exists N < I such that

(11.1) p(N) =0
(11.2) tel — N=f(t,.) converge uniformly on compact subsets of G
Then fII x G, defined for tel — N, xe G as f(t, x) = lim f{(t, x), satisfies the
conditions (2.4.1), (2.4.2) of Theorem (2,4) of [1], generating thus a classical
Carathéodory operator. Further, To = [f o ¢] for each ¢ € C(I; G).

Proof. From (11.2) we see that f(¢, .) is continuous on G for each tel — N.

Further, f(. s x) is measurable on I for each x € G, as a limit a.e. of measurable func-
tions. To prove the second assertion of this theorem, it is sufficient to note that T =

= [f o &] for each £ € U D; n G; see Corollary (2,7) in [1].
i=1

12. The author believes that the assumptions of Theorem B are fulfilled for each
Carathéodory operator; to solve Problem C of [1], it would be enough to prove this
hypothesis. In section 14, we prove that this is true for classical Carathéodory
operators.

13. Lemma. Let f be a finite continuous function on {0, 1). For each i € N, let
Tos Ty +vess tai, Where 0 =ty < t; < ... < ty: = 1, denote the points of D} <0, 1).
Let I(t,) = f(t), k =0,1,...,2%, and let I, be linear on each {t,_y, t;. Then I
converge to f uniformly on I.

Proof. Given ¢ > 0, there exists 6 > 0 such that ¢7, #; € <0, 1), lti - t’zl <é=
= |£(t;) — f(t;)] < & Foreachie 4, let i) € 2} n <0, 1) be such that |t — #(i)| <
< 27% Let iy € A" be such that 27" < §. Now using linearity of I,, we get for each
i 2 io and tel that [f(t) — L()| < |£(t) — £(e(0))| + F(())| + |£(1()) — L(x(i))] +
+ |1(t(i)) — 1{t)] £ & + 0 + & = 2¢ which proves the lemma.

14. Theorem C. Let T be a classical Carathéodory operator on C(I; G), represented
by a vectorfunctionfl I x G. Then, the assumptions of Theorem B are fulfilled.

Proof. This is an easy consequence of the preceding lemma.

15. Corollary. Let f be the vector function of Theorem C. Let A" denote the Lebesgue
measure on R". Then f is measurable on (I x G, p x A").
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