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O N THE SECOND CO VARIANT DERIVATIVE OF A VECTOR FIELD*) 

ALOIS SVEC, Praha 

(Received November 17,1965) 

We shall here introduce a geometrical signification of the operator Vĵ ^V^K, К being 
a fixed vector field. The proofs of the theorems are routine, and they are omitted. 

1. Let В be a differentiable n-dimensional manifold with a hnear connection Г. 
Let Г be the affine connection canonically associated to Г. К being a vector field on Б, 
let Гк be the affine connection associated to Г and the tensor field WK; see [1, p. 74]. 
Suppose T = 0, T being the torsion tensor of the connection Г. 

Let A^ be the tangent affine space of Б at a fixed point b e B, and let у : (— 1, 1) -> В 
be a dififerentiable curve on В through the point b; suppose, for example, 7(0) = b. 
Denote by 7* : (—1, 1) -^ A" (or 7^ : ( ~ 1 , 1) -» A") the development of у into Л" 
v\̂ ith respect to Г (or Г^ resp.). 

Lemma. There is a unique affine collineation C|̂  : Л" -> Л" with the following 
property: y being an arbitrary differentiable curve on В through the point b, we 
haveji{y^){Ö) = ji{Cj^y^) (Ö); here, j\[F)(p) denotes the s-jet of the map F at the point p. 

Consider the tensor Lj^ of the type (1,2) given by Lj^{X, Y) = VyV^K. The geo­
metrical significance of this tensor is given by the following 

Theorem 1. Let V^, be a fixed tangent vector of В at b, and let у be any curve in В 
through b such that its development y* into A" with respect to Г is tangent to F̂ , 
at the point b. Three cases are possible: 

(a) L^{V„ n ) = 0, and we havej,{y*) (0) = J2{C^yt) (0). 
(b) Lx(K„ Vb) = acV,,, a a real number + 0. We have 72(7*) (0) + ]2{СкУ*к){0), 

but there are neighborhoods Q, Q' с (—1, 1) о/О and a map y. : Q -* Q'; д(0) = 0, 
^t'(0) Ф 0; such that 

(*) 72(7*1«) =У2(Сл-7^/^)(0), 
7*L being the restriction of y^ on Q. 

*) This work was partly supported by the National Science Foundation through research 
projects at Brandeis University (Waltham, Mass., U.S.A.). 
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(с) The vectors Lj^{Vjj, F )̂ = V^ and F̂ , are linearly independent. There is no 
map ß such that (*) is valid. Let A"~^ с Л" be any hyperplane such that its 
vector space does not contain the vectors F̂ , and V^, and let us denote by n : A^ -y 
-> У4"~^ the projection of Ä' onto A'~^ in the direction of V^. We haveJ2{7iy*) (0) = 
= J 2 ( ^ Q 7 K ) ( 0 ) . 

2. In this section, we present two theorems concerning the possible decomposition 
of the operator Lj^{X, Y). 

Let [/ be a fixed vector field on B. Denote by M^ the set of vector fields К on В 
with the following property: К e M^ if and only if the vector fields U and Lj^X, Y) 
are linearly dependent for any vector fields X, Y on B. 

Theorem 2. Let K^, K2 e M^. If Lj^^K^, V) = Lj^J^K^, V) or if VyU and U are 
linearly dependent for each vector field V on B, then [Xj , K2] e Mu. 

Further, let Tbe a fixed tensor field of the type (1,1) on B. Denote by Nj the set of 
all vector fields К on В with the following property: X e Nj if and only if the vector 
fields T{V) and L^f^V, V) are linearly dependent for each vector field F on B. 

Theorem 3. Let K^, K^ e Nj- If LK^{K2. F ) = LK,{K^, V) or [(YuT) (F), T{V)] = 0 
for any vector fields U, V on B, then [X^, X2] eiV^. 

3. Finally, a result for compact Riemannian manifolds В based on the well known 
integral formula: 

Theorem 4. Let g be a Riemannian metric on В and Г be the associated connection. 
Let К be a vector field on В such that Lj^{V, V) = / ( F , V) К for each vector field V 
on B, fiy, W) being a real-valued bilinear function. If f{V, F) ^ 0 for each vector 
field V on В and В is compact, we have VX = 0. Moreover, if f{V, V) = 0 implies 
V= Owe have X = 0. 
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Р е з ю м е 

ОБ ВТОРОЙ КОВАРИАНТНОЙ ПРОИЗВОДНОЙ ВЕКТОРНОГО ПОЛЯ 

АЛОИС ШВЕЦ (Alois Svec), Прага 

Дается геометрическое значение оператора VyVxX, где К — данное векторное 
поле. 
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