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Introduction. Let S be a family of functions on a set T. The main idea of the
present remark consists in considering the value s(f) of an s€ S at the point ¢ as
a function of two variables <s, t) on the cartesian product S x T thus making the
role of s and ¢ completely symmetric. In this manner the points ¢ € T themselves
may be considered as functions on the set S and from this point of view it becomes
entirely natural to introduce linear combinations of points — a possibility which has
not yet been systematically exploited. In the present paper we shall describe some of
the advantages of this approach.

Let us consider, as an example, the following situation. Suppose we have a sequence
s, €S and an s, € S such that lim s5,(f) = s5,(t) for each te T. Suppose further that
we extend the set T by adjoining to it an “ideal” point 7 and ask whether lim s,(7) =
= so(7) as well. Of course the point t has to belong, in some sense, to the closure
of T: if, e.g., all the functions s are bounded on T, we may take on T any topology
which makes them continuous and consider points t € 7. Our problem is to decide
whether lim s5,(t) = s0(7) as well. It is a well known fact that this will be true if the
function s, may be arbitrarily well approximated by the s, uniformly on T; it is,
however, easy to see that the following much weaker condition is also sufficient.
The function s, may be arbitrarily well approximated by convex combinations of
the s,, in other words: for each ¢ > 0 there exists a convex combination Y 4;s; such
that |y A;s(t) — so(t)] < eforall 1€ T. In our new notation, [(YAs; — 5o, t > | <&
forallteT.

An entirely analogous situation presents itself in the dual case. Suppose we have
a sequence t, € T and a point ¢, € T'such that lim s(z,) = s(t,) for each s € S. Suppose
that we extend the family S by adjoining ot if a function ¢ which is, in some sense,
a limit of functions s € S at each point ¢ € T. The question arises whether lim o(z,) =
= 6(t,) as well. The obvious sufficient condition — for each ¢ > 0, there exists a 1,
such that |s(z,) — s(to)] < ¢ for all s — is too strong. In analogy with the preceding
case — treating points as functions — the following condition will be sufficient: for
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each & > 0, there exists a convex mean such that |y 4, s(t;) — s(t,)| < ¢ for all s€ S.
If we agree to consider ) 4, s(t;) as the value of s at Y A;,, we may write |<s, Y A;t; —
— t0>| < ¢ for all s € S in complete analogy with the preceding case. In both cascs,
the approximation of limit points by convex combinations was essential.

Let us sketch briefly how these ideas could be used to obtain e.g. more profound
information about the structure of the Cech-Stone compactification. This may be
seen in the following manner: the topology of the compactification of a topological
space T is defined, roughly speaking, by the postulate that two points t,, T, are
considered to be near each other if the difference f(t,) — f(1,) is small for all f
contained in a given finite set F of continuous functions. In this topology T is dense
in BT, in other words: given t € fT and ¢ > 0, there exists a point ¢t € T such that

|f(t) = f(z)] <& forall feF.

If we admit infinite sets F as well we cannot hope to find a point te€ T with
|f(t) = f(z)| < &for all f€ F; in this topology T will not be dense in AT any more.
Nevertheless it is possible to show that even for infinite families F of a certain type
the ideal point T may be approximated uniformly on F by a convex combination of
ordinary points, i.e. it will be possible to find points ¢;€ T and numbers 4; so that
|>4:f(t) — f(x)] <& for all fe F. This shows the possibility of a more refined
description of the structure of ST.

For the purpose of investigating the approximation of ideal points by convex
combinations of real points we have given in [8] a combinatorial lemma which
essentialy describes the degree of approximation of a measure by a convex combin-
ation of points and which contains everything essential; all the results on weak com-
pactness follow from it just by pure logic. This lemma forms the basis of the presert
paper.

To return to our original program of treating families of functions as a function
of two variables suppose we have a completely regular topological space T and
a family S of continuous functions on T which generates a function f on S x T by
f(s, t) = s(r). If s is fixed, f(s, ) is continuous as a function of ¢. Suppose further
that the family S is also given a topology, e.g. the topology of pointwise convergence
or some finer topology. Then f will be separately continuous on S x T. This explains
why we study separately continuous functions and not continuous ones: it is easy to
see that continuity of f imposes a rather heavy restriction on the family S. We shall
restrict our attention to bounded f only.

Consider now a function ¢ on T which belongs to the closure of S in the topology
of pointwise convergence. To ask whether ¢ will also be continuous amounts to the
same as to ask whether f will stay separately continuous also on S U (¢) x T. We
are thus led to the problem of investigating conditions under which f may be extended
as a separately continuous function if S and T are imbedded in larger spaces. As we
have seen, it will be useful to adjoin to the domain of f also linear combinations of
functions s and points t.
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We intend to show that it is advantageous to consider together with each topolo-
gical space a certain superstructure which may be described as follows. First make an
algebraic extension by adding to the space all formal convex combination of its
points, further, a topological extension obtained in very much the same way as X
is obtained from X. The ideal points obtained in this manner could, of course, be
interpreted — roughly speaking — as measures; this can be avoided by using the
combinatorial lemma which not only eliminates the machinery of integration theory
but at the same time yields deeper results.

There is, of course, an obvious way of obtaining, for each completely regular
space T, an extension of the type described above: the natural imbedding of T in the
dual of the Banach space Cy(T) of all bounded continuous functions on T (taken in
the weak * topology). In this manner the topological space Tis imbedded in a topolo-
gical linear space where algebraic operations are defined as well. It follows that the
product S x T may be considered as a subset of Cy(S)" x C,(T) and the study of
convex combinations of functions and points is then made possible if we treat f as
a bilinear form on the linear extensions of S and T.

Now we may formulate the main problem.

Let f be a bounded and separately continuous function on S x T. Under
what conditions does there exist a separately continuous bilinear form on
Cy(S) x C,(T) which extends f?

The main result consists in showing that such an extension exists if and only if f

satisfies the doublelimit condition: if 5; € S and ¢; € Tare such that both lim lim f(s;, 1))
i
and lim lim f(s;, 1;) exist then they have to be equal to each other. The essential idea
i
of this condition appears first in the work of S. BANAcH [1] as a condition for weak

convergence and was later brought to its full generality by A. GROTHENDIECK [5].

The extension theorem that we intend to discuss here is thus connected with the
fundamental question of Analysis, the question of inverting two limit processes.

An interesting feature of this result is the fact that it enables us to conclude the
continuity of a function in a topology which has an uncountable character from
purely sequential assumptions.

The main (and only) tool is the combinatorial lemma obtained in [8]. The first
section contains some definitions and conventions, section two is devoted to the
proof of the theorem. A weaker version of the theorem is already contained in the
author’s paper [9]. To show how it can be applied we give, in section three, a proof
of a result which includes both the Krein theorem and the Eberlein theorem. This
result is an immediate consequence of the extension theorem: the possibility of
obtaining if from sequential assumptions is based on the countable character of the
double limit condition. The extension theorem may be formulated in many different
forms —some of the most interesting ones are collected in section five. Section six
treats the corresponding questions with separate continuity replaced by continuity.
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In this case the results are much more superficial; they are included, however, since
they put into evidence the similarities and differences between the weak and uniform
topology.

In a suitable interpretation, they contain the classical theorems of Arzela, Ascoli
and Dini.

1. DEFINITIONS AND NOTATION

In the whole paper, we shall be dealing with completely regular topological spaces
only. If T is a completely regular topological space, we shall denote by Cy4(T) the
linear space of all bounded continuous functions on T with the norm

x| = sup ()]
teT

Clearly C4(T) = C(BT). The space Cy(T)' consists of all continuous linear functionals
on the Banach space Cy(T). The space C4(T)" will always be taken in the weak-star
topology, the topology o(Cy(T)’, C4(T)). It is a well-known and obvious fact that the
mapping E which assigns to each t€ T the corresponding evaluation functional
E(t)e C,T)

(x, E(1)y = x(1)

is a homeomorphism. Hence it is possible to identify T and E(T); accordingly, we
shall adopt the following convention: we shall consider T as a subset of Cy(T)" and
we shall not distinguish between a point t€ T and the evaluation functional it
generates.

Let Tbe a completely regular topological space and F a class of continous functions
on T. We shall denote by T/F the quotient space of T with respect to the equivalence E
on Tdefined by the postulate ¢, Et, iff f(1;) = f(t,) for all f€ F.

Let K be a compact space and H a dense subset of K. There is an obvious imbedding
of C(K) in a cartesian product P of real lines, one for each point h € H. The topology
induced on C(K) by this imbedding will be called the point topology corresponding
to H.

Further, consider a bounded function g on a cartesian product S x T; we say
that g satisfies the double limit condition on S x T if it is impossible to find two
sequences s; € S and t; € T such that both lim lim g(s;, ¢;) and lim lim g(s;, ;) exist

i i

and are different from each other.

A subset A of a locally convex topological linear space is said to fulfill the double
limit condition, if the scalar product {x, x") satisfies the double limit condition on
A x U° for every neighbourhood of zero U.

We shall frequently use the following abbreviation: if R is a set of real numbers
and a a real number, the symbol R < o means r < « for each r € R. Similarly, we
write [R| < « for the system of inequalities |r| < o, r€ R.
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The proof of the main theorem is based on the combinatorial lemma on convex
means [8]. The reader is referred to [9] for all information and notation connected
with this lemma and its application to problems concerning weak compactness.

2. THE EXTENSION THEOREM

The following lemma will be used in the proof of the main theorem.

(2,1) Let X and Y be two completely regular topological spaces and B(x, y)
a separately continuous function on X x Y. Suppose that B is bounded on X x Y.
Let us define a mapping h of X into C4(Y) and a mapping k of Y into Cy(X) by the
relation

<h(x), y> = <x, k(y)) = B(x, y).

Suppose further that B satisfies the double limit conditionon X X Y. Let Rc X <
< Cy(X) and suppose that ro € Cy(X)" belongs to the closure of R. Let &€ > 0. Then

there exists a convex mean Y, Ar) r such that
reR

[KEAr) =10, KYD)| <&
Proof. Let W be the subset of R x Y where
[Kr = ro, k(Y| 2 3¢
and let M be the subset of R x Y where
|<r — ro, k(y))| < 3¢-

Let W be the system of all sets W(y) with y € Y. (The symbols that we use here and in
the sequel are defined in [9] Pp. 438 and 440.) Let B be such that |B(x, y)| < B on
X x Y. Suppose that M(R, W, ¢/(8p)) is empty; it follows from Theorem (3.1) of [9]
that there exists two sequences r,, € R and y, € Y such that ’

rMEM(y) 0 oo A M(y,—y) 0 W(y,) O W(ypsq) O e

so that the double limit condition is violated on R x Y. There exists, accordingly,
a A€ M(R, W, ¢/(8B)). We have, for ye Y,

|<§Rl(r) r—ro, k(y))| < ) Ar) [<r = ro, K(¥))] =

€ €
=y + < P4l
rel’zl’:(y) reR ZW(,V) 8ﬁ 4

N ™

and the proof is complete.
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(2,2) The Extension Theorem. Let S, T be two completely regular topological
spaces and let B(s, t) be a separately continuous functionon S x T. Suppose that B is
bounded and that it satisfies the double limit condition on S x T. Then B may be
extended to a separately continuous bilinear form on C)S)" x C,T)'.

Proof. I. We define first a mapping h of S into C,,(T) and a mapping k of Tinto
C4(S) by the relation

(1) <h(s), £y = (s, k(1)) = B(s, 1) .
If p € C,(S)’, define a function k'(p) on T by the relation
) <K' (p), £ = <p, k(1) -

Let us show that k'(p) is continuous on T. Indeed, suppose that M = Tand t,€ T
belongs to the closure of M and that [<k’(p), m — t,)| = & for all m € M and some
& > 0. Divide the set M into two parts M*) and M(™ according to the sign of
<k'(p), m — t,). Since 1, has to belong to the closure of one of them, we may clearly
assume that t, is in the closure of M(™). According to (2,1) there exists a convex
mean ), A(m)m such that

meM(+)
|<K(S), TA(m) m — )] < €/(2]p])

whence [<S, Y A(m) k(m) — k(to))| < ¢/(2|p|). 1t follows that [<p, Y A(m) k(m) —
— k(t,)y| < 3. This is a contradiction, since <k'(p), m — t,) = &foreach me M*>
whence

oy SAm) k) = K(10)> = '), TA(m) (m — 10)> =
= XAm) <K(p)m —to) 2 &

It follows that k" is a mapping of C4(S)’ into Cy(T). By (2) and (1), we have
<K' (s), £y = <s, k(1)) = <h(s), t)

so that k' is an extension of h.
II. In the same manner we obtain a mapping b’ of C4(T)’ into C,(S) defined by

3) (s W(a) = <h(s), 4 -

III. Now let pe Cy(S), g€ Cy(T)'. Since h'(q) € C,(S), the expression {p, h'(q)>
has a meaning; similarly, <k'(p), ¢) also may be defined. If we show that

@ <K'(p), 4 = <p, W'(q)>

it will be sufficient to put B*(p, g) = <k'(p), ¢ to have the desired extension. Indeed,
B*(s, t) = (k'(s), t) = (s, k(t)) = B(s, #) by (2) and (1). If p is fixed, we have
k'(p) € C,(T) so that k'(p) is continuous on Cy(T)'. If q is fixed, we have h'(q) € C,S)
so that h'(g) is continuous on Cx(S)'.
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IV. To prove (4), suppose that |p| < 1, |g| < 1 and let & > 0 be given. Let V be
‘the set of all linear combinations Y w;s; with s;€ S and ) |, < 1 so that Vis dense
in the unit ball of C4(S)'. Let R be the set of those v € ¥ for which

(5) <o = p, W(a)| < ¢

so that p belongs to the closure of R. Let us show now that it is sufficient to find
a ve R such that

© Ko = p K] S ¢
Indeed, we have by (2) and (6)
[<K'(p), ty — <K'(v), )] = |[<p — v, k(1)) S &
for all t € T whence
(7 [KK'(p), g — <K'(v), | < e
Since v € Vand k' is an extension of h, we have further
<K'(v), 4> = <h(v), > = <v, K'(q)>

which, together with (7), yields
®) [<K'(p), 4> — <v, K(q)>] < ¢
On the other hand, v € R so that, by (5),

[<v, W'(q)> — <p, W' (q)>| < &
and this, combined with (8) gives

IKK'(p), @) — <p, W(q))| < 2.

V. The proof will be complete if we show that there exists a v € R such that

Since p belongs to the closure of R, it follows from (2,1) that there exists a convex

mean Y. A(r) r with [KYA(r) r — p, k(T)Y| < e or there exist two sequences r;, t; with
reR

9) rn€M(t) .. a M(t,—y) 0 W(t,) N W(tyeq) ...
where M and W are the subsets of R x T where |[<r — p, k(1)}| is respectively < e
and = &

If we show that (9) is impossible it will be sufficient to take v = Y A(r) r.

Now let ¢7 be a subsequence of t; and o € C4(T)" an accumulation point of the
sequence t; such that :

(10) lim Ch(r), 17y = <h(r)), toy foreach i
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and
(11) [<K'(p), 17 — top| < 4¢ foreach j.

By (2,1) there exists a convex mean Y A;t; such that
(12) [<h(S), YAtT — to)] < 3¢
Let i be given. It follows from (9) that, for large j,
[Kri = p k(1)) 2z ¢
or, which is the same,
[<h(rs), ;> = <K'(p), 1] Z &
this, together with (10) and (11), yields
(13) |[<h(r:), to) = <K'(p), o] = 52

Now let i be greater than any of the indices of the , which occur in the expression
Y A;t5. It follows from (9) that, for i > s,

|(r,. -, k(ts)>l < %s
or

[<h(r:), > = <K' (p), 1] < 3¢5
together with (11), we have

[<h(r), 1> = <K (D), to)] < 3¢
so that it follows from (12)

[<h(ry), oy — <K'(p), toy] < Se

which is a contradiction with (13). The proof is complete.

As we have seen, the main point of the proof is a sort of Fubini theorem. What
we have actually proved is, roughly speaking, the following: if f(s, f) is a bounded
separately continuous function on S x T for which the order of the two countable
limits lim lim f(s;, ¢;) is invertible then the order of two integrations may be inverted

J
as well. In other words, if x is a Radon measure on fSand v a Radon measure on T
then .

(1) the function p(s) = [ f(s, ) dv is continuous on S
(2) the function q(f) = [ f(s, t) du is continuous on T

) j p(s) du = f a(t) dv.
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3. THE THEOREM OF KREIN

To show how the Extension Theorem may be applied let us give a proof of Krein’s
theorem based on it. We shall see that the extension theorem yields an immediate
proof of a result which includes both the Eberlein theorem and the Krein theorem.
We only formulate it for Banach spaces, the extension to complete convex spaces
being obvious.

Since the proof of the main theorem involves some unpleasant technicalities, we
prove first a slightly weaker result in which the application of the extension theorem is
immediate.

(3,1) Let E be a Banach space, S a bounded subset of E which satisfies the double
limit condition. Then S°° is weakly compact.

Proof. Take for T the unit ball U° of E’ in the weak star topology and consider
the scalar product (s, ) on S x T. By the extension theorem, the scalar product may
be extended to a separately continuous bilinear form B(p, q) on Cy4(S)" x C4(T)'.
Take an s € C,(S)'. It is easy to see that B(s", 1) is a continuous linear form on T
and may, accordingly, be identified with an element P(s") of E. We have thus obtained
a mapping P of C4(S)' into E. Since B(s", t) is continuous as a function of s”, the
mapping P is clearly weakly continuous. Let V be the unit ball of C,,(S)'. The map-
ping P being weakly continuous, P(V) is a weakly compact absolutely convex set
which contains S. The proof is complete.

(3,2) Let E be a Banach space, S a bounded subset of E. Suppose that the double
limit condition is satisfied on S x T, where T is some norm-generating subset of E'.
Then S°° is weakly compact.

Proof. Denote by w the natural imbedding of E in Cy(T). Since T is norm-
generating, o is an open injection so that o’ maps C,T)" onto E’. Define now
a separately continuous function B on S x T by the relation B(s, t) = <s, t) and
extend it as a separately continuous bilinear form to Cy(S)' x C4(T). If s" € C4(S)',
denote by P(s") the linear form on E’ defined by the relation

KP(s), y'> = B(s*, o' "}(y')) .

Of course, it remains to show that the value B(sA, t") does not depend on the choice
of t* in’~*(y"). This can be easily seen as follows. First, we have B(s, ") = (s, o'(t*)>
for se S and t" € C4(T)’ by continuity. Suppose now that w'(t;') = w'(t3). It follows
that B(s, t1') = B(s, t3)foreachs € S whence B(s",1{) = B(s", t;)as well. To see
that the linear form P(s")is continuous on E’, it is sufficient to observe that o’ is
apen in the weak topologies. This is a consequence of the fact that w(E) is closed
in Cy(T). The proof is complete. <

It is not difficult to see that the assumptions of the preceding theorems are satisfied
if S is, e.g., weakly pseudocompact. We shall see that in section five, lemma (5,1).
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4. DOUBLE SEQUENCES

Some of the consequences of the Extension Theorem may be conveniently formulat-
ed in terms of properties of double sequences.

(4,1) Definition. Let a,, be a double sequence and suppose that lim, a,, = a,,
exists for each p. We shall say that the convergence is almost uniform with respect
to p if, for each ¢ > 0 and each infinite set R of indices q, there exists a finite K = R
such that

min Ia[,k - apol <e¢ foreach p.
keK

4,2) Definition. Let a,, be a double sequence and suppose that lim a,, = a,,
exists for each p.

We shall say that the convergence is uniform in the mean with respect to p if,
for each ¢ > 0 and each infinite set R of indices q, there exists a finite K = R and

nonnegative A, such that )" A, = 1 and
keK

|k;(/1k(apk — a,0)| < ¢for each p.

(4,3) Definition. 4 double sequence a,, of real numbers is said to be convergent

if lima,, = a,, exists for each p and lim a,, = ao, exists for each q.
q p
Let us now recall the following result

4,4) Let a,, be a bounded convergent double sequence. Then the following
statements are equivalent.

1° the convergence lim a,, = a,o is almost uniform with respect to p
q
2° the convergence lim a,,, = doq is almost uniform with respect to q

14
3° both limits lim a,, and lim d,, exist and are equal to each other,
14 q

4° the convergence lim a,, = a,q is uniform in the mean with respect to p,
q

5° the convergence lim a,, = ao, is uniform in the mean with respect to q.
q

The proof of the equivalence of the first three statements is quite elementary;
the rest is less so but may easily be obtained from the combinatorial lemma on convex
means. This can be found in [9], theorem (4,3). With view to the equivalence (4,4)
it will be convenient to introduce the following abbreviation: Let a,, be a bounded
convergent double sequence. The convergence is said to be almost uniform if the
sequence satisfies one of the conditions of (4,4).

We use this opportunity to state the correspondmg result for uniform convergence.
It will not be used until section six.
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(4,5) Let a,, be a bounded convergent double sequence. The following are equi-
valent:

1° the convergence lim a,, = a,q is uniform with respect to p,
q

2° the convergence lim a,, = a, is uniform with respect to q.
p

In both cases both lim a,q and lim a,, exist and are equal to each other.
P q

The proof is elementary. If one of the above conditions is satisfied, we shall say
that the convergence is uniform.

5. THE INDUCTIVE TOPOLOGY

In this section we intend to collect some immediate corollaries of the theorem. Let
us begin with a simple lemma. ‘

(5,1) Let S and T be two completely regular topological spaces and f a separately
continuous function on S x T. Let S be pseudocompact and T countably compact.
Then f satisfies the double limit condition on S x T.

Proof. Let s;€ S and ¢; € T be two sequences such that

o = limf(si, tj) s
J
B; = ]i_mf(si, tj)

exist foreachi = 1,2, ... and j = 1, 2, .... Suppose further that o = lim «; and f =
= lim B;both exist. Let t, € T be an accumulation point of the sequence ¢; so that
f (si, to) = go;fori = 1,2,.... The space S being pseudocompact, there exists a point
So € S such that

limf(s,-, t;) = f(so, t;)
for j =0,1,.... It follows that

f(so.t;) = B; for j=1,2,...

and
f(so, t0) = limf(si, to) = limo; = a.

On the other hand, t, being an accumulation point of the sequence t;, we have
f(so, to) = li;nf(so, 1) = Iii_n Bi=p8.

It follows that o = f and the proof is complete.
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i
(5,2) Theorem. Let S and T be two completely regular topological spaces and f
a bounded separately continuous function on S x T. Define a mapping h of S
into Cy(T) and a mapping k of T into C4(S) by the relation

<h(s), 1y = (s, k(D)) = f(s, 1)

Now let pe C)(S)’; since k()€ C,(S), we may form the scalar product {p, k(1)>.
We define a function k'(p) on T by the relation

<K'(p), 1) = <p, k(t)>

so that k' is an extension of h. Similarly an extension h' of k is defined for q € Cy(T)’
by the relation

s, ' (q)y = <h(s), q) .

Then the following statements are equivalent:

1° f has a separately continuous extension to Cy(S)" x C,(T)',

2° f has a separately continuous extension to S x fT,

3° 1’ is a weakly continuous mapping of C,(T) into C,S),

4° h' is a weakly continuous mapping of BT into C4(S),

5° I’ is a continuous mapping of CyT) into C4(S) equipped with the point
topology corresponding to S,

6° h' is a continuous mapping of BT into C,,(S) equipped with the point topology
corresponding to BS,

7° k(T) is weakly relatively compact in Cy(S),

8° Kk(T) is relatively compact in C4(S) equipped with the point topology cor-
responding to fS.

9° f satisfies the double limit condition on S x T,

10° if s; and t; are two sequences such that f(s;, t;) is a convergent double sequence
then the convergence is almost uniform,

11° further six conditions obtained from conditions 3°—8° by interchanging S
and T.

If S is pseudocompact, then the above conditions are also equivalent with each
of the following ones.

12° h' is a mapping of C(T) into C4S),
13° k" is a mapping of BT into Cx(S),
14° h is weakly continuous as a mapping from S into Cy(T),

15° h is continuous as a mapping from S into C,,(T) equipped with the point
topology corresponding to BT,
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16° k(T) is relatively compact in C4(S) equipped with the point topology cor-
responding to S.

Remark. In particular, each of the conditions above is equivalent to the cor-
responding condition with S and T interchanged; thus, e.g., k(T) is weakly relatively
compact in Cy(S) if and only if h(S) is weakly relatively compact in Cy(T). Some of
these equivalences are not without interest.

Proof. We observe first that conditions 9° and 10° are equivalent by (4,4). Suppose
now we have already established the equivalence of the first ten conditions. Then they
must all stay equivalent if S and T are interchanged since condition 1° is invariant
with respect to this change. Further we obtain at once the following three purely
formal chains of implications

1°>53° 55 - 6°— 8°
1°53°54°57° 5 8°
10_>20_’60__)80

Now it follows from the Extension Theorem that 9° implies 1°. The proof will thus
be complete if we show that 8° implies 9°. Let us denote by N the closure in C,,(S)
of k(T) taken in the point topology corresponding to BS so that N is compact. If
s€ BS and ne N, put g(s, n) = n(s) so that g is separately continuous on S x N.
It follows from lemma (5,1) that g satisfies the double limit condition on S x N.
If se Sand t€ T, we have f(s, t) = g(s, k(f)) and it follows that f satisfies the double
limit condition on S x T. The proof of the first part is complete.

To establish the second part of the theorem, we observe first that conditions 13°
and 15° are equivalent since they both express the fact that s, h'(t*)> = (h(s), *)
is continuous on S for each t* € T. Further, the implications 12° — 13°and 14° — 15°
are immediate. Let us show that 13° implies 16°. Assume 13° and consider the set
W' (BT). We have clearly k(T) = h'(BT). It is sufficient to show that h’(BT) is compact
in the point topology corresponding to S; this, however, follows from the fact
that h’ is always continuous in the point topology corresponding to S. We have thus
the chains of implications 12° — 13° — 16° and 14° - 15° - 13° — 16°. The proof
will be complete if we show that, for S pseudocompact, 16° implies 9°. Indeed, using
the equivalence established in the first part of the theorem, we see immediately that 9°
implies both 12°and 14°. Assume S to be pseudocompact and suppose that 16° is
satisfied.

Denote by M the closure in Cy(S) of k(T') taken in the point topology corresponding
to S so that M is compact. If s€ S and me M, put h(s, m) = m(s) so that h is
separately continuous on S x M. It follows from lemma (5,1) that h satisfies the
double limit condition on S x M. If s€ S and t€ T, we have f(s, ) = h(s, k({)) so
that f satisfies the double limit condition on S x T. The proof is complete.
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6. THE UNIFORM TOPOLOGY

In this section we propose to treat the analogous questions for a function f which
is continuous on S X T, not only separately continuous. Roughly speaking, we
obtain similar results with uniform topology for the mappings & and k instead of the
weak topology in the separately continuous case. It is to be added that the results in
the continuous case are much less deep but it is our opinion that they should be
included: It is then possible to compare the weak and uniform topologies.

The following simple lemma is the counterpart of (5,1).

(6,1) Let S and T be two completely regular topological spaces and f a continuous
Sfunction on S x T. Let S be pseudocompact and T compact. Then each convergent
double sequence f(s, t;) converges uniformly.

Proof. Let ¢ > 0 and let s be fixed. For each t € T there exists a neighbourhood
U(s, t) x V(s, t) of [s, t] on which the oscillation of f is less than &. Since T'is compact,
there exists a finite subset K(s) of Tsuch that J V(s,f) = T.PutU(s) = (N U(s, ).

teK(s) teK(s)
It follows that k(T) is uniformly continuous on S with respect to T. Indeed, if s € U(s,)

and 1 € T arbitrary, we have |f(s, t) — f(so, 1) < & In other words, the mapping h
is continuous from S into C4(T). Since S is pseudocompact, h(S) is compact.

Further, consider a convergent double sequence f(s;, t;) and write f; = lim f(s;, t;).

Suppose there exists a positive ¢ and an infinite set of natural numbers R such that
for each r € R there exists a j(r) with

[£(s tjry) — Biw| 2 0 -

The set h(S) being relatively compact in Cy4(T), there exists an accumulation point
z € Cy(T) of the sequence h(s,), r € R. It follows that, for each j, the number z(t;) is
an accumulation point of f(s,, t;) whence z(¢;) = ;. Since z is an accumulation
point of h(s,), there exists an r € R such that
|h(s,) — z] <30.
It follows that
1
[h(s,) (tj) — 2(tie)] < 30
or, which is the same,

1
|£(s0s t5m)) = Bien| < 320
and this is a contradiction.

(6,2) Let S and T be two completely regular topological spaces and f a bounded
continuous function on S X T. Define the mappings h, k, h’, k" in the same manner
as in (5,2). Then the following statements are equivalent:
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1° f has a continuous extension f* to S x BT,

2° for each & > O there exists a finite open covering Uy, ..., U, of S such that
if ' and s" belong to the same U, then |f(s', 1) — f(s", t)| <& for any t€T,

3° the mapping h of S into Cy(T) is continuous and the space S is praecompact
in the pseudometric

os(s's ") = [n(s') = h(s")],

4° S|k(T) and T|h(S) are metrizable in such a manner that they become
praecompact and f is uniformly continuous on their product,

5° h(S) is relatively compact in Cy(T),

6° let s;c S and t;€ T be such that the limit lim f(s;, t;) = B; exists for each j;

then the convergence is uniform with respect to j.

7° Let s;€ S and t; € T be two sequences such that the double sequence f(s;, t;) is
convergent; then the convergence is uniform.

8° R’ is a continuous mapping from bounded subsets of C)(T)' into C(S).

9° K’ is a continuous mapping of BT into Cx(S).

10° Any two points of B(S x T) which may be separated by f may already be
separated either by a function f(s, to) or a function f(s,, t). More precisely: If to€ T
we denote by p(t,) the extension to B(S x T) of the function p(s, 1) = f(s, t,).
Let P be the family consisting of all p(t,), to € T. Similarly, let Q be the family of
all q(so), 5o € S where q(s,) is the extension to B(S x T) of the function g(s, t) =
= f(so, t). Any two points of B(S x T) which may be separated by f may already
be separated by a function from P or Q.

11° for each & > O there exist functions g(s), ..., gn(s) continuous on S and
functions hy(t), ..., h,(t) continuous on T such that |f(s, 1) — Y gs) h(1)| < e for
allseS and te T,

12° further six conditions obtained from2°, 3°, 5°, 6°, 8°, 9° by interchanging S
and T.

Suppose that S is pseudocompact. Then the preceding conditions are also equi-
valent with the following.

13° f is uniformly continuous on S with respect to T (for each ¢ > 0 and each
So € S there exists a neighbourhood U of s, such that |f(s, t) — f(so, )| < & whenever
seUandteT),

14° the mapping h is continuous from S into Cy(T),

15° the set k(T) is equicontinuous on S.

Proof. 1° — 2° Let f* be the continuous extension of f to S x BT. For each
x € BS x BT there exists an open neighbourhood P(x) x Q(x) of x such that the
oscillation of f* on P(x) x Q(x) is less than &. There is a finite subcollection P; x Q,,
i € F which covers BS x BT. For each s € BS let F(s) be the set of those indices i €-F
for which s € P,. The classes of the equivalence sEs’ iff F(s) = F(s") form a finite open
covering of S which we shall denote by Uy, ..., U,. Suppose now that both s and s’
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belong to U, and that t€ T is given. It follows that F(s) = F(s'). The point [s, ]
belongs to some P; x Q,. Since F(s) = F(s') it follows that [s', t] € P; x Q; as well
whence |f(s, 1) — f(s', 1)| <e.

2° - 3°. Immediate.

3° — 5° The set h(S) is a continuous map of the praccompact pseudometric space
(S, os)- ‘

5° — 6°. Suppose there exists a positive ¢ and an infinite set of natural numbers R
such that for each r € R there exists a j(r) with

|f(5es t5m) = Bl Z @ -

The set h(S) being relatively compact in Cy(T), there exists an accumulation point
z € Cy(T) of the sequence h(s,), r € R. It follows that, for each j, the number z(t;) is
an accumulation point of f(s,, t;) whence z(1;) = B;. Since z is an accumulation
point of h(s,) there exists an r € R such that |h(s,) — z| < jo. It follows that
|(s,) (t;)) — 2(t;n)| < 36 or, which is the same, |£(s,. t;)) — Bj| < 30 and this
is a contradiction.

6° — 7°. Immediate.

7° — 8°. Assume 7° and let us show first that both h(S’S and k(T) are relatively
compact. With view to the symmetry of condition 7° it will suffice to prove one of
these statements only, 5° say. To this end we observe first that 7° implies condition
6°°, the counterpart of 6° and complete the proof by showing that 6°° implies 5°.

6°° — 5°.

Suppose that 6°° is satisfied and let us prove that h(S) is relatively compact in C4(T).
Since f is bounded, h(S) is bounded as well so that it is sufficient to prove that the
functions h(s) are equicontinuous on BT. Let t* € BT be a point where equicontinuity
is violated: there exists an « > 0 such that the intersection of all sets U(s) =
= {te BT; |f(s,t) — f(s, t*)] <a} is not a neighbourhood of t*. Choose s,€ S.
There exists a t; € T and s; € S such that

[f (50> 11) = f(s0s %)| < 1,
[f(s1, 1) = f(s1, t%)] 2 2.

Suppose we have already defined sy, ..., s,€ S and ¢4, ..., t, € T so that
fGout) = fsu ] <> 0 i<jsn,
J

[f(sjo ) = f(s; %) Z o
The set

1
, 0=
n+1

{t € BT; [ fsi 1) = flsis 1¥)] <

IIA

IIA

S
e
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being a neighbourhood of #*, there exists an s,+1 €S and a f,,, € T such that

IIA

1 .
!f(sb tn+1) —f(Si, t*)l < , 0=
n+1

If(sn+ 1s tn+1) - f(sn-{—l, t*)l g o3
the induction is thus complete. If i is fixed, we have lim f(s;, t;) = f(s; t*). This
j

convergence is, however, not uniform with respect to i since

(5w 1) = s )] = .

It follows that both k(T) and h(S) are relatively compact. Since k(T) is relatively
compact in Cy(S), it follows that k(T) is uniformly continuous on S.

5° — 8°. Let us show now that this implies that b’ is a mapping into Cy(S). Let
M < S and suppose that s, belongs to the closure of M. If ¢ > 0 is given, it follows
from the equicontinuity of k(T) that there exists an s € M such that

[<s = 50, (T)>| <& or |<h(s) — h(sy), TY| S .
It follows that
|[<s = so, K(q)>] = [<h(s) — h(so), @] < ¢

for each g € C4(T)' of norm < 1. It follows that h'(q) is continuous on S. If s€ S
and g € Cy(T)" we have ‘

<s, h(q)> = <h(s), a>

whence
|h'(q1) — K (q2)| = sup [<S, I'(q; — 42))| = sup |[<h(S), a; — 42| -

Since h(S) is relatively compact in C,(T) it generates the weak topology on bounded
subsets of C,(T)'.

8° — 9°. Immediate.

9° — 1°. If 6 € BS and 1 € BT, put f*(o, 1) = {0, h'(x)). Clearly f* is an extension
of f. Let us show that f* is continuous. Let g, 7, and ¢ > 0 be given. According
to 9°, there is a neighbourhood ¥ of 1, such that |h'(x) — h'(zo)| <& for te V.
Further, h'(z,) being continuous, there exists a neighbourhood U of o, such that
[<6 — 00, K'(1o))| <eforeeU.If [6,t]€U x V, we have

[£*(0, 7) = £*(00, T0)| = <o, K'(z) — hK'(ro)>] + |<6 — 60, F'(zo))| < 2¢

and the continuity is established.
In this manner, the equivalence of 1°, 2°, 3°, 5°, 6°, 7°, 8°, 9° is established.
To complete the proof, we intend to prove 1° —4° —» 7° - 3° - 11° - 1° and

1° - 10° = 1°.
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1° — 4°. We already know that 1° implies 3°. Clearly it also implies the analogous
statement 3°° with S and T interchanged. Thus S/k(T) and T/h(S) are praecompact
in the metrics

(s ) = [Hs) — W) and onlt, ) = KE) — k(e
We have
|f(3, t) - f(so» to)' = !f(S, t) - f(S, to)l + 'f(S, to) — f(so’ to)! <
< QT(t9 to) + QS(S’ so)

so that f is uniformly continuous on (S, ¢s) x (T, er)-

4° — 7°. On the other hand, let 4° be fulfilled. There exists a uniformly continuous
function f° on the product S/k(T) x T/h(S) such that f(s, t) = f°(e(s), A(t)), where «
is the canonical map of S onto S/k(T) and B the canonical map of T onto T/h(S).
Since both S/k(T) and T/h(S) are praecompact and f° uniformly continuous on
their product, f° possesses a (uniformly) continuous extension f°° to its completion
which clearly coincides with the product X x Y of the completionsi of S/k(T) and
T/h(S). Completions of praccompact spaces being compact, we easly obtain the
following fact: if x;€ X and y; € Y are such that f°%(x;, y;) is a convergent double
sequence, then the convergence is uniform. It follows that f satisfies 7°.

3° - 11° Let ¢ > 0 be given. There exist points s, ..., s, €S such that the open
e-neighbourhoods U; of s; cover S. Put gs) = (1/¢) max (e — ¢(s, s;), 0) so that g,
is zero outside U, and g(s) = Yg{s) is positive for each s€ S. If e/s) = g{(s)/g(s)
put r(s, ) = Yes) f(si ?) so that f(s, t) — r(s, 1) = Yes) (f(s, 1) — f(si, 1)). Let
s€S, te T be given. If efs) + 0, we have se U, whence |f(s, f) — f(s, f)| <e. It
follows that |f(s, 1) — r(s, )] £ Yes)e =&

11° - 1°. Let r, be a sequence of functions of the form Y g{s) h(t) such that

1f(s, ) = r(s, 1)] < Ton sxT.
n

Each of the r, has an obvious continuous extension r; to fS x BT.If p < q, we have
|ry — ri] <2/pin C(BS x BT) so that the sequence r, converges uniformly to an
re C(BS x BT) which clearly is the desired extension of f.

1° - 10°. Let us denote by ws the quotient mapping of B(S x T) generated by the
equivalence x,Ex, iff r(x;) = r(x,) for each continuous function r on B(S x T)
such that its restriction to S x T does not depend on t. We intend to show first that
ws(B(S x T)) is homeomorphic to BS. Let us introduce first a notation. If b is
a bounded continuous function on S, let b~ be the extension to A(S x T) of the
function b, defined on S x T by the formula by(s, t) = b(s).

If s€ S, clearly the whole set {s} x T is contained in a single class of the equiva-
valence E which we shall denote by m(s). If s, and s, are two different points of S,
there is a bounded continuous function g on S which separates them. If ¢, is a given
point of T, clearly g" separates [s,, to] and [s, to] so that m(s;) = m(s,). Clearly m
is a homeomorphic imbedding of S in wg(f(S x T)). Now let a be a bounded
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continuous function on S. Since a“ does not depend on t on S x T there exists
a function a* on wyB(S x T)) such that a"(x) = a*(wyx)) for all x€p(S x T).
If F is a closed subset of the real line, we have a*(¢) € F iff & € wg(a™ ~*(F)) which is
a compact set. Hence a ™ is continuous on wg(B(S x T)). The space ws(B(S x T))is
compact and contains as a dense subspace the set wg(S x T) = m(S) which is
isomorphic with S. For every bounded continuous function a on S, the function
aom™" possesses a continuous extension a* to wg(B(S x T)) defined by

a*(wg(x)) = a"(x) .
It follows that wg(B(S x T)) is homeomorphic to BS. We shall identify ws(B(S x T))
with fS. In this manner, we have established the following correspondence between
functions on BS and B(S x T): If a is bounded continuous on S, we have a" =
= a* o wg.

A further abbreviation: if 7, € T, let k*(t,) be the extension to S of k().

Let us show now that §(S x T)/P is homeomorphic to BS/k*(T). This is, however,
an immediate consequence of the fact that p(1y) = k*(t,) o wg for each #,. Let Qg be
the quotient mapping of BS on BS/k*(T). We know already that there exists a uni-
formly continuous function f° on the product of the metric spaces S/k(T) and
T/h(S) equipped with the metrics g5 and gy such that

f(s, 1) = £(Qs(s), 2x(1))-

Now BS/k*(T) is compact in the metric g5 and contains as a dense subspace S/k(T).
Let f°° be the extension of f° to BS/k*(T) x BT/h*(S). It is not difficult to see that
£0%(Qsws(x), Qrwq(x)) is continuous on B(S x T) and extends f so that it coincides
with the continuous extension f* of f. Suppose now that {;,{,€B(S x T) and
7*(¢y) #+ f5(¢,). Since f* = f%°0(Qscws x Qrowy) it follows that either
Qg ° wg or Qr o wy assumes different values on {; and {,. Let this be the first
coordinate, say. Since Qg o wgl; + Qg ws{,, there exists a t, € T such that
k*(to) wsly + k*(to) wsls. Since p(to) = k*(to) o ws, we have p(to) {1 * p(to) (5.

10° — 1°. Suppose now that 10° is satisfied. We have then the following implication:
if {; and {, are points of B(S x T) such that ws({,) = ws({;) and wH((,) = o((,)
then f*(¢;) = f*({,). It follows that there exists a function f* on S x BT such that
fM(w(x)) = f*(x) for x€ B(S x T)and @ = w5 x wr. If Fisa closed subset of the
reals then f*(w(x)) € F iff o(x) € w(f*~*(F)) which is a compact set. It follows that f*
is continuous on BS x BT and extends f so that 1° is satisfied.

The equivalence of the first eleven conditions is thus established. The three
remaining conditions are clearly equivalent without any assumptions on S. They are
evidently implied by the corresponding conditions of the first part of the theorem.
If S is pseudocompact, it follows from 14° that h(S) is compact in C4(T) so that 5° is
satisfied.

To conclude, let us point out some questions arising in connection with the present
remark. A systematic study of the convex extension of a given topological space
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seems to be indicated. Also, it would be interesting to obtain more information
about the inductive topology of the cartesian product S x T, i.e. the topology which
yields as continuous functions exactly the system of all separately continuous func-
tions.
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. Pesrome
OB OJJHOM TEOPEME O PACHIMPEHUU YACTUYHO HENPEPBIBHBIX
®VHKLIVU U EE NPUMEHEHUN B ®YHKLMOHAJIbBHOM AHAJIM3E

BJIACTUMMIT TITAK (Vlastimil Ptak),¥[Ipara

I'maBHBIM pe3ynbTaToM paboOTHl sBIsieTCS cienyioulas teopema: Ilycme f —
— YACMUYHO HenpepviéHas 02PAHUYeHHas @YHKyus Ha npousgedenuu S X T 08yx
6no.He pe2yAspHbIX Monoaozudeckux npocmparcms. Toz0a caedyrowue ymeepicoeHus
9K8UBANEHMHbL OpY2 OpY2y: '

(1) ecau s;€ S t;€ T — 08e nocaedosamenvHocmy maxue, uYmo Ccywecmeyiom
npedeavt lim lim f(s;, t;) u lim lim f{(s;, ¢;), mo smu npedeavt paguer opyz opyzy,

i i

(2) dynxyus f(s, t) obaadaem pacwupeHuem HQ YACMUYHO HENPepbIGHYIO GUiuHeli-
nyio gopmy na npouseedenuu Cy(S) x Cy(T)'. '

Ora TeopeMa HaXOJUT IMPUMEHEHHE B M3yueHHH CJIab0i KOMIAKTHOCTH B JIMHEWHBIX
npocTpancTBax. OHa cofiepkuT B cede, Hamp., Teopemy D0eprneiina u Teopemy Kpeit-
HAa, a TaKXKe IMO3BOJIAET U3 IPEJIOIO0KEHU O CYETHOM XapaKTepe MOJIyIUuTh YTBEPXK-
JICHUE O HEMIPEPBIBHOCTH B TONOJIOTHH, HE MMEIONIEH CISTHOTO XapakTepa.
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