Czechoslovak Mathematical Journal

Vaclav Dupac
Stochastic approximations in the presence of trend

Czechoslovak Mathematical Journal, Vol. 16 (1966), No. 3, 454-462

Persistent URL: http://dml.cz/dmlcz/100743

Terms of use:

© Institute of Mathematics AS CR, 1966

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
O stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/100743
http://dml.cz

YexocioBaukuii MaTeMaTHiecknii xkypnaJ, 1. 16 (91) 1966, Ilpara

STOCHASTIC APPROXIMATIONS IN THE PRESENCE OF TREND

VAcLav DupAdl, Praha
(Received October 11, 1965)

1. Summary. Two basic stochastic approximation methods deal with solving an
equation (the Robbins-Monro method) or with seeking the point of a maximum (the
Kiefer-Wolfowitz method), when the function values are determined with an expe-
rimental error. In the present paper both methods are adapted to the case, when the
root or the point of a maximum move in a specified manner during the approximation
process. As compared to the author’s previous paper on this theme [1], the con-
ditions, under which the approximations converge, are generalized in several direc-
tions.

2. The Robbins-Monro case. Denote by N the set of all positive integers, and by R
the real line. For n e N let M,,(x), X € R, be Borel-measurable functions, let ©, be the
unique root of the equation M,(x) = 0. Both M, and @, are unknown to the experi-
menter, but it is supposed, that he can choose two sequences a, > 0 and g, such that

(1) ;ia,,=+oo, ia3<+oo;
2 Ous1 = 4.0, + 0(a,) ;
(3) (lasl = D = o(a,) ;
(z* denotes (z + |z])[2).

Let x; be an arbitrary random variable; for n € N define
(4) Xyt =X, = @Yy
where x; = ¢,X,, and y is a random variable such that
s) B | %10 X0 e %) = My ()

(6) Var(yy | x4, %3, ..., X,) < const (say ¢2).
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Theorem 1. Let M,(x) satisfy the conditions:

(7 |M,(x)| < A]x — O, + B, forevery xeR, neN and suitable 4, B;

(8) inf inf M(x) >0 forevery §>0.
neN |x—0,]>6 X — O,

Then x,, — ©, — 0 with probability one; if E(x}) < + oo, then also E[(x, — ©,)*] -
- 0.

Remark 1. In particular, (7) and (8) are satisfied if they are satisfied for n = 1 and
if M(x) = My(x — ©, + 0,),neN.

Remark 2. The condition (8) cannot be replaced by

(8) inf inf |M,(x) >0, ——Ai[i(x—)>0, x+6, neN

neN [x—6y,]>6 x — U,
as the following counterexample shows (it satisfies (1)—(7) and (8’), but not (8)):

M,(x) =esgnx forall xeR, neN andforsome 0<ég <3

(hence ©, = 0, neN);

x,=1; 62=0; q,,=1+1; a,,=i, I<a<l.
n n*
It follows
(e a)ees
Xn+1 = 1+~ Xy — & —SgNX,,
n n*
hence

n—1 1
X, =n(l—-¢g) ——|—> +o.
( igxi“(i+l))

Remark 3. Let ©, = gn® + h, where f > 0 is known, g and h unknown; then the
conditions (1), (2), (3) are satisfied by the choice

9) qn=1+<ﬁ>l+<ﬁ)l+...+<ﬁ)l
1/n 2) n? r/)n"
and

(10) . a, = ,a>0,42L<oc<1v

Sla

with r = [« + B].

So we can choose ¢, = 1 + 1/n, a, = a/n*, ¥ < a < 1 for the linear trend, i.e.
forp=1;0rq,=1,0a,=ant <a<1l—Bforf <}
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Proof of Remark 3: We shall only verify (2), everything else is obvious; we have

n

4,0, = gn'y, (ﬁ)ik +hy <ﬂ)lk

O, =g(n+1¥ + h=gn*y B i+h,
K=o \ k) n*

hence

1 1
9n+1 - ann =0 (nr+1—ﬂ + ;,;) = o(an) 5

since [a + f] +1 — B> o
Proof of Theorem 1: Rewrite the scheme (4) in the form
(11) Xpr1 = Xy — uMui(XF) + &, ,
where &, = —a,(yy — M,.4(x})). Subtract @,,, on both sides of (11) and denote
w, =06,y —q,0,, z, = x, — O, so that

X: = quXy = quZ, + qn@n = g2y — W, + @n+1 .

We get

(12) Zor1 = Tf2,) + &,

where

(13) T(r) = qur — @, — a,M,14(q0r — @, + Opiy) -

We shall show, that the scheme (12) satisfies the conditions of Dvoretzky’s theorem
[2] for the convergence z, — 0 with probability one and in mean-square. The
fulfilment of the conditions

(14) ey | 210 z) = 0, 3 E(:) < 400
N n=1

is obvious from (5) and (6), so that it suffices to prove the inequality

(15) |T(r)| < max {«, |r| — 7.}, neN, reR,

o0

for some positive a,, y, such that o, — 0, 2}!,, = + 0.
1

The next proposition follows easily from (8): For every sequence ¢, > 0, ¢, — 0,
bounded by a sufficiently small constant, there exists a sequence 7, > 0, 1, = 0,
such that

(16) [M,(x)| > e.Jx — ©,| forall |x—-@,|>1,, meN, neN.
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Let us choose g, such that
(17) Zangﬁ =+w, w,= O(GnQ:') > (lqn[ - 1)+ = o(angn) 5
1

let the corresponding 1, be such that
(18) a, = o(n,);

this can always be done.

If |g,r — @,| = 1 then
(19) IT.(r)] < (L + 4a,) |g,r — o, + Ba, < 21,

for sufficiently large n, according to (7) and (18).

The case |an — a),,| > g, is a little more complicated: The terms g,r — w, and
a,,M,,H(q,,r — w, + 0,,,) are of the same sign, the first being larger than or equal
to the second one in absolute value, for large n, so that we have

(20) 1T = |gur — @] = a|Myss(gur — o, + 6,41)] -
Setting m = n + 1, x = g, — ©, + O, in (16) and using it in (20), we get
(21) IT(r)| = (1 - a,0,) |g.r — @] <
< (1= a) (1 + (|a] = D7) [l + [oa] = 70 (s29)-
Now, if |r| < g, then 7, , < 2¢,; if |r| > @,, then
(22) e < (1= 3a,0,) 1] + |@,] < |r| = $a,e7,
both inequalities in (22) being consequencies of (17). So it is proved, that (15) holds

with o, = max (21,, 2,), 7. = a,07[3.

3. The multidimensional Kiefer-Wolfewitz case. Denote by R? the p-dimensional.
Fuclidean space. For ne N let M,(x), x € R?, be Borel-measurable functions, let
©, € R? be the point at which M,(x) has the unique maximum. It is supposed, that
the experimenter can choose two sequences of positive constants a,, ¢, and a sequence
of real matrices Q,,(p X p) such that

(23) ¢ 0, ian - to, ?i(a:/c:) <+, afd—0;
(24) [@ns1 — 0.0,] = o(a,) ;
(25) (2] = 1)* = o(ay) -
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Let x, be an arbitrary p-dimensional random vector; for n € N define

y;n - y:n—-l

C

(26) Xp+1 = x: + a,

n

where x} = Q,x, and y},, y5,_, are random vectors such that their coordinates
Vomi Vau—1,6 i = 1,2, ..., p, are all conditionally independent given Xy, X5, ..., X,
and satisfy

(27) E(y;n: | X1 eee xn) = Mn+1(x::‘.+ cnei) H
E(y:n—l,i | X5 eees xn) = Mn+1(x:‘ - cnei) , i=12,..,p,
(28) Var(yy,| X4, .., x,) Sconst., v=2n2n—1, i=12..,p

(e, i = 1,2,..., p are elements of the usual orthonormal set in R?; the constant in
(28) is independent of n). Denote by D, M,(x) the vector with coordinates

M,(x + ee;) — M,(x — ee;)

, i=12,..,p.
3
Theorem 2. Let M,(x) satisfy the conditions
(29) [M,(x + ge;) — M,(x)| < A|x - ©,] + B

forall0 <e<1,i=1,2,...,p, x€R?, ne N and suitable A, B;

(30) sup sup  sup, (D, M,(x),x — ©,)
neN ||x—6,||>5 0<e<s ”x _ @"“2

<0 for each 0< 4 <é,.
Then x, — ©, — 0 with probability one.

Remark 4. Let ©, = n®g + h, where B is a known matrix, g and h unknown
vectors; let

(31) [n®] = o(n*) for some B> 0.

Then the conditions (23), (24), (25) are satisfied by the choice

B\1 (B\ 1 B\ 1
32 ,=E b ST =,
@ o= () ()t ()

(33) a,.=%, a>0, I<a<l,
n

(34) C..=%, c>0, O<y<oa-—1%
n

458



where (i) denotes [B(B — E) (B — 2E) ... (B — (k — 1) E)]Jk!, and r = [« + $]-

So we can choose Q, = (1 + 1/n) E for the case of a linear trend in each coordinate,
ie for ©,;=gmn+ hy, i =12,...,p. If f <4, B may be unknown; (23)—(25)
are then satisfied by Q, = E, and a,, ¢, given by (33), (34) with the additional
restriction < 1 — f.

Proof of Remark 4 is formally analogous to that of Remark 3. We note only
that n® is well defined as e®'®", that B satisfying (31) always exist, since [n®| < nlBl,
and that the expansion

(35) (1+af=Y (B) o,
k=0 \ k
is valid for every Ia[ < 1 and for every matrix B, as follows from [3, Section 5.4,
Theorem 1] and from the Weierstrass Theorem (on uniformly convergent series of
analytic functions).
Also Remarks 1 and 2(of Section 2) can be repeated with obvious changes, the
counterexample being the one-dimensional M,(x) = —elx|, etc.

Proof of Theorem 2: Similarly as in the proof of Theorem 1, the scheme (26) can
be rewritten in the form

(36) Zn+1 = T;l(zn) + &y s
where
(37) T;l(r) = Qnr - @, + anDc,.Mn+ I(Qnr — W, + @n+1) s TERP,

and 0, =0,,; — 0,0,, z,=x,— 0,, &, being the vector with coordinates
(i=12..p

a
Eni = c—” [y;‘n,i - Mn+1(x:j + c,,e,.) - (y;n—l,i -M,, 1(": - cnei))] .

n

We shall verify, that the scheme (36) satisfies the conditions of the multidimensional
version of Dvoretzky’s theorem [4, Theor. 2] for the convergence z, — 0 with
probability one. The fulfilment of

0
(38) E(en | 215 - 20) =0, Y E(J&n]?) < + 0
. n=1
is obvious from (27), (28), so that it again suffices to prove
(39) [T.(r)] < max {«, |r] — 7.}, neN, reR?

0
for some positive a,, y, such that o, > 0, Yy, = + 0.
1
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We shall first estimate || D, M,(x)| with help of (29):

(40) 1D, My(3)] < pt wran M+ 0) = M = ce)]

12isp &
1/2 —
ép_(A“x_@"” +A8+B)§£Jl_"_91ﬂi£&, x€eR?,
€ €

neN, O0<e<i.

Setting this into (37), we get

@y Imels (14 %))

n

a
Qr — ] +B ", reR?, ¢ <%
C'l

Further, we shall use the expression for || 7,(r)]?, calculated from (37):

(42) 17007 = o — @f* {t + 4 + 473

where
4 = zan(Dc,.Mn+1(Qnr - W, + @n+ 1) s Qnr - wn)/“ Qnr - w"uz 4

4" = a3 D M, (Qr — 0 + Opry) P[] Qi — @,]*

The next proposition follows from (30): For every sequence ¢, > 0, @, — 0,

bounded by a sufficiently small number, there exists a sequence 7, > 0, #, = 0, such
that

D, M,(x),x — 0,)
(43) (D, M,(x), x — On) < —o,
Ix — ©ul?
forall0 <& <, |x — 6,] >n, meN, neN.
Let us choose g, such that it holds
() Yael=too, Jo] = oad), (1] - " = e,

(anfch) = olen) 5

let the corresponding sequence 7, be chosen in such a way that it satisfies the condi-
tions

(45) G

n

= o(m). e =o(n), - =on2).

n<n

o
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<, let n be sufficiently large; then |7,(r)| < 2#,, according

Let | Q,
to (41) and (45).

Finally, let ” Q,r — w,,|| > n,, 1 be large. Settinge =c¢c,, m =n + 1, x = Q,r —
— w, + 0, in (43) we get 4 < —2a,0,; using (40) and (45) we get further

A’S2a2<A2 Bi ><C"2 0 -
B [or —wl?) ~ ez "

Setting these estimates into (42), we get
IO < [Qur = @d* (1 = ases),
1] = [Qur = @] (1 = 1a,0.).
The rest of the proof coincides with the proof of Theorem 1 (cf. (21) and below).

Remark 5. In the one-dimensional Kiefer-Wolfowitz case, the condition
a,,/cf — 0 can be omitted, and the condition (29) can be weakened to

[M(x + 1) — M,(x)| < A]x — ©,| + B.

Furthermore, E(x}) < + oo implies E((x, — ©,)*) - 0. We omit the proof.
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Pe3romMme
CTOXACTHUYECKHUE AIIIIPOKCUMALIU ITPY HAJINMYUU TPEHIA

BAIIJIAB JVITAY (Véclav Dupac), Ilpara]

CroxacTH4ecKuil anmpoKCHMAIMOHHBIA METO AJISI HAX0XACHHS KOPHS YPaBHEHYS
WIM IS OTHICKAHMS TOYKH MakcuMyma (yHKIMM TpUCHOCOOIsIeTCs IS Ciiydas,
KOTJa KOpeHb WM TOYKa MaKCUMyMa U3MEHSIFOTCS B T€YEHUE aMMPOKCUMAIMOHHOTO
nponecca. IMeHHO, MoKa3bIBaeTCs CIACAYIOUMN pe3yIbTaT:

ITycte M,(x), n = 1,2,... — GapoBckue GyHKIuH, IycTh @, — KOpeHb ypaBHe-
mast M,(x) = 0. Ilycte M, u @, HEW3BECTHBI, & M3BECTHBI HEKOTOPbIE TIOCTOSIHHbIE

2 . . +
a, > 01 q,Tax, 410 Y @, = +00, Y al < +00;O0,y; = q,0, + 0(a,); (|g.| — )" =
= o(a,). Ilyctp X, — HpOU3BOJbHAS CIydaifHas BEJMYMHA; Uil h = 1 HOJIOXUM
Xp41 = Xy — a,Y¥, THE Xy = ¢,X, W Y, — ClydaiiHas BeJM4MHA TakKas, 4TO
%k * *
By | %15 -0 Xn) = My q(x3), Var (v | x4, ..., %,) S const. Ilycts M,(x) ymosie-
TBOPSIOT yeioBusaM: |[M,(X)| < A|x — O,| + B st Besikoro —oo < x < +00 M1 =
=1,2,...; inf,_y 5 infl._g 55 M,(x)/(x — ©,) > 0 nus Besiworo § > 0. Toraa
x, — @, - 0 m.u. Ecmi, B wactHOCTH, @, = gn® + h, roe B usBecTHO, a g U h

HEU3BECTHBI, TO MOXHO BBIOpaTh a, = an” % g, =1 + (B) nTl 4.+ (ﬁ> n~",
et <a<1l,r=[a+p] 1 r

AHAJIOTHYHBIE pPe3yJIbTATHI JOKA3aHblL JIs1 OTBICKAHUS TOYKH MaKCUMyMa (byHKH,I/II/I
HECKOJIBKUX MCPEMSHHBIX. CraThs ABJISAETCS IIPOJOJKCHUEM pa60TbI aBTOpa [1].
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