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YexochaoBankuii MaTemMaTh4ecknii xkypuai, 1. 11 (86) 1961, Ilpara

ON THE PERIODIC SOLUTION OF A QUASI-LINEAR
NON-AUTONOMOUS SYSTEM

Ot1O VEIVODA, Praha
(Received October 2, 1959)

The main purpose of this paper is to appraise the range of a small parameter ¢
for which a periodic solution of (0°1) exists.

Let us consider the real system
(0.1) x = Ax + ¢f(t, x, ¢),

where x is a n-dimensional column vector with components (x;, Xy euns x,), Ais a
n X n constant matrix and f(t, X, s) is a n-dimensional vector function which, besides
fulfilling certain continuity and differentiability conditions, is periodic in ¢ of period

2 (we shall now shorten to 2n-periodic), whereas —2—f (t, X, s) #+ 0. A real positive
t

number ¢ is a so-called small parameter.

In several recent papers the question has been studied how large a number ¢* > 0
we can choose, so that for all ¢ e (O, &*) the existence of a 2zn-periodic solution of
(0.1) would be guaranteed. We seek only such 2z-periodic solutions which for
¢ — 0 tend to a 27-periodic solution of

0.2) y = Ay.

A. A. KruMING [1] and A. E. GEL’MAN [3] suppose that (1) matrix A has no
characteristic root of the form pi (p some integer including zero) and (2) the function
f(z, x, ¢) is continuous in ¢ and analytic in x and &. Ju. A. RiaBov [4] retains only
assumption (2).

In D. C. LEwis’s papers [5], [6] the system
(0.3) x = A(t,e) x + F(t,x, ¢),

where the matrix A(, €) and the function F(z, x, €) are 2zn-periodic in ¢, is dealt with.
If we carry out a transformation of variables so that the coefficients at linear members
in x are constants (such a transformation always exists) then in paper [5] the case

is discussed in which condition (1) is fulfilled and further F(z, 0,0) = %5 (1,0,0) =0
Xk
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(jik = 1,2,...,n). In paper [6] the assumption (1) is omitted and the function
F(t, X, a) is assumed to be of class C? in x and ¢, further to fulfil

2
F(1,0,0) = %i.l (1,0,0) = aa B (4,0,0) =00k 1=1,2,...n)
k

X, 0X;

and finally to fulfil some other conditions which are less important and more invol-
ved. By means of a Green matrix, constructed for the system y = A(t, &) y with
periodic boundary conditions, Lewis reduces the problem to the study of a certain
system of integral equations.

For an autonomous system (i. e.—z—f = 0) J. KurzweIL [7] published an estimate
t

of the interval (0, &*) under very general assumptions (he uses the method of succesive
approximations in a similar way as I. G. MALKIN).

In this paper the estimation of the interval (0, ¢*), for whose values the 2z-periodic
solution exists, is made for the resonant and nonresonant cases (i. e. assumption
(1) being or not being fulfilled) under more general assumptions than in papers
[1] — [6], because I only suppose that the function f(z, x, ¢) is of class C* in x
and of class C° in ¢ (similarly as in Kurzweil’s paper [7]). My investigation is based
mainly on the Coddington-Levinson existence theorem (cf. [8]).

SOME NOTATIONS AND DEFINITIONS

Let Cbean x nmatrix (¢;;) (i,j = 1,2, ..., n). Let #” denote the naturally ordered
set {1, 2,...,n}, Let o and % be naturally ordered subsets of /*, &/ = {ay, a5, ..., a,},
B ={by, by ...b}, (sothat 1< a,<a,<..<ag,=n 1<b <b,<..<
< b, < n). Let us introduce the notation

Cun= (), PEA, qeB.
(If o or 4 is the empfy set then C,4 has of course no meaning.)

Further, let us denote by &7 the complement of &/ with respect to A4~ (again na-
turally ordered).

Analogously, x being a n-vector, x,, denotes the vector (x;), j € .
The symbol -+ is defined by the relation
c=cy +cg
where ¢ is a n-vector.

We define the norm of a m x n matrix C, whose elements are continuous functions
of t on <a, b) as :

€l = max max Y |cy(?)] .
ast<b k j=1
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The norm of a column n-vector whose elements are continuous functions of ¢
on {a, by is defined as

n
x|l = max Y |x,(¢)l .
ast<b j=1

Clearly, the following relations hold,
IA+ Bl < |A] +[Bl, [AB| < |[AllBI, [Ax] < |A]][x].

E, will denote the n-dimensional unit matrix. (If no danger of confusion will
arise, the index n will be omitted).

We shall say that a real # x n matrix A is in a semi-canonical form if it is of the form

A,
A= 'A"Bl., -
.‘Bmc
where A;,j = 1,2, ..., k are of the form
$;,0,...0,

lEz S, 0 - N, 00
(04) Aj= [: '.:'chs)z s S]=( J): 022(00)’
02 eee =2 fJ ‘
(N; being a positive integer), B, / = 1, 2, ..., m are of the form

(00.. 0]
10., :
(0.4") Bi=|: 00
0 ... 1_OJ

and the matrix C has no characteristic root of the form pi, p being any integer includ-
ing 0.
It holds (cf., e. g. [8])

tAy

‘., etA.k By

(0.5) et = €. Bm s

e
erC

where (the matrix A; being of the type a; x a;, oa; = 2p;)

e’ o, . 0,)
. t s s
—e’ e ... 0,
(0.6) ™= It et = (08 N;t — sin N;t
: sin N;t  cos Njt
T s T oS
(p; — 1) (p;=2)!
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and (B, being of the type B, x B))

1 0 ... 0
s, t 1 ...0
(07) et = tﬂl—l tﬂl“z
1
(B = 1t (B - 2)!
In particular, it holds
252 o, ... O,
m
.k E .en (o]
(0.9) RV 1! 2 2 0. - 00
: 72700
@yt 2mp?
(=0t o -2

Let the matrices A, A;, B, and C fulfil all assumptions as above. Then the indices

k-1 k-1 k
L2oag + 1,00 +2,.,Y0,4+1, Ya;+2, Yo;+1,
i=1 =1 j=1

k k m—1
Ya+ B+, Ya+ Y B +1
j=1 j=1 1=1

will be called singular indices and the (naturally) ordered set formed by them will
be denoted &.
The indices

M=

k k k m
= Lago, Yoy—1, Yaj, Yo+ By, Yo+ 2B
j j=1 ji=1 j=1 1=1
will be called exceptional indices and the (naturally) ordered set formed by them
will be denoted 7.

Let the vector function f(¢, x, ¢) be defined for 0 < ¢ < 27, xe X and 0 < ¢ < &,
where £ = E[x | |x — xo|| < p, p > 0]. We shall say that f(z, x, ¢) is of class C°
in t, of class C? in x and of class C"in e on M = <0, 27)> x ¥ x <0, g, if it is continu-
ous in ¢ and has continuous partial derivatives of order p in x and of order r in ¢ for
every (1, x, ¢) € M. If the derivatives of the highest order ¢ in x fulfil a Lipschitz
condition with respect to x, we shall say that f(t, X, 8) is of order C%. Similarly in
analogous cases of other variables.

A m-dimensional vector function h(c, ¢) of an n-vector ¢ and a scalar ¢ being of
class C?, p 2 1,1in c for c € £, ¢ € € (where £ is an open set) we shall denote

g—z(c, g) = h(c,¢e) = (f;—h’ (e, a)) G=12...mk=1,2,..n)

Ck

1

]

Given a function f(z, x, ¢) defined for 0 < ¢ < 27, xe X = E[x|[x — x| < p,
p>0], 0<e=<c¢ and of class C! in x, let us recall the Theorem of the Mean,

f(t,x',e) — f(t, x", &) = [of(t, X" + (x" — x'), &) d9.(x" — x”
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1. THE LOCAL EXISTENCE THEOREM AND THE ESTIMATION OF THE
INTERVAL OF EXISTENCE

Let us consider the (real) differential system
(1.1) x = Ax + f(t, x, €)

where x is a column n-vector (xl, X3y «nn x,,), f is a n-dimensional vector function,
Ais a n x n constant matrix and ¢ > 0 is a small parameter. Without loss of generality
we may suppose that A has a semi-canonical form.

We will prove next the following theorem:

Theorem 1.1. Let the following assumptions be fulfilled.
(I) The system of equations

(1.2) HS = (2™ — E)gycy =0,
(1.3) HY = [37 eZi™9f(s, €A, 0) ds = 0

has a real solution ¢© = (%,

(I1) Given &, > 0 and po > 0, let us denote
X, = E[x||lx — 9% || < p, for 0 <t < 21]

and M = E[t,x,el0 <t < 2n,xe¥X,, 0= e=¢)]. The function f is on M
2n-periodic in t, of class C° in t and & and of class C* in x.

(III) The Jacobian of the system (1.2, 1.3) with respect to <® at the point ¢©*
is nonvanishing. ’

(IV) Let &* = min (g4, &,, &), where the ¢; are defined by equations (1.33), (1.35)
and (1.44).

Then, for every ¢ from the interval (0, €*) there exists a unique 2n-periodic solution
#(t, c*(e), &) of the system (1.1) with the initial condition $(0, c*(g), &) = ¢*(¢) e C°.
This solution tends for ¢ — 0 to the 2n-periodic solution ¢”c®”" of the system

(1.4) y = Ay.

Proof. By the assumption (II) and by the theorem on the continuous dependence
of a solution on initial conditions and on parameters there exist numbers g4, 0 < g, <
< g and po, 0 < gy < po such that every solution Y(z, c, &) of the system (1.1),
in which 0 < & £ &, satisfying the initial conditions ¥/(0, ¢, &) = ¢, where ce £, =
= E[¢|llc — ¢®*|| £ uq], exists on the interval <0, 2x) and
(1.5) Y(t,c,e)e®, for 0<t=<2m cel
(cf. [8], chap. 2, th. 4.3).

Also by the assumption (II), solutions of the system (1.1) are uniquely determined

in %,, by the initial conditions. From the variation-of-constants method it follows
that the system (1.1) is equivalent to the system of integral equations

(1‘6) ' X = etAc + s.ﬁ) e(t—S)Af(s’ X, 8) ds ’

uoyoéséso
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i. e. every solution of (1.1) with initial condition x(0) = ¢ satisfies (1.6) and vice
versa.

According to the uniqueness of the solutions for 0 < ¢ < &, and c € 8, , a necessary
and sufficient condition for a solution ¢(z, ¢, €) of (1.6) (or (1.1)) with initial value
#(0, ¢, &) = ¢ to be 2n-periodic, is that
(1.7) ¢(2m, c, &) — (0, ¢, &) = (2™ — E) ¢ + & [3" " (s, §(s, <, €),£) ds = 0.

It is now our task to find under which conditions and for how large ¢ an initial
vector € = c*(g) exists such that the conditions (1.7) are fulfilled and ¢*(0) = ¢(9*,

If the matrix A has no characteristic root of the type pi (p being an integer includ-
ing 0), i. e. we have a non-resonant case, then det (¢™ — E) = det (¢*"“ — E) # 0
and the system (1.7) need not be modified. In the opposite case the matrix A has
at least one sub-matrix of the type A; or B, and then, with respect to (0.7), (0.8) det
(e*™ — E) = 0. Hence, for ¢ = 0 the system (1.7) does not determine the vector
c*(0) uniquely and therefore we cannot use the implicit function theorem to prove
the existence of a solution of (1.7) for ¢ > 0.

Using relations (0.7) and (0.8) we find easily

(1.8) (€™ — E)yyr =0, (¥™ — E)yry = 0, det (e’ — E)zz + 0
Hence, we can write the system (1.7) in the form

(1.9 Hg = (™ — E)gy ¢y + ¢[0" e {2 S)Af(s, ¢,6)ds =0,

(1.10) Hy = [37eZ5 (s, ¢, €)ds = 0.

(We might divide the equations (lv.IO) by & because of ¢ = 0).

The left sides of (1.9) and (1.10) are uniformly continuous in ¢ and & for ce £,
and 0 < ¢ < &, and they reduce for ¢ = 0 (in accordance with (1.6)) to the systems
(1.2) and (1.3).

Let us make some small modifications in (1.9) and (1.10). Let us denote

_ DH‘(SE) 0%\ __ n (2n—s)A SA _(0)* SA
(1.11,) D=—""(")=| eZ; (s, V% 0) ey ds.
Dc, 0

By (IIT) det D < 0 and therefore the inverse matrix D~* exists. By (1.8) there exists

the inverse matrix (e>* — E)7y = C. Hence, the equations (1.9) and (1.10) are
evidently equivalent to the equations

(1.9) G = — ¢C [T egy Vf(s, #(s), €) ds

(1.107) ¢y =cy —D7? fgﬂ eZ5 (s, p(s), €) ds .

To prove our theorem we use the method of successivevapproximations. We define
(1.11,) : Coy=cy =0,

(1.11,) ' oy = 0%,

(1.115) do(t) = ecy,
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(21: s)A

(1.12) 7= —€C[3Tes f(s, du(s), &) ds ,
(1.12,) Co1v =Gy — D! J"é" 25V (s, ¢uls), €) ds,
(1.12,) bis1(2) = ey + € Jo €T (s, gy(s), £) ds .

In the estimations below, the following assumptions will be supposed to be ful-
filled:
(Pl)()égéﬁo, 0§t§27’5,

(P) cxel,, 0<p=p,,
(P3) ) eX,, 0<p<p,.
Clearly, there exist constants a, by, by, b, ¢4, ¢;, ¢, and ¢, such that
(1.13) €] < a,
(1.14) [C[2" ey *f(s, pols), &) dsl| < by,
(1.15) [fy et~ ”‘f(s, $ols), €) dsl| < bo »
(1.16) 1[5 e“"2f(s, dpufs), e)dsl £ b (K =1,2,..),
(117) 1C[3 gy [ Fuls, s + (b — hu 1)) d8.dsl 5 ey,
(1.18) |D~t f“ - S)Afx(s 60,0 [0+ (= 1) e,,,, sz" e(;;, a)Af(a, ¢, €) do +
+ [5et” ")Af(a, ¢, €) do] ds| £ ¢,
(119) D" J3* 5,05, do, 0) [0 + elis(— 1) € 3725 10, s +
+ 8(pr—1 — br—2), &) d3da + D71 [37 54 (s, ¢0, 0) [5e 4.
. fé fx(a’ b2 + 9(¢k—1 - ¢k-2)’ 3) ds do] ds| £ ¢c;,
(1.20) 1f5 €™ 3 (s, du—s + Hbs — bi—1), 8) dIdsl| < c.

Further, there exist (by (1.3) and the assumption (II)) continuous non-decreasing
positive functions b, and w (these functions are essentially moduli of continuity of
corresponding integrands with respect to & or x, ¢) such that

(1.21) D™ [3" €257 V*f(s, ¢, €) dsll < by(e)
(1 22) “D lj‘gn e(2n: A fo [fx(S, ¢k-1 + “9(¢k - ¢k—1)’ 8) - fx(S, ¢O’ O)] d9 dS” é

< ofs +p),
while

(1.23a,b) by(8) > 0, w(6)—» 0 for 6 > 0.

Before proceeding further notice that by (1.110)

(1-24) Ck+1,y — Sy — D_lfgn egy fx(S, bos 0) ej‘}f(ck+1,~tf - ‘k,#f) ds=0.
By (1.12), (1.14), (1.21), (1.13) and (1.15)

(1.25) lle; — coll Sller,7 — o7l + lley,y — o9 < by + by(e) = By(e),
(1.26) 91 — doll < aleby + by(e)) + eby = P4(e).
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By (1.17), (1.12), (1.24), (1.18), (1.13) and (1.20)

(127) lle, — €1ll < ecy ¢, — ol + l€sy = Cov — D" [37 €T (s, bos €) -
i [efﬁ,,,(cl’.,, — Coy) + 6’;?7(‘1,7 —cy) te ff) e(s—a“f(o', b0, 8) do] ds|| +
4D [2 o fé [f.(s: b0 + o1 — b)) — f.(s, do, 0)] d9 .

(b1 — bo) dsll < scy 6y — doll + 200 + (e + 2) 11 = ol

(128) 1, — ll < allc, — 1]l + &l fo e [ £l do + b1 = $o), 2) d3 .
(b1 — o) dsll < (eacy + aw(e + p) + &) [$s — Poll + eaco.

By (1.17), (1.24), (1.19) and (1.20) for k = 2
(1.29) leers — all =
< 1€ J2 23N A (s, dums + 0y — Bua)r ©) APk — buy) sl +
+llCk,y — o190 — D! fgn e(yg}—s)A f(ss o, 0) [eifé‘lf(ck,'t’ - ck—l.V) +
T &= 1) € 57 eZn M 5 hils: du-2 +
+ (s — bu-2), ©) dO(Pus — bi—2) + &[5 o £0) bz +
+ Py — br—2) &) d(Pr—s — bi-2)] dsll +
+ D! [37 25 94 (L[5, bz + Hbeor — Pi-2) ) —
- fx(s’ $0, 0)] d9(¢k - ¢k—1) ds|| =
= (8"1 + co(s + P))” O — G-l + ecoll Pr-1 — b2l

(]'30) Ires — @il < alleess — all +eclidy — Ol =
< (eacy + ao(e + p) + €c)lldpy — byl + eacy ldp—1 — Dol .

Let us denote
(1,31) ty = eCs, Po = EC; + o(e + p),
(1.32) o = eac,, p = &lac; + ¢) + aw(e + p) .

0

It can easily be shown that a series Y, a,, where a, > 0, a; > 0, @1 = pa, +
k=0
+qa_1,p > 0,9 >0,k =1,2,...,is convergent if and only if p + g < 1. Hence,

by (1.20), (1.32) the series Y. |y — ¢ull surely converges if « + B < 1. By (1.29)
k=0

0

the series Z lex+1 — <l then converges, too.
k=0

Let us therefore choose a number ¢, 0 < ¢ < 1 and numbers £, 0 < & = &
and p;, 0 < p; = po such that

(1.33) a+ B =¢lac, + ac, + ¢) + aw(e + p) < g for 0 < ¢ < & < &,
O=sp=p;.

By (1.23b) such numbers surely exist.

69



Let us now examine in more detail what relations numbers ¢, u and p must fulfil in
order that all solutions of (1.1) beginning in £, lie for 0 < ¢ < 2n in %,,. By (1.123)

O — do = €™, — o) + & [6 e T f(s, dr—y, €) ds
so that by (1,16)
¢ — @oll < alle, — <ol + €b.
It follows that all ¢, and therefore also lim ¢, lie in ¥, if ¢ and u are chosen so

k—

that
(1.34) au + be Zp.

Let us now choose numbers ¢, > 0 and p, 0 < p; = py, such that
(1.35) ap+be<p,for0<e=<e and 0 S pu < puy < ity .

Finally, let us restrict values of ¢ so that initial vectors c(¢) also liein £, .

Evidently,
(1.36) ley = col £ Sleees — s j=12, ...
~ Put = . _
(1372 ) =, S=artf,
(1.37b) Yo = %ofo, S0 = o + B,

(1.38a, b) M= (3 l;) , M, = (‘;“; §z>

By (1.29) and (1.30)

(1‘.39) < lezr+1 — €xell ) <M, <||¢2k—1 - ¢2k—2“>’

llezrs2 — €aprall 2 — Go—1ll

(140 . <”¢2k+1 = ¢l ) <M (||¢2k—1 - ¢2k—2”).
l2x+2 — bonsall/ - b2k — S2p-1ll

Hence

141)  Ylars — &l Slley — <ol + ey — ¢4l + Mo (1 — [M])~1.
k=0
(l¢y — ol + lld — @4ll) .
From (1.37a) and from « < 1 it follows that

(1.42) IM(e, p)ll = max (« + 7, B + 0) = B+ & = (e, p) + (e, p)
fora+y=a+af<f+6=p+a+ B> and similarly
(1.43)  [My(e, p)ll = max (g + 7o, Bo + 80) = Bo + 8o = o + Bo(1 + Bo) -
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By (1.36), (1.41), (1.42), (1.43) and (1.25)—(1.28) all ¢, (and therefore lim ¢, too)

k=

will lie in £, , if we choose &; > 0 such that

(1.44) Bl(g) + [eocs + (o + Pl)] 451(8) + eco + | M(eo, py)ll (1 - ”M(ﬁo,l?l))“1 .
A®4(e) + [eolacy + ¢) + ao(lle + py)] Py(e) + eaco} < py for 0 S e <e;y.
Such ¢, really exists because of (1.23a). Put

(1.45) &*¥ = min (81, 5, 83) , 1=y, P* =p,.
Define functions c*(¢) and ¢*(z, c*(e), ¢) as
00
(1.46) c*(e) =lim ¢, = ¢ + Y. (€er1 — <)
L d k=0

(147)  #@.9) = lim () = $) + 3 (sl — i(0).

For 0 < ¢ £ ¢*, all solutions ¢(z, c, ¢) of (1.1) with initial conditions ¢(0, c, &) =
= cef,. remain for 0 < ¢ < 27 in ¥,. = ¥,, so that assumptions (P,) — (Ps)
under which our estimations were derived are fulfilled.

Hence by former considerations the limit (1.46) exists uniformly and absolutely
with respect to & for 0 < ¢ < ¢* and the limit (1.47) exists uniformly and absolutely
with respect to fand e for0 < ¢t £ 2nand 0 < ¢ < g*.

Thus, in systems (1.12, , ;) we can let kK — oo under the integral signs. Hence it
follows that the functions c*(e) and ¢(z, c*(e), ¢) fulfil the systems of equations
(1.6), (1.9) and (1.10). These systems are equivalent to (1.1), (1.9) and (1.10). This
means that the function ¢*(z, c*(¢), ¢) is a solution of (1.1) and fulfils the periodic
boundary conditions ¢*(2x, c*(¢), &) = ¢*(0, c*(e), &) = c*(¢), q. e. d.

The estimation of ¢* can be simplified by supposing that the function f(t, X, €)
is of class C'* in x and of class C°" in & on M. Since a modulus of continuity «(d)
of a function satisfying a Lipschitz condition is of the form w(&) = Ko we can
putin (1.21) and (1.22)

(1.48) , ba(e) = eby, w(e+p)=(c+p) o,
where b, and o are constants. Put
(149) A =alc; + ¢, + @) + ¢,
B = b, + b, + (ocy + (0 + po) @) [a(by + b,) + bo] + ¢o +

+ "Mo(ao, Po)” (1 - M(eo, Po")“1 {[a(b1 + bz) + bo] .
1+ eo(acy + ¢) + aleo + po) @ + eoaco]} -

By (1.33), (1.35) and (1.44) we have to choose positive constants g < 1, &, py, &, fty
and ¢&; such that

(1.33) Agy +op; £ qg<1,
(1.35) : apy + bey < py,
(1,44") Bey Sy
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The inequalities will be fulfilled (in the most favourable way) if we put

AN q
1.45 8*=8 =g, =& = — |
( ) ! 2 A + o(b + aB)

p* = min <——~Bq ; uo>, p* = min <—(b +aBlg_ Po)-

A + o(b + aB) A + o(b + aB)
Hence, we may state the following theorem.
Theorem 1.2. Let the following assumptions be fulfilled.
(1) and (111) the same as in Theorem 1.1.
(I1) The function f(t, x, €) is of class C® in t, of class C'* in x and of class C** in & on M.
(IV) &*, i* and p* are defined by (1.45).
Then for every ¢ from the interval (0, e*> there exists a unique 2m-periodic solution

#*(t, <*(e), &) of the equation (1.1) while |c*(e) — <O*|| < p* and || ¢*(t, c*(¢), &) —
AO*) < p* for0 < t < 27

Remark 1. Clearly, if we were supposing that f(t, X, a) is defined and of class C°
in & for (— &, &) instead of (0, &,) we could prove that a unique 2n-periodic solution
of (1.1) exists for e € (— &%, &*), ¢ £ 0, ¢* having the same meaning as in Th. 1.1.

Remark 2. By omitting some evident terms, the former estimations could be used
in the nonresonant case, too. But in this case we can get under less restrictive assumpt-
ions a simpler estimation.

Theorem 1.3. Let the following assumptions be fulfilled.

(I) The matrix A has no characteristic root of the type pi(p being an integer including 0).

(IY) The function f(1,x,¢) is on M = E[t,x,¢|, 0 <1 =2m, ||x]| <po, 0 <
< & < g 2mn-periodic and of class C°in t, of class C°F in x and of class C° in .

(IIT) Let us denote Ly and L, constants (whose existence is guaranteed by (II))
satisfying inequalities

e — )" [ PO f(s, ¢, ) — f(s, ¢, )] ds] < Lull &' — ¢°]
” ﬂ) e(t S)A[f(sa ¢,’ 8) - f(S, ¢”? 8)] dS” é L2 ”¢I - ¢”” .

Let &* = min (g, &), p* = p; where &, > 0 and p, > 0 are numbers satisfying
inequalities

ei(aly + L) < g <1, ap + bey <po,

e L
e | by + ——1——(aby + by) | Sy
‘[‘ l—el(aL1+L2)( L+ bo) | S a1

where a, b by and by have the same meaning as in Th. 1.1 (of course, it is now & =
=7 =)
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Then for every ¢ from the interval (0, €*) there exists a unique 2m-periodic solution
#(t, *(e), &) of the equation (1.1) with initial value $(0, c*(c), ) = c*(¢) while
I < w* and 19(t, (), o)l < p*

The proof of this theorem is easy and may be omitted.

2. AN EXISTENCE THEOREM IN THE LARGE

Frequently, we are not interested as much in the interval of ¢, for whose values
a certain approximate method is convergent as in the interval, for whose values a
periodic solution ¢(t, <(¢), &) (with the property ¢(t, c(e), &) » ec¥* for & - 0)
exists at all. Let us derive a theorem of such global character. (Unfortunately, the
utilization of this thoerem is very difficult).

Let us state three definitions (cf. [9], chap. VIII, sec. 3).

Definition 2.1. A sheet of points in ¢, c-space is a connected set W, of points
w = (&, c) with finite coordinates such that for every point w, = (g, <o) of W,, there
exists a neighborhood N(w,;a) = E[w | |w — wo| < a] such that no two points
of W, in N(w,; a) have the same projection &y; and for every w,, in W, and every
a > 0 there is a neighborhood N(w,;b) each of whose points ¢ is a projection
of a point w of W, in N(w,, a).

Definition 2.2. A boundary point of a sheet W, is a point not belonging to
W,, but every neighborhood of which contains points of W,,.

Definition 2.3. If a vector function h(s, ) is defined and of class C* in ¢ for (g, c)
in an open set W, then a point w = (s, c) is called an ordinary point for h(s, <)
in case that w € W and the matrix hc(s, c) is nonsingular. All other points are called
exceptional points.

Let us prove the following theorem:
Theorem 2.1. Given the equation (1.1), let the following assumptions be fulfilled.
(I)— (111 the same as in theorem 1.1 except that in (II) — &, < & < &g, &y > 0.

(IV) For e€ @€ = (— &y, 8) and ce &, ¢ being an open connected set, the
solutions of (1.1) are uniquely determined and for 0 < t < 2x stay in %,,.

Then there exists the unique sheet of solutions ¢ = c*(g) of the system

(21) hy({;‘, C) =cy + 8(eznA _ E)yv gn (Zn 5)A

hy(e, €) = [37 eZ5 2 f(s, ¢(s), &) ds = 0,

f(s, ¢(s),e)ds = 0,
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where ¢(t) = ¢(t, <, €) is the solution of
(2.2) x(t) = e'c + &ff "4 f(s, x(s), &) ds ,
with these properties:

(a) (0, %) e w,

(b) every point W is an ordinary point;

(c) the only finite boundary points of W are either boundary points of & = € x 2 or
exceptional points of the function

h(e, €) = hg(e, €) + hy(e, c) .

Proof. By the definition of & the system 2.2 has for every (¢, ¢) € & a unique
solution remaining in ¥, for 0 < ¢ < 2z. Substitute this solution into (2.1). As long
as (¢, €) € @ the left-hand sides of these equations are defined and of class C' in c.
From this the assertion of the theorem immediately follows by [9], chap. VIII, sec.
3, th. 3.
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Pesrome

O NEPUMOJUYECKUX PEMEHUIX KBA3SWJINHENHOM
HEABTOHOMHOI CUCTEMBI

OTTO BEMBOJIA (Otto Vejvoda), Ilpara

B paboTe HCCIEAYIOTCS YCIOBHS CYLUECTBOBAHHUS NEPHOAUYECKMX PEIUCHHH ¢ me-
puonoM 2n cuctemsl (1.1). Ilpeanonaraercs, 4ro MaTpula UMEET XapaKTepPHCTH-
4eckde KOPHM THHA pi (p — IeJIoe YHCIIO BKIYYUTENHHO HyJs) 4 9TO (YHKIHS
f — mepmoauyeckas ¢ IEPUOIOM 21 B MEPEMEHHOM f.

B teopeme 1.1 manee mpeanonaraercs, 4to (a) cucrema ypasuenuit (1.2) u (1.3)
umeeT feiicTBuTenbHoe pewenne ¢(© = ¢®* y yro (b) (1, x, €) € C***° B HexoTO-
poit OKpecTHOCTH 2n-ieproauyeckoro pemenns ec'¥* cucremsr (1.4). YkaswiBaetcs
yucrio ¥ Takoe, 4To eci ToBKo 0 < & < &¥, To cucTeMa (1.1) UMeeT OTHO H TOJBKO
O/IHO 27-TIEPHOJMIECKOE PELeHHe, KOTopoe M & — 0 cTpemutcs k eAc(@*,

B Teopeme 1.2 oneHKa YHCIA £¥ HECKOJIBKO YJIyYINAETCs B CHIIy 60Jiee CHIIBHOTO
IpenoIoXKenHus, uTo f(2, X, &) € CO1L:°L (3gayut, uyTo f MMEET YACTHBIE IIPOHU3BOL-
HBIE 1-T0 HOpsAAKa IO X, YAOBJIECTBOPAOLIAE YCIOBHIO JIMNIIALA).

Teopema 2.1 B cymHOCTH TacuT, yTo cucTema (1.1) mmeeT 2n-nepuoauyeckoe
peleHue I BeeX €, AUl KOTOPBIX perueHMs CHcTeMsl (1.1) CylecTByIOT Ha OTpe3ke
0, 27y, ecnu sikoOusiH cucteMsl! (2.1), rae ¢(s) — perieHue cucTeMsl (2.2), OTIHYEeH
OT HYJISL.
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