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YEXOCJHOBAIKNN MATEMATUYECRKUN WYPHAI
Mamemamuueckuit unemumym Yexocarosauroit Axademuu Hayxr
T. 9 (84) IPATA 24. III. 1959 r., No 1

A CONTRIBUTION TO GODEL’S AXIOMATIC SET THEORY, II

(Basic notions and application of the theory of dyadic rings of the set
theoretical type)

LADISLAV RIEGER, Praha
(Received February 22, 1958)

The present free continuation of the paper [I]!') (under the same
title) deals with a new kind of “arithmetically’’ constructed models
of the axiomatic set theory of Gaodel (see [G]), called dyadic models.
As a first application of these methods, we obtain two particular
nonnormal models of all Gédel’s axioms sub A—sub E of [G] except
the axiom C 1 (of infinity), this axiom being replaced by its contrary
non C 1 (the s. c. axiom of finity), and of the following properties: In
both models, the set of ¢“finite ordinals’ of the model is of power ¥,
and the set of “classes’ of the model is also of power ¥, in the first —
and of power 2% in the second case.

Contents: 1. Introductory remarks. 2. Dyadic rings and their
pseudoperfect immediate extensions. 3. Dyadic rings of the set
theoretical type (s-f-rings). 4. Skolemian extensions of countable
s-t-rings.

1. Introduetory remarks

The present paper is a free continuation of the author’s paper [I]2) (this
Journal, under the same title, see the literature at the end).?) The knowledge
of the §§ 1 and 2 of [I] is very recommended for a detailed understanding but
not necessary for a global one; the same is true of the fundamental treatise [G]
of K. GODEL because of its close relation to the present paper. (See the intro-
duction to [I] as remaining valid for the present paper.)

1) See the literature at the end.

2) T take this opportunity of correcting some omissions in the paper [I]; a list of
corrections is added at end of the present paper.

3) The main results, though in an imperfect form, have been communicated by the
author at the session of November 26th, 1956 of the Mathematical Society of Prague.
The elaborated theory has been the subject of a lecture of the author held in the winter
semester of the school year of 1957—8 at the University of Prague.



It has been announced in [I] that we shall study some of the s. c. incomplete
index models (see § 3 of [I] for the notion) of the axiomatic set theory of [G].
This indeed remains our essential task; and the present particular kind of our
models of the theory of finite sets, called the dyadic models, serves this purpose.

Nevertheless the author hopes to have made the paper selfcontained (in
reducing its dependence on [I] to a minimum) and, first of all, he wishes to
call the attention of the interested readers to the “‘arithmetical”’ method
rather then to the present set theoretical result itself.

Let us introduce the reader to the relatively simple main idea of this method,
i. e. of the method of dyadic (algebraic) rings and of their arithmetic, explaining
them on the basis of some elementary facts in Hensel’s p-adic numbers and
p-adic (exponential) valuations, with p = 2. (Comp. e. g. [W I, § 73 or [Sch],
Chap. 1.)

Let us recall the well known needed basic facts.

The integer n is called the 2-adic (= dyadic) exponential value of the integer
m =+ 0, written W(m) = n, if m = 27(2k 4 1). Setting W(p/q) = W(p) —
— W(q) for any rational x = p/q we extend the dyadic valuation to the field
F of rationals. We have

Wi 4 y) = min (W), W), Wi.y) = W) + W)

and W(x)is defined whenever & 0. Now we metrize F' by the distance function
o(x, y) = a~ 7@ Y requiring in addition that g(x, ) = 0, where a is any real
constant greater than 1. F then becomes a continuous field, and we can form
(in the usual way, i. e. using fundamental Cauchy sequences) its perfect
completion, i. e. the s. c. field ¥ of Hensel’s 2-adic (= dyadic) numbers. Now
it can be proved that every Hensel’s dyadic number x possesses an unique

o)

normal “dyadic” expansion of the form x = > ¢,2¢ with a fixed integer k& (po-
i=k

sitive or not) and with ¢; = 0 or ¢, = 1. (The expansion converges in the sense

of our metric p, of course.) This dyadic expansion specializes to the usual
finite dyadic expansion if (and only if) # is a nonnegative integer; in this case
k = 0, of course. But the expansion remains infinite for negative integers;
e.g. —1=1-424224 2% . (in the sense of the dyadic convergence),
though k is also nonnegative.

Now, Hensel’s dyadic integral numbers are defined as dyadic numbers with
nonnegative k; these integral dyadic numbers form an integrity domain in-
cluding the ring of integers?) and included in the s. c. valuation ring (of the

dyadic valuation of F), i. e. in the ring of dyadic numbers whose dyadic value
(as extended from F to F) is nonnegative,

4) But also containing some rationals,e. g. 1 -+ 22 4~ 24 . 4 22k | = Tj 5

= — } in the sense of the dyadic convergence.
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And finally, take the dyadic integral numbers for “classes’”, the nonnegative
integers for “sets” and define the “to belong’ relation as follows: x e* y if
x is a nonnegative integer and 2° with ¢, = 1 occurs in the dyadic expansion of
the integral dyadic number y.

It can be proved (comp. the general theorem I of § 2) that this interpretation
of the primitive notions of Gddel’s theory of finite sets is correct (see § 1 of
[I]) in the sense that all the axioms of [G] except C 1 (the axiom of infinity)
are valid in our model; instead of C 1, its contrary non C1 (to be called the
axiom of finity) is satisfied. (Note that e. g. the integer — 1 indeed is the
“universal class” of the model.)

We obtain in this way the simplest dyadic model, the s. c. essentially normal
dyadic model of the s. c. axiomatic theory of finite sets of Godel. The expression
“essentially normal” here means that the relation * is isomorphic to the
partialized basic relation e in the following sense: Put in the known manner
(see A. Mostowskr [M IT]) f'0 = 0, f'(n + 1) = P(f'n)%) (n € m,).

Then the field of the relation e is to be reduced to the set P(f"w,) and its
domain is to be reduced to the set f"o,; this is the s. ¢. normal (inner) model
of the theory of finite sets of Gédel — and the isomorphism between the so
partialized € and €* can be easily constructed recursively by theorem 3 of
Mostowski [M II].

Our task now is to generalize the construction of the mentioned particular
dyadic model in order to obtain new essentially nonnormal and, moreover,
uncountable models of the axiomatic theory of finite sets of Godel. (The
question of the existence of such models for the general set theory has been
answered in the negative.)

For this purpose, we shall exhibit some basic arithmetical properties of the
dyadic valuation of the ring of integers as well as of the overring of Hensel’s
dyadic integral numbers, which suffice to define the “to belong” relation
analogously to the just mentioned e*-relation — in a purely arithmetical
way. We thus get the “axiomatically” characterised notion of the s. c. s — -
‘rings, i. e. of the s. c. dyadic rings of the set theoretical type, as well as their
s. c. pseudoperfect and weakly pseudoperfect immediate extension (as an
instance of essentially known notions of the (General valuation theory). The
elaboration of some basic arithmetics of the mentioned rings is necessary in
order to reach the main theorem I, which gives the desired general kind of
s. c. dyadic models (of the axiomatic theory of finite sets). This is the main
content of § 2 and § 3. In § 4, we shall give a constructive extension method for
the countable s — f-rings as based on an idea due to T. SkoLEM (see [Sk]).

%) ,P‘ means the potency set, fx is the value of f at a, f”a is the set of values of fat o,
0 is the void set.



Starting from the s — {-ring of integers we construct an uncountable w,-sequen-
ce of successively extended countable s — ¢-rings, the set sum of which gives
us the final result, in view of the §§ 2 and 3. It may be emphasized that the
basic set theory serving to our purpose is Godel’s axiomatic set theory of
[G] with the strong axiom of choice E; the ‘‘universal’” choice function intro-
duced by Godel in his axiom E makes possible several steps of our construction
hardly performable in any other correct way. Though in view of the main
result of [G], our consistency supposition essentially is that of the consistency
of Godel’s axioms sub A — sub C only, i. e. as modest as possible. (See also
[11.) -

Concerning the relationship of our result to the known numerous results
on the s. ¢. noncategoricity of the arithmetics of positive integers, we shall
limit ourselves to some basic remarks, first of all in order to prevent pos-
sible misunderstanding.

The existence of s. ¢. nonnormal models of the formalized arithmetics of
integers (in the sense of the ‘reine Zahlentheorie”, see e. g. the system Z, of
D. H.BerT-P. BERNAYS, [H-B]already can be deduced from the fundamental
incompleteness theorem of Godel (of 1931) — in view of a strong form of the
Skolem-Lowenheim theorem,; tho{ugh these nonnormal models are meant in
the absolute (obvious intuitive) sense (i. e., they are based on the absolute
notion of the whole set of intuitive integers as well as on a certain part of the
intuitive set theory). This fact has been realized by Godel himself, in his
review of the important paper of Skolem [Sk] of 1934, in Zbl. f. Math. 10, 2
(1934). In [Sk] (as well as in a previous paper [Sk’] of 1933, not availlable to
the author), Skolem independently of Godel indeed constructed a ‘‘concrete”
absolute nonnormal model for any formalized elementary consistent theory
of integers (no matter whether recursively axiomatisable or not), as based on
countably many individual variables and constants and on countably many
functors and predicate constants, the binary predicate of the ordering taken
as one of the primitives. It might be assumed that Skolem’s construction can
be carefully reformulated in any sufficiently powerful formalized axiomatic
set theory, in order to provide us with a nonnormal model (of the mentioned
formalized type of the theories of integers) in the strict syntactical sense (see
§ 1 of [I] for the notion.). Nevertheless, it seems that the result would remain
unsatisfactory even after this (perhaps unessential) improvement, in that
Peano’s strong intuitive induction principle (requiring the smallest natural in
every nonvoid class of integers) would not be satisfied — nor formulated at
all; this requires a further primitive notion of the membership-relation and
further variables for number classes, in a suitable formalization. It is to be
noted that Skolem itself asserted in [Sk], though without proof, as it has been

emphasized by Godel in the just mentioned review of [Sk], that his methods
and results extend to the more complicated cases when “‘higher” (class) va-
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riables are formally introduced. But so far as the author is informed, no proof
of this assertion has been published till now. (See e. g. the report of Mostowski
and collaborators on the present state of the foundation of mathematics,
presented to the Polish Congress of Mathematicians of 1953 in Warsaw, see
[MIIT].) — Thus the final result of the present paper may also be considered
as the positive solution of this problem.

One remark may be added concerning the metamathematical tools used.
The fact that the used axiomatic set theory of [G] is based on a finite number
of axioms enables us to reach our result without the metamathematical use
of the unlimited sequence of intuitive integers. In fact, all the needed meta-
mathematical recursive definitions and arguments can be limited by a suitable
integers constant number of steps, not surpassing e. g. the integer 50 — and
thus is finitary in the strict sense, of course, within the two-valued customary
logic.

As in the previous paper [I], we freely use the symbols and notions of [G].9)
But for the sake of brevity and readability we mainly use the halfformal
instead of the strictly formalized statements though (the author hopes) the
.manner of their full formalization as well as that of the corresponding proofs
may be obvious enough. For the same reason, some relatively easy proofs
have been traced only or omitted entirely; their selection is, of course, a some-
what subjective one. Nevertheless the author hopes that all the really decisive
lemmas are proved in extenso.

Every definition merely consisting of an abbreviation or in the recalling
of an essentially known notion are named conventions (and enumerated se-
parately by latin numerals). More important lemmas possess a title (in ad-
dition to their latin numberings) in order to exhibit their meaning in a rough
intuitive manner.

2. Dyadic rings and their immediate ring extensions

Definition I. A discretely ordered ring R = (RF,F,F,> with unit is an ordered
quadruple consisting of a nonvoid set B (of the elements of R) followed by a
function F; on B x R into R (of the addition of R), this followed by a second
function F, on B X R into R (of the multiplication of R) and this followed by
a third function ', on R into R (of the signum of R) — such that the sub-
sequent requirements (“‘axioms”) (I)—(XII) are satisfied. (General quantifiers
are often omitted if not necessary. All the quantifiers are meant in the relati-
vized sense, with respect to the set R.)

8) With possibly slight typographical changes, but in the original quotation; see [1],
2.



Writing 2 = x + y instead of z = Fi(x, y> we require

(0 x4y +2)=(@+y +=z,
(1) xt+y=y-+zx,
(I11) @)(y) Tzx +2=y).

Lemma I (On the ring zero). With any R satisfying (I)—(I1I) we get 7)

Hel(@) (e + 2z = x) .
Usual proof; see e. g. [W I].

Convention I. Let ,@(z,...)° be any normal p. f. with the 2° free and
ranging over R. Then the (also normal) p. f. @(z, ...) . (¥)(x + z = «) will be
abbreviated by the p. f. @(Oy, ...) — to be taken normal also. (For the term
“normal p. £, see [G] Chap. IL.) E. g. the normal p. f. # = Oy is the abbre-
viated p. f. (z = u)(x)(x + 2z = z). The sign Oy, is indeed a normal term and
becomes a values sing of an uniquely determined function defined on the class
(as existing by M 2 of [G]) of the Rt's (to be defined by (I)—(XII)) into the
universal class V. Hence Og is a constant set whenever R is. If there can be
no confusion, the subscripts R, R, ... will often be omitted. (Comp. also
conv. V below.)

Lemma II. (On substraction.) With (I)—(I1I) we get

@@ A +72=y).

Usual proof; see e. g. [W I].

Lemma IIT and Convention II. To every R with (I)—(I11) there is exactly
one function, say ®F; on R x R into R, such that we have the identity x -+
+ *Fayy = y.

We shall write 2 = y — 2 instead of z = ®F (x, y> and z = — x instead
of z = Oy — « if there is no danger of confusion.

JF;¢ can be taken for a normal term, with consequences as in conv. 1.8)

The proof is obvious, in view of lemma IT and of M 1, M 2, M 5, 5.18 and
5.19 of [G]. Analogous obvious remarks may often be omitted in the sequel.

Writing xy = z instead of z = Fj(xy) we further require

{Iv) x(yz) = (xy)z,
V) ry = yx,
(VD) Hz(x)(xz = x) ,
(VII) (x +y)z= a2z 4 yz.
Lemma IV. (On the ring unit.) With any R satisfying to (I)—(VII) we get
Hel(xz = x) .

7y As usual H 2! D(z, ...)* (with ,2‘ free in ,D(z,...)°) means “there is exactly one z
such that @(z,...)", abbreviating the p. f. H 2(D(z, ...) . (W)(P(u, ...) D D(z,...))).
8) The index R will often be omitted in the sequel.



Proof. Suppose (2)(z,& = ), (¥)(2,y = y) in the sense of (VI). Then z,z, = z,,
2,2, = 2; and hence z, = z; by (V).

Convention III. Let @(z,...) be a normal p. f. with the free variable
ranging over R.

Then the normal p. f. @(z, ...)(x)(xz = z) will be abbreviated to the normal
p. f. @(1g, ...). The same as for ,04° now holds for ,14°, as for a normal term
(see conv. I).

Concerning the ordering of R in question, we continue the definition I with
the following requirements (VIIT)—(XII) on F,.

(VIII) There is 1y + — 13°) and FyR = {Ogly — 1g}. Writing (for more
convenience) z = sg(x) instead of z = Fyx (if there is no danger of confusion)
we finally require

(IX) sg(x) =0>2=0,

(X) sg (x) = sg (y) o sg (v +y) = sg (2),
(XI) sg (xy) = sg (v) sg (¥) ,

(XII) sg(@—y) +sgly—a+1).

Lemma V. (On the discrete ordering relation of %) and Convention IV.

To every R with (1)—(XII) there is exactly one relation, say Ug, such that
UgycR X R and {xy) e Uy =sg (y —x) = 1.

The same remark as in conv. I and II now mutatis mutandis holds for the
normal term Ug (and need not be stated explicitely.)

Writing for more convenience x <<y or also y > « instead of (xy) ¢ Uy
and @ < y or also y = @ instead of x << y va = y we have

a) ~ (@ <w), b) ~@<y)dy==wc (@<yly <2<z

dr<yosrtz<y—+z, e (x<y)d<z)da2<yz,

f) (sg(@) =1=0<2)(sgl@) = —l=a<0)(sg(@) =0=2=0),

r=y<xc+lorx=y.

Write also x € R, ¥ ¢ R~ instead of 0 < z, < 0 resp., and ¥ ¢ RS, x ¢ R=
jnstead of 0 < 2, x < 0 resp.
" Proof. (VIII) and (IX) give sg (0) = 0 whence a) and b) follow. (X) gives
¢) and d) and e), the last in view of f), this being itself a consequence of (VIII)
and (IX). g) almost immediately follows from (XII) (in view of the just
proved statements.)

Lemma VI (On the absence of divisors of zero.) Assuming (I)—(XII) in an
R we have

ry=00x=0vy=0.
The usual proof may be omitted.

) x ¥ y = ~ (x = y) of course.



Lemma VII and convention V (On the “natural elements” of R). With
any given R salisfying (1)—(XIL) there is an unique function, say fg, on w,
into R with

fa9 = Og, Ju(n + 1) = fgn 4 1y . _
Then the subset fym, of R is said to be the set of ‘“natural elements” of R.

Concerning ,f* as a normal term, the same remark mutatis mutandis holds
as in the conv. II.

Buvery fg is a one-to-one function. ,

We write 14 + 1y = 24, 25 + 1y = 3, ... sometimes omitting the subscript
N if there is no danger of ambiguities (comp. the following remark).

Proof. That fy is one-to-one may be proved by an obvious induction based
on the lemma V ¢) and f). The rest is clear.

Remark. Lemma VII enables us to replace the discretely ordered subring
of natural elements of any given discretely ordered ring by the isomorphic
ring of integers — and to transform the given discretely ordered ring into
an isomorphic ring having the ring of integers as a subring with respect to the
discrete ordering also, in an obvious sense.

In order to avoid possible misunderstandings we assume this transfor-
mation has been performed automatically in every discretely ordered ring to
be treated in the sequel, if nothing else is explicitely required.

Now, pass to the important and less known notion of the dyadicity of
discretely ordered rings.

Definition II. Let ® = (RF,F,F,F,> be an ordered quintuple such that
R = (RF,F,F;> is a discretely ordered ring and F, is a fixed function on the
(nonvoid) set R= (of nonnegative elements of R) into R=. Then D is called a

dyadic ring-and F, is its dyadic exponentiation — if the following require-
ments (d I)—(d V) are satisfied:
(dI) Fi;1 = 2.
Writing for more convenience, Fyx = 2¢ if ¥ = 0, we require further:
(d 1) | 2 2 = oy
(d IIT) x < 2,

AIV) @@ EgEr(weR)(yeR=)> (w= 21 +7r)(0 =7 < 2)).
(The meaning of (d I)—(d I1I) requires no comments. (d IV) is the Euclidean
property for division with remainder by potencies of 2.)

In order to clarify the sense of the requirement (d IV) and because of the
formulation of the last requirement (d V), we state the

Lemma IX and convention VI. To every D with (d I)—(d IV) of the just
stated part of the definition 11, there are exactly two functions, say Fg and F,
on R x R= into R such that (1) 0 = F¥ (xy> < 2v, (2) v = 2'F¢lay)> + Fg*lay>
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for every x € R, y ¢ R=. Conversely, if there are two such functions satisfying (1)
and (2) then the © with (d I)—(d IIT) satisfies (d IV) also.

Concerning ,F‘ ,Fa¢ as normal terms (uniquely depending on the normal
term ®) the same remark holds as in the preceding analogous conventions. —

We shall write ¢ = [iu] instead of ¢ = Fy{xy) if there is no danger of am-
biguitities.

Proof. In view of the metatheorem M 2 and by 5.18, 5.19 of [G], there is
exactly one relation, say ©D, so that ®D c (R x R=) x (R % R=) and

Lgryaydy €D = (x = 2'q -+ r)(0 < r < 2V).

By (d1V), we have'®) D(®D) = R % RS, so that ®D is nonvoid. But ®D,
moreover is a function on B x R= into R X R=. Indeed, without loss of gene-
rality, suppose x = 2vq; + 7, = 2Yq, +r, and 0 =< r, =7, < 2Y. Then 0 <
=1 —ry << 2Vi.e.

0= (x— 2%q,) — (v — 2q,) = 2¥(q; — q1) < 2V,

whence 0 =< ¢, — ¢; <1 by lemma V e), which gives ¢, — ¢; = 0 by the same
lemma, sub g). Therefore ¢, = ¢, and consequently r; = r, also. Therefore
Fg, F¥ are given by M 5 of [G] thus: let Fy(x,y>, Fi*<x, y> be the first,
resp. the second member of the ordered pair {gr> = ®D’(xy>. Since the con-
verse assertion is almost obvious, the lemma is proved.

Remark. We can consider the symbol [%] as denoting the wntegral part

of the quotient % in the ordered quotient field °9 of D (in the usual sense of

algebra) since we easily observe that [%] = z is indeed the greatest “integral”

element (i. e. z e R) of O not surpassing the quotient —%, this fact will be ta-
citly used in some auxiliary considerations in the sequel. Now, let us complete
the convention VI as follows:
x . .
The element r = x — 2v [——] = F¥'(xyy is called the smallest nonnegative

2y

xr
1 11 . .
20] ) may and will be used in

2
remainder of x modulo 2¢. The symbol [27] = [

1
Q-

such a way that [2°] = 2¢if » = 0 and [2*] = [ ] = 0if x < 0, in accordance

19) D(x) is the domain of .

1) See lemma X.



with the eventual immerging of D in its ordered quotient field ®9. Note that
if |#| = @ sg (¢) then [27#1] = 1 if and only if = 0,i.e. [27%] = 0 if # =+ 0.
We now complete the definition II by the requirement

@v @ay((o= o+ oo (([2] =) ([5] 2 <))

This last requirement means that every nonzero element of a dyadic ring
is divisible (without remainder) by a certain maximal potency of 2.

Remark. It is obvious that the ring of interges (of our basic axiomatic set
theory) is a dyadic ring. Less obvious are examples of dyadic rings of a quite
different nature, with an uncountable power of the set of elements. (See § 4.)

Lemma X. I'n every dyadic ring we have 2° = 1.

Proof. By (d IT) we get 2°. 20 = 29 whence either 2° = 0 or 2° = 1 by lem-
ma VI. The first is impossible, for it would imply 2! = 2140 = 21 .0 = 0,
contrary to (d I).

Lemma XI. In every dyadic ring we have

a)x>022">1, b)0<ax<<yd2® <2V,

Proof ofa). By (d III). Of b): If 0 << & << y then 2v = 2v—= 2 withy — x =

= 1,1i. e. with 2= > 1 (by (d II) and the already proved a)), whence 2% << 2¢
by lemma Vb).

Lemma XII and Convention VII. (On the dyadic valuation.) Every non-
zero element of a dyadic ring can be writen wn the form x = 27(2q + 1) with
P, q, p = 0 uniquely determined by x.

To every dyadic ring D there is exactly one function, say F,, on R — {0}2)
into R= so that Fyx = p in the just writen expression for x.

We state the following characteristic properties of F;:

x ,
) [EFT;] 2F'2 == x  whenever x = 0,

(1I) [27%5] 2Fs < x for every x + 0.

Conversely, if there is a function F, satisfying (1) and (II), then the D in
question with (d I)—(d IV) satisfies (V) also, 1. e. is an dyadic ring.

Concerning ,F,¢ as anormal term, the same remark holds as in conv. II. For
more convenience write p = W (x) instead of p = F.z if x + 0 when no con-
fusion menaces. W (as a function on R = {0} into R=) is the s. c. dyadic va-
luation of © and W(x) is the s. ¢. dyadic value of x =+ 0.

In view of the definition I1 and of the requirements (d IV) and (d V) of the
definition II, the proof is obvious and can be omitted.

12) = means the set-difference.
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Remark and Convention VIIT (comp. conv. VI). It may be noted for
further purposes, that the notions max (.,.), and min (.,.) can be defined by
means of the already introduced operations only, i. e. they are s. c. elementary
functions of ®, in the sense of the convention XX below. E. g. we can write

a) max (z, y) = xsg ([2°77]) + y sg ([2"777]) ,
b) min (x, y) = — max (— x, — y) .

Lemma XIII (On properties of the dyadic valuation). The dyadic valuation
W of the conv. VII of any dyadic ring D satisfies to the following conditions:

a) W(x) = W(—=a) = W(lx|), b) Wz + y) = min (W (x), W(y)) and more-
over ¢) W +y) = W) +1 if W)= W(y), d) W(x + y) = min (W(z),
W) of W(x) £ W(y). e) W(y) = W(x) + W(y) (we assume nonzero va-
riables in W everywhere).

On account of (d I)—(d V) the proofs are almost immediate and formally
do not differ from those of the special case of © = the ring of integers; hence
they can be omitted.

Remark. Let ®Q be the ordered quotient field of the given dyadic ring
D (P9 taken for an ordered overring of D, the usual formal details omitted)
and extend W to the set of all the nonzero elements of ®Q by W(x/y) =
= W(x) — W(y); then W is a s. c. discrete valuation of ® in the known
general sense due to W. KrULL (see [Kr], [W I] and [Sch]and compare with the
convention XIV below), with the discretely ordered value group as identical
with the additive group of ©. The property c) of the lemma XIIT is exceptional
in that it is not fulfilled e. g. by any p-adic valuation of integers or of rationals
with p + 2.

In order to proceed to the main definition IV of § 2 we need the important

Convention VIII (On valuation congruence systems.)

Let © = (RF,F,F,FF,> be a dyadic ring. Let » be a function on a certain
subset R, of the set R=, into R= and such that

1. (2) @ 2¥(z € By D (2* € Ry)(2* > 2) (in words: R, has no greatest element) —
and

’ * . ’
2. 2¢ [zz ~Zj] =92%* —rzif 2 < 2% zeR,, 2¥e R, (i. e. /2% — 1z is
divisible by 2% under the stated suppositions). Usually, we write in 2
r'z =1r'2* (mod 2°") (if 0 < 2* <z,2eRp,2*cRy).

Then 7 is called a compatible system of valuation congruences, in short: a
congruence system. Then the value 7'z is said to be a member of r (corresponding
to z). r is said to be normal if

a) 0 < r'z < 2* foreveryzeR,,
b) 0eRy, o) (@ <y<2)weR)zeR)>yeR,

11



(R, contains zero and is “convex”). r is called complete if R, = R=. r is called
cofinal if to every z > 0 there is a z* ¢ B, with z* > 2.

Lemma XIV'and Convention IX. Let D be a dyadic ring. To every x e R
define the function r, on RS into R= by the equation

’ &€ P
TR =T — [?] 2
(in view of the def. II) for any z ¢ R=.

Then 1, is a normal complete congruence system, the s. c. remainder system
of the given x and the member 7.z is the s. c. remainder of « by 2%; especially,
there is 'z = 0 for every z = 0 (the s. c. zero congruence system) if and only
if 1 =1, There is r,0 = 0 for every x € R.

The obvious proof based on the lemma IX may be omitted.

Lemma XV and Convention X (On the normalization of congruence
system). Let r be a congruence system (in the sense of the conv. VIII) defined on
the set R, (R, C R=). Then the member r,,z* (the smallest nonnegative remainder
of v’z by 2¢*, see conv. IX) does not depend on z whenever z* << z. Now, given

* #*
r, we can define the function r by the equation r'z* = ry.z*, with arbitrary

£
2,2 > 2%, 2 e Ry r thus is a function on the set R} of all the z* to which there is
a z e R, with z > z*, onto the set R=.

Then z is a normal congruence system (on RF) and will be called the normal-
wzed 1.

%
r is complete if and only if r is cofinal.
Proof. Since r'z; = 'z, (mod 2%) so that r'z; = 'z, (mod 22*) for 0 < 2* <

3k
=2 =2, 2 € R, 2,¢ Ry, hence indeed ry, 2* = 1y 2% = r'2* (= the com-
mon smallest nonnegative remainder modulo 2** of both the 7'z, and r'z,),
whenever 0 =< 2* =< 2, =< 2,, 2, € By, 2, € R,. More precisely, in order to avoid

logical ambiguities, we define the (normal) term ;’z* as being equal to the
term r,z2* where z is the “marked’’!3) element of the nonvoid set of all the
z e R, with z > 2*, uniquely determined. The remaining reasoning (including
the use od M 5 of [G]) is now obvious, in view of the lemma XIV.

Lemma XVI and Convention XI. Given a complete mormal congruence
system 1, there s an unique x with x = 0, ¥ = r, if and only if there is a Z with
z = 0 and such that r'z = r'z for every z = Z.

We say in this last case that r is @ stationary congruence systein.

Proof. The condition of stationarity is necessary, because any r, (x = 0)
with the z = 2 of the lemma is stationary, in view of the requirement (d IV),
as is easily seen (r,z = z for z = x because of x < 27).

13) “Marked” in the sense of the axiom of choice E.
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The condition is sufficient, because the unique ultimately common member
7'z = r'z (for all the z = 7’) of a stationary normal complete congruence system
can be taken for the desired unique x = 0, in view of the lemma XV.

Remark. There exist, of course, x ¢ R with a nonstationary r,. E. 2., —1 ¢ R

. —1
has the nonstationary r_;, for we observe that [?] = — 1 for every z > 0

by the def. II (see also the remark after lemma XIII), whence

—1 ’ ’ ‘1 ’
—1= [ 22 ]22 +rlz=—2" 471l 2= [22+1] 20+l + 1) =

= — 27 Ll (z + 1),
so that r’,(z 4+ 1) — 7/_;z = 2% for every z = 0.

Corollary. In general, it is easy to prove that in any dyadic ring D an r, 1s
nonstationary tf and only if x < 0.

Lemma XVII (On the “characteristical function” of a normal congruence
system). To every normal**) congruence system (of any dyadic ring D) r and to
every element z of D there is an uniquely determined function value CT with
C,=0VCi=1so0that r'(z + 1) — r'z = C% . 27 whenever z € R,.

Proof. Prove the following auxiliary identity (with = arbitrary, z = 0):

Lol ®

Indeed, if [—;;] =2q,then x = 2¢ .27 +r, 0 = r < 2%, i.e.x =¢q.2¢ | p,

0 < r < 2#+1 whence

=[] =s 5] = B

If however [%] =2¢ + 1, then x = (2¢ +-1)2* +r, 0 <r < 27, i. e.
x=q.2°% L 27 L r 0< 2%+ r < 2**1 whence

0[] = fres o] - [ [5]]

by lemma IX. Hence the identity (*) is proved.
Now, assume z > 0, z € R,, 2* ¢ E,, 2% > 2; thus we may write

x = 'k = 241 [,_””—] b+, 0=rE41) <20,

x
x:r'z*zzz[z—z]—;-z'z, 0 =1z < 27

in view of the lemmas XIV and XV.

14) But not necessarily complete!
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Hence we get

-
Pz 4 1) — 'z = 28 ([21] 2 l;ﬁ]) = 2:CL.

But we have 2 |-~ | = 2 3 Ea by the identity (*). Hence indeed the
2741 2|27 | ™ Y

term CF = [—;—z] — 2 [% [3—;«]] by lemma IX and conv. VI cannot admit other

values than 0 or 1, these values being uniquely determined in © by the equation

CF = [—21— (r'(z +1) — z’z)] = B] — 2 [2—9:‘1]

whenever z e R,, of course. The lemma is thus proved.

Convention XII. Let R be the set of the normal congruence systems of a
given dyadic ring © = (BRI F,F.F,>. Then let ®C' denote the function on
R x R into the set {0 1} defined as follows

8" ray = O it x =0,

z
OC ¢ryy =0 i y<O.
Concerning ,2C° as a normal term the same remark holds as in conv. I1.

Assuming r € R fixed, we obtain a function C7 on R into {0 1}, the so called

characteristic function of the given normal congruence system r, with CT'x =
— 20" (ra).

If r = r, then we will often write ,C2¢ instead of ,C%,

Remark. Of course, 0% = [—;;:I — 2 [%—1] holds (by the proof of the

preceding lemma.)

Lemma XVIII. Let _ be a normal congruence system in any dyadic ring

Proof. If 2, < 2y, 2y € Ry, 2, € B, then 7'z, = 1"z, (mod 2%) and by the nor-
mality of r, r'z; is the smallest nonnegative remainder modulo 2% of itself,
whence indeed 7'z, =< r'z,.

Lemma XIX and Convention XIIT (On the dyadic valuation of con-
gruence systems). Let r be a nonzero normal congruence system. Then W(r'z,) =

= W(r'z,) whenever 0 <<z, <C z,, 2, € By, 2y € Ry, and with r'z; & 0, of course.

Hence we can write W(r) = W(r'z) with the “marked” z = z (in the sense of

the axiom of choice E), such that z € B,, r'z + 0, thus defining the dyadic valuation
W as a uniquely determined function on the set B = {r,} of all the normal nonzero
congruence systems of the giwen dyadic ring .

Especially, we have W(r,) = W(zx) if x + 0, x € k.

14



Proof. Suppose 0 < z; < 2y, 2y € By, 2,€ Ry, 7’2, > 0. Then 7'z, > 0 by
lemma XVIII, so that we may write 'z, = 2%(2¢, + 1), 7’2, = 27 (2¢, + 1)
in view of the lemma XII, with the uniquely determined p, = W(r'z,), p, =
= W(r'z,). Now p; + p, imply

W(r'z, — 1'z;) = min (py, p,) = p
by lemma XIIIb). But since r'z, = 1’2z, (mod 2%), hence we observe p = z, by
lemma XII. Now clearly 7'z, = 0 (mod 2?) and the more so 'z, = 0 (mod 2%),
i. e. r'z; = 0 by the normality of . This would contradict the supposition.
Therefore indeed W(r'z,) = W(r'z,) if 2z, > 2z, 2, >z, 'z + 0.

In order to prove W(r,) = W(x) write x = p"@(2q -+ 1). Hence 7 (W(x)) =
= 0, but 7,(W(x) + 1) + 0 by lemma XIV and by (d V). Therefore

W(ry(W (@) + 1)) = W(rz) = W(r,)

for every z with z = W(x) + 1, on account of the proof already given. Now
observe @ = W(x) + 1 by (d II) and rjx = x as it is easy to see by (d II)
also. Hence indeed W(r,) = W(x).

Remark. It will be convenient to extend the preceding lemma and con-
vention to general congruence systems in dyadic rings.

Indeed, let r be any (not neoes%arlly normal) congruence system defined on
the set B, (R, C k=) and let 7" be the result of the normalization of r in the

*

sense of the lemma XYV, r being defined on the “convex completion” R* of
the set R, ++ {0} (See conv. XI.) Assume r is a nonzero congruence system, i. e
r'z = 0 (mod 27) for every z € R, is not true.

* ®
Then of course W(r'z) = W(r'z) whenever 0 + r'z =12, ze R;; but in

* £
the contrary case of 7'z + 1’z with a ze R, write v’z = ¢’z 4+ 25"(2¢ -+ 1)
with the uniquely determined z*,z* =z, qe R (provided ze R;), whence

W(r'z) = min (W(r'z), z*) = W(*’z) too (in view of the lemma XIIIb)

and of the already proved lemma.) It is therefore clear that we can put W (J{) =
= W(r) = the ultimately common dyadic value of every r'z with a sufficiently
greab z € Ry, no matter whether r is normal or not.
Now, the use of the auxiliary Z of the preceding lemma XIX can be replaced
by the use of a more suitable z as the smallest z = 0 with 7’z + 0, in view of

the following useful strenghtening of the lemma in question, as well as of the
subsequent remark to this lemma.

Corrollary to the lemma XIX. Let r be a nonzero congruence system of D

Then z = W(r) + 1is exactly the smallest z such that z == O and r'z + 0,2 € Ry —

as well as W(r) = W(r'z).

Proof. Let ze¢ R, be an arbitrarily chosen z with 7’z % 0. Then we can
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write (in view of the proof of the preceding lemma and of the subsequent
remark) '

'z = 2WN(2q 1) = 2WMlg L 2WD — 2W(r(mod 27D 1)
Therefore (W (r) 4+ 1) as the smallest nonnegative remainder of 7'z
(mod 2% +1) indeed is 2% £ . On the other hand, clearly 7'z = 0 (mod2™")
for every z ¢ B, with r'z + 0, q. e. d.

Convention XIV. (The ring with valuation and its extension in general.)

a) An ordered quadruple R = (RF,F,V> is said to be a ring with the va-
luation V if

(i) <RFF,) is a commutative ring without divisors of zero — in the sense
of (I)—(VII) of the def. I — obvious details omitted.

(ii) V is a function defined on the set B — {0} (of elements of R except the
zero) onto the set 4 of elements of a commutative (additively written) simply
ordered semigroup, say U = (4 @ <), with cancellation and such that if
r+y+0,2x+0,y =+ 0, then

V(e +y) = min (V(z), V(y)), V(y) =V(@) D V().

As a rule, R will have the unit; then U is assumed to have the zero as a lowest
element.

Remark. It is easy to see that the quotient field of R possesses the valuation
W (in the obvious sense of the valuation theory) if we set W(z/y) =
= V(x) © V(y) (provided = + 0 =+ y) in extending the value semigroup U to the
ordered commutative value group, say 9, in the obvious way.

b) A ring with valuation R, = (R, F,F,,V,>1%) is an extension of the ring
with valuation R, = (R F,F,,V,> it R CR,, F\,CF,,, F,,CF,, V,CV,
and the ordered value semigroup U, of R, is an ordered subsemigroup of the
value semigroup U, of R,, in an obvious sense (with the inclusion of the
orderings <<; € <, of U, U, respectively). Denoting by P;, P, the valuation
maximal ideals of R;, N, resp., i. e. the ideals consisting of elements with posi-
tive values (provided both the rings possess units) define further:

c) R, is an tmmediate extension of R, if A, = U, and the s. c. valuation
residue class fields R,/P,;, R,/P, are isomorphic.

Yemark. Passing from rings with unit to their quotient fields as well as
from value semigroups to value groups we convert the terms already introduced
into the usual terms of valuation theory; compare e. g. [Sch], especially p. 36,
def. 8 of chap. 2, concerning the notion of immediate extension.

In the case of dyadic rings and their dyadic valuations, the value semi-
groups are the additive semigroups of nonnegative elements, the valudtion

15) With the addition F; and multiplication I", as functions on & X R into R.
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maximal ideals consist of odd elements and the valuation remainder class
fields are prime fields of characteristic 2.

Convention XV (On complete normal congruence systems of a dyadic
ring). Let © = (RF,F,F,F,> be a dyadic ring. Denote by R the ordered
quadruple (RF,F,W> defined (uniquely by ’3\ as follows:

a) R is the set of all the eomplete normal ooncrrueme systems of D and F, as
well as I, are functions on B x R into R.

P

b) Let re R, 2reR. Denote by I{r¥) = +r the normal complete
congruence system which is the result of the normalization of the complete
congruence system *r with 7'z = 1’z - %'z, in these sense of the conv. XI. —

* *® I . . -
Write +7r = 1r - ?r instead of +r = F;(r%), it there is no danger of ambi-
guities. Further,

— *
c) let F,(r¥y = 'r denote the normal complete congruence system,
which is the result of the normalization of the complote congruence system

‘r with 7'z = 7'z . 2'2. — Write Z_i = 1y . % instead of r = Firer.
d) Finally, let W be the function given in the convention XIII.

Lemma XX. The quadruple R = (RF,F,W> of the preceding convention is a
ring with unit and with the valuation W (and with the value semigroup (see
conv. XIV) A formed of the nonnegative elements of D = (RF,F,F,F,>).
Moreover, the correspondence of any x e R to the r, e R (which clearly is one-to-
one by the lemma XVI) is a value-preserving isomorphism of the ring (RF F,W>
onto the subring of R formed of the remainder systems r, of elements x of D (i. e.
there is W(x) = W(r,)).

Proof. Using basic properties of congruences, the correctness of convention
XV and the fullfilling of the ring postulates (I)—(VII) are easy to see, in
view of the lemma XV. The unit of R is, of course, the remainder system 7, of
the unit 1 of ®. In order to prove the absence of divisors of zero in R, suppose
in contrary that we have 7'z, + 0 + %'z, with suitable fixed Ir, 2 in R, z,, 2,
in B<, but there is 17’z . 'z = 0 (mod 27) for every z e R=.

From this supposition we infer W(r'z . %'z) = z whenever 7'z . %'z % 0.
Now 'z £ 0 + %'z if z == max (2, 2,) by lemma XVIII, whence 7'z . ¢’z + 0
holds if z = max (z,, 2,), by lemma VI. — And finally, by lemma XIX we have
W(r'z) = W('r'zy), W(r'z) = W(*'z,) whenever z = max (z,, 2,), whence, by
lemmas XII and XIII, we obtain

W(r'z.2r'z) = W(r'zy) -+ W('z,) = =

for every z == max (z,, 2,). This contradiction excludes the existence of divisors
of the zero in R.

Since the valuation postulates follow by lemma XIX and the last statement
is an easy consequence of the corresponding definitions, the lemma is proved.
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Lemma XXI. Let D be a dyadic ring, R the corresponding ring (with valuation)
of complete normal congruence systems of D. (See conv. XVI.) Let us replace
every remainder system r, (of any element x of D) by its counterimage x € R in the
(value preserving) tsomorphism of the lemma XX; let us, moreover, perform the
obvious change of the functions F, F,, W into the corresponding functions, say
F., F, W, in the sense of the mentioned replacements.

Then the ring R = <1§F1ﬁ~’2W>, whose elements & e R are either elements of
D or are complete normal congruence systems r € R different from all the remainder
systems 1, (of elements of D), (see conv. XIV) is a ring with the valuation W
and s an immediate extension of the given dyadic ring (see conv. XIV) D. The value
semagrowp of PR consists of nonnegative elements of D (in the sense of addition
and ordening of D), PN is uniquely determined by © and PR is to be taken for
@ normal term; the (often repeated) remark to the conv. I1 applies.

In view of the preceding lemma, the proof is almost obvious.

It will be necessary to generalize conventions VI and XIII, in the

Convention XVI. Let R = (RF,F,V> be a ring (with unit and) with the
valuation V' (in the sense of the conv. XIV).

(i) Let 7 be a function defined on a subset A7 of the set A of elements of the
value semigroup A = (4 @ 3) (of R) into the set B, and such that 47 has no
last element and the following compatibility condition holds: )

To every z € A7 there is a z € A7 such that either 7'z, = 7'z, or V(r'z; — 7'2,) =
= 2 whenever zl— =2, 29 = 2, zl_e Az, 25 € Az.

Then, quite generally, 7 is called a compatible system of valuation congruences
on Az.

(ii) An 7 sub (i) is said to be cofinal if Az is cofinal to 4 (in the sense of the
ordering <3 of the value semigroup ¥ in question).

(ili) An element y ¢ R is called a solution of the system 7 (of (1)) in R if to
every ze A7 there is a z e 47 such that either 7'2* =y or V(r'z* — y) = 2
whenever z* = Z, 2* ¢ As. B

(iv) The ring R = (RF,F,V) (with unit and with the valuation V) is called
pseudoperfect if every cofinal compatible system of valuation congruences
7 of R has a solution in R.

Lemma XXII. (A descriptive characterization of R as the immediate
pseudoperfect ring extension of D.) Let D be a dyadic ring, °R its ring extension
of the lemma XXI.

Then (i) ®R s a pseudoperfect ring with the valuation W (and with unit 1)
and ®R is an immediate extension of D in the sense of the conv. XIVc);

(ii) every element of ®R is a solution of exactly one normal complete congruence
system of D, and conversely, every normal complete congruence system of D pos-
sesses exactly one solution in ®R;

(iii) if R* is another pseudoperfect immediate ring extension of the given
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dyadic D with the properties (i), (ii), then there is a value-preserving isomorphism of
DR and R* consisting in the one-to-one correspondence of the unique solutions of
the same normal complete congruence system of D in °R and R* respectively.

(iv) If the set of elements of D 1is of the power X,, then the set of the elements
of ®R is of the power 2%,

Proof. Ad (i): For more convenience prove the pseudoperfectness of the
ring R (of conv. XV) instead of the ring ®R itself, in view of the value preserving
isomorphism between R and ®R (see lemma X X).

Thus let 7 be a nonzero cofinal compatible system of valuation congruences
of ®. By conv. XVI, there is a subset E7 of R= cofinal to R< and such that
1. 7 is a function defined on R into R (i.-e. any member 7'z = r is a complete
normal congruence system of ©), 2. denoting 7'z, = 'r, 7'z, = %, we have
I/—V(lz — %) = z unless 'r = 2r, whenever z; = 2, 2z, = z, where z is a suitable
element of Rr; on account of the axiom of choice E, this z can be assumed to
be uniquely Rgiven to any chosen z ¢ Rz and, moreover, we can assume that
Zy = 7y if 2, < 2, and that z < 2.

In view of the lemma XIX and conv. XIII as well as by the corresponding
corrollary, the already stated requirement 2. means that — under the stated
conditions concerning z,, z, and with the given z e RS — the complete diffe-
rence congruence system 'y — ?r (of ©) has zero members ('r — %) z* = 0 for
every z* < z,z* ¢ B=. Therefore the members 17'z* = (v'z,)’ 2%, 2r'z* = (r'z,) 2*

are equal for every z* << z, 2¥ ¢ B=, provided z, € R7, 2z, ¢ R5, 2, = 2,2, = Z € R5.

Now define the “diagonal system” r (of 7) thus:

If 2* ¢ Ry then put 2'z* = (F'(2%¥ + 1)) 2*.

Prove that r is a cofinal compatible system of valuation congruences of .

The cofinality of r being clear, suppose 0 < zf < 2§, 2f ¢ R7, 2§ ¢ R7 and
observe that i

(FEFF) & = FEF ) 2,
as well that
(FEEF 1) 28 = (/5 F D)) 2% (mod 20%) .
It follows that 7'zF = 2% (mod 2=*), i. e. the desired compatibility condition
for r.
Finally, let z be the result of the normalization of r. Prove that this normal

® .
complete congruence system r of © as an element of R is a solution of 7 (in

the sense of conv. XVI (iii)).
Indeed, let z ¢ R be arbitrarily choosen. Then for every z* =z (of conv.

* *
XVI (iii)) either 7'z* = r or W(r'2* — r) = 2, because the members (7'z*)’ z,
%k *
r'Z of the normal complete congruence systems 7'z* and r (of ©) are equal

sk
at least for any 2 << z by the already given definition of r. Thus the pseudo-
perfectness of R as well as that of ©R is proved.



Ad (ii): If an element & of ®R lies in R, then it is the unique solution of the
complete remainder system of itself. If & does not lie in R theun it is itself a
normal complete congruence system of © and trivially a solution of itself.
Hence we have only to show that a) a normal complete congruence system,
say re E = R of D (r + r,forevery x € R) cannot have two different solutions,
say 7 % 7 oin OR('r, 2r¢ R — R), and b) two different normal complete
congruence systems of D, say ip and 2r, cannot have a common solution, say
re ZE - R.

For a), observe that W(r'z* — r) =z, W(r'z* — =) = z for every z (with
a suitable z*) implies

Wir —2r) = W(r'z% — o) — (2% — ) =2z if 7+ %;

this impossible result shows that indeed 'r = 2r.

For b) observe that in the contrary case the elements r, 2r of PR would
be in fact two different solutions of the normal complete congruence system
r (of ©), which contradicts the already proved a).

The assertions (iii) of the lemma now is almost obvious. The assertion (iv)
(on the powers) follows by the usual diagonal process. Hence the lemma is
proved.

Remarks: A) In the case of D = ring of integers, the ring ®R converts into
the ring of Hensel’s integral 2-adic numbers; hence ®R is a generalization of
this ring.

B) 1t is to be emphasized that the already stated result concerns complete,
or more generally, cofinal congruence systems (of dyadic rings) only.

C) Let us add some remarks for readers familiar with basic notions of the
general theory of valuations of algebraic fields concerning the relation of the
already stated relatively simple notions and result to the basic ones of this
theory.

First, let us explain in what sense our notion of (compatible) congruence system and
the known notion of compatible sequence of elements of the valuation ring of an alge-
braic field with valuation are equivalent.

By [Sch] def. 11 of chap. 2, a well ordered (infinite) sequence {A4,},.; (with a limit
ordinal 1) of elements of the valuation ring O of a field £ with the valuation W is called
compatible if there is an infinite well-ordered corresponding sequence {,}; ., of ideals
of O such that

(i) A, g A, , (i) @, =a, (mod U,) for 0 <7 < A

In [Sch] an element x of D is called a solution of the corresponding compatible system
(as given by {a,},<; if 2 = a, (mod UA) for every v << 1). One can also say that x is a
pseudolimit of {a,},_; (see [Sch], def. 15 of chap. 2), and that {a,},.; is pseudoconvergent
(see [Sch] def. 10 of chap. 2 and p. 40) to the pseudolemit x.

Now assume 9 is the quotient field of a dyadic ring ©, O is the corresponding valuation
ring in the sense of the dyadic valuation W of 9, that is, O is the ring of all the quotients
2y (y £ 0,z e R, y e R) with W(x/y) = 0 i. e. with W(x) = W(y).
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Then clearly O is an immediate ring extension (in the sense of conv. XIVe) of D.
Consider a congruence system r of © defined on a subset R, of the set R= of all the

nonnegative elements of © (R, has no greatest element, see conv. VIII). Let {tz}, ;5 be

a transfinite sequence of elements of R, cofinal with R,, i. e. to every z ¢ R, there is a

T < Awith z; =2, 2, ¢ R,.

Then, as is not difficult to prove, the sequence {'t;},
elements of © and. moreover, of © — in the already recalled sense of [Sch], if U, is the
principal ideal of © generated by the potency 2°7, i. e. the ideal of all the elements w of

O such that W(w) -

Further. it is easy to prove that any pseudolimit of {2'z;},_;, i.
congruence system x = r’z, (mod ;) in any immediate extension (see conv. XVIv) of
D is a solution of the congruence system 7 in the sense of our conv. XVI (iii) — and also
conversely, any solution of 7 in any immediate extension of ® in our sense is a pseudo-
limit of {r'z;},_; in an immediate extension of 9, in the sense of [Sch]. Such a solution
(pseudolimit) is unique if R, (and {z;},_,) are cofinal to R=; otherwise, one congruence
system (one mentioned compatible sequence) can have many solutions (= pseudolimits).

; 18 a compatible sequence of

e. any solution of the

Conversely, let us consider a compatible sequence {a,},_; of elements of a dyadic ring
D (as a subring of the valuation ring © of the quotient field £ of D with the dyadic va-
luation); let {A,},, be the corresponding decreasing sequence of the valuation ideals
in the already recalled sense of [Sch]. Then, as is not difficult to prove, in our case of
dyadic rings, an ideal 2, of the ring £ must be either a principal ideal generated by a
potency of 2, say of 2?7 (with an unique z, = 0) or a s. c. limit ideal of such ideals, i. e.
a set product of a decreasing transfinite sequence, say {,},.-7,, of such principal ideals
generated by the potencies, say 2°7¢, with 27 < Zgo* Whenever g < 0* < To.
s: Case (a): the % = 7, (% < %) with 2, = (2°7%)18) form a

Let us distinguish two case
transfinite subsequence cofinal with the given sequence {2}z <.

Case (b): from some 7 = T up, for every v with 7 = 7 < A every U, is a limit ideal.

In the first case (a), let us form the set R, as a subset of R consisting of all the z
(2 << %).

In the sccond case (b), to any T = 7 choose a ¢ = o, so that A, 2 Uy, D U
this is possible. Then let R, consist of all the z, .

- T

Now it is not difficult to prove that, letting the element «a,, be 'z if z =z, < I, in
the first — and the element a, be 2’2 if 2 = z,, ¢ R, in the second case, we always obtain
7 as a compatible system of valuation congruences of © in our sense, with the same

solutions as {a,}, _, has.

Hence the equivalence relation between our congruence systems in dyadic rings, and
of the compatible (pseudoconvergent) transfinite sequences of elements of such rings
in the usual sense of valuation theory, may be clear. (Comp. also the remark 2 on p. 48
of [Sch], concerning the last part of our arguments.) Of course, one could work with our
congruence systems instead of pseudoconvergent sequences (in an obvious general sense)
in the general theory of valuation of algebraic fields also. But this generalization and
replacement of the usual tools would hardly be useful in general valuation theory;
though congruence systems in our sense seem to be especially suitable in the case of dy-
adic rings, because e. g. of the possibility of normalization of congruence systems (in the
sense of lemma XV, as made possible by the close connection of the dyadic valuation
and of the ordering in dyadic rings).

16) (2%) means the principal ideal of 27
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Now it is easy to see how we could obtain our pseudoperfect ring extension PR of
a dyadic ring D by the general theory of valuations. Indeed, the ring ©R is nothing other
than the ring of all the pseudolimits of pseudoconvergent transfinite sequences (of elements
of D), of the s. c. zero breadth,'?) these limits being taken from one of the s. ¢. maximal
immediate extensions of the quotient field © of the given D (with respect to the dyadic
valuation of 9). See theorem 2 of chap. 2. and the definitions 15 and 16, as well as the
lemma 17 of [Sch]. Of course, the use of the very general and relatively complicated
notion of the maximal immediate extension (of a field with valuation) is avoided on
passing directly to the pseudoperfect ring extension ©R of D.

Returning to our task, let us state a decisive

Lemma XXIII. (On “extensionality’.) In any dyadic ring © = (RF F,F,F >,
if @ +y, xe R=, yeR= then Oy, + O,y In other terms: If CF = ('}
for every z > 0 then © = y.

Proof. I. Prove first that either l};] — [Ty;] = [x :z y] or I;%] — [;;:I =

— [%j J , for an arbitrary z e R=.

Indeed, [21] tou— g_ [21] + v =Y hold in the quotient field & of D,

with uniquely determined elements u, v of  and with 0 <% <1, 0 < v < 1.

) x—y Y x x u
< =15 5| =\l |5 I
Hence lf V= u, then [ 5% ] [ZZ 2z] [I:zz] [22] + un ?J]

x Y
=|—1 —1Z < —
[22] [Qz] because of 0 < w — v < 1.

If however w << v, then clearly [y ; x] = [g;] — [%] by the same argu-
ment (with 0 < v — » < 1 instead of 0 =< w — v < 1).
II. Supposing x =+ y, let us now write (by conv. XII and lemma XVII)

@ x Y
Cwa-v) = [—2,,;@:7;] — 2 [Ww:m] l
sk
. ) . (*)
Wa-y) — ‘gir/’(ﬂ} — 2 §W(m—y)4—l '

If there were Uy, _,) = Oy, _,, then by the already stated I and using the

equality
x Y 9 Y x
oWe-u) | 72_1?211:_——’[)_ = oW@-uy+1| | 9gWaw-v)+1

(as resulting from (*)), we would obtain exactly one of the following equalities:
either
“7‘17)7 The breadth of a pseudoconvergent sequence {a,}, is the ideal of all the elements

with values greater than every of the values V(a, — ay4) (assuming a, — ag« £ 0, of
course). See [Sch] p. 48.
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x—y| x—y x—yl y—x
a) [2“’@—@3} =2 [ _ji(?:i:ﬁ] or b) ['§WTE'J):| = —2 [WTI]

y—x rT—Y y—z ; y—x
or ¢) — [TziW‘(me)] =2 [QW(;fyw 1] or d) — I:EW\m»y)jI =—2 [QW(my)»l]'
. x—y x — .
But since [’QW(?:%)J = TZWT“:% =2¢ + 1 and W(x — y) = W(y — ) (with

an uniquely determined g ¢ R), we get a contradiction in all the possible cases

a), b), ¢), d). Therefore the lemma is proved.

Corollary to the lemma XXTII. a) Let us replace the nonnegative x, y in the
lemma XXIIT by the normal complete congruence systems 'r, *r of © (as elements
of the ring R of the lemma XX). Then the lemma XXIII remains valid; 4. e.,

Iy % 1y implies

r

T v
OW(’ZJD + C W(r-cr) -
(Indeed, it suffices to use the lemma XXIV for x = W'z, y = %'z with a suffi-

ciently great z = 0, in view of the lemma XX.)
b) As a special case of a), the lemma XXIII now extends to arbitrary elements

x,y of © (in using r, = 'r, r, = ).

Remark. It turns out later that the (extended) lemma XXIII will ensure
the axiom of extensionality A 3 in our dyadic models.

Lemma XXIV. a) If x =0, then there is CF ' =1 whenever 0 =z < z,
and C¥~' = 0 whenever z = .

b) If 22 > y > 0, then O = 0; and especially, if z =y > 0, then C} =0
(for 22 = 20 > y).

¢) O = 0 whenever z < W(r); and especially C% = 0 whenever z < W (x).

d) Oy = 1 as well as (especially) Clpy, = 1.

Proof. (Comp.lemma XVIT and its proof.)a) f 0 <z < z,iex =2 —1=

2 2 — 1 20 — 1> r—z 1 9l ox—2— 1
= 0, then C? 1:[ % ]—2[ By J:[Z 45;]_2[2 ) 1_22+1]:

=1 If 0<a<Lz then 0 =2 —1<2° <

— 29:—z — 1 L Z(Qz‘zAl —

2 1 2¢ — 1
< 2#+1 whence szﬂ:[ 52 ]“2[?1‘—]:0_0:0'

b) If 2¢ > y > 0, then Og:[;—/z]—z[?:{lJ:o—o:o.

¢) f z< W(r), then CF = Ci*" with a z* > W(r) such that W(r) =
= W(r'z*) = p, r'z* = 27(2¢ + 1). Then
05" = [»QP(QQQJL 1)] — 2 [2_”(3‘1+U] — 2vx(2g + 1) — 220 4 2],
But since p — z — 1 > 0, we have [2P~2q  2¢—2-1] = 2v~%¢ - 27—*~1 whence
indeed CF*" = C% = 0.
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d) If z = W(r), then now p = z and

o — ot [E’” (,2‘1j}l] 9 [2”(2‘1+1)] —

A 2r+1
1
:2q+12[q7’§]:2q~|—1~2q:1.

Let us add some more notions and lemmas needed in the sequal.

Lemma XXV and Convention XVII (On the integral part of a dyadic
logarithm). Let x be a positive element of a dyadic ring D. Assume there is a

nonnegative z such that [l)] <2l

&

Then such a z is uniquely determined by the x — and will be called the integral
part of the dyadic logarithim of x, in symbols z = Log (x).

Remark. There is Log (2?) =z = W(2%), W(x) = Log (z) if and only if
x = 2%, and W(x) =< Log (») in general, supposing Log (x) exists, of course.

Proof of the lemma. Suppose the contrary, that 0 < 2z, << z,, [Ix] < 2 <
< 2% = a. Multiplying by 2 we get 2[la] < 2" < 2%'" < 22, In case
2[iz] = x (z is “odd”) we thus have 2% < x < 2*! < 2721 < 92 whence
2y << 2y -+ 1 <<z, -+ 1, which is impossible.

In the remaining case 2[iz] + 1 = 2 (is “even”), we have 2 < x (i. e.
22 <2 — 1) and x — 1 < 27 < 221 < 22 whence 2z, <z, + 1 <z, -
-+ 1 again. Therefore the lemma is proved.

Lemma XXVI. There is (Y, =1 and €7 =0 whenever z > Log ()
(assuming x > 0 and Log () exists).

Proof. Write z = Log (). Then €% = [»;] — 2 [?Z%] and [5%—1} =0,

[)ﬁz] #+ 0 (by conv. XVII), whence (¢ = 1; but if of Z > z, then ll] = 0 too,

>
whence % = (.

Lemma XXVIL a) There is @ = a% - 2M6@ gith 0 < a% << 21°8@) (g% -
quely determined by x), provided x > 0 and Log (x) exists; hence always x =
-~ 2Log'm).

b) If 0 <x =y, then Log (x) = Log (y) provided both Log (x), Log (y)
exist.

¢) There is Log (x) + Log (y) = Log (zy) = Log (x) - Log (y) 4 1, provi-
ded x,y > 0, if all the Log in question exist.

d) If C; =< CY for every posilive z then x = 2y, provided x > 0, y > 0, if
Log (z), Log (y) exist. (Caution: we cannot assert ((z) C7 = CY) > x = y here,
as in the dyadic ring of integers; compare however with theorem I in § 3).
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Proof. Ad a): If there were x* = x — 2M°6® > 2L°¢® then we would
have x = 2tee@®  olegm) _ ologim) vl 4y contradiction to the definition of
Log (conv. XVII). Since 2* = x — 2"8® = 0 by definition of Log, a) is pro-
ved.

Ad b): If there were Log (x) > Log (v), then we would obtain (since [{x] =
< [3y]) [32] < [Ly] < 208 < 2o < in contradiction to the lemma XXV,

Ad ¢): In view of a) and b) we can write

glogiw) i Logly) __ oLog@) gLog'y) < ay = (x* + gLOg(w,\)(y* + 2L0g\’y)) —
= a¥y* aologw) y*zLﬂg(%) | olog(@) + Logly) - glog(®@) i Logly)

+ 2Log(ac)—‘ Log(w) + 2L0gfm):Log(u) + 2Log’a:) + Logly) __ 92 2Log‘_a:) i Log'y) __ 2L0g,w) . LOg(y;—&Z'

Therefore on account of b) we indeed obtain
Log () + Log (y) = Log (xy) < Log (x) + Log (y) + 2, q.e.d.
Ad d): If there were x > 2y, then we would have Log () = Log 2y =

= Log (y) + Log 2 = Log () -+ 1 because of c), but since Log (x) = Log (v
by supposition (in regard to the corollary of Lemma XXYV), contradiction.

Definition IIT (The logarithmicity of a dyadic ring). A dyadic ring © every
positive element x of which possesses the Log (x) is called logarithmic.

Remark. Of course, the ring of integers is a logarithmic dyadic ring.
Perhaps not every dyadic ring is logarithmic, though only such rings are
important for the present purposes.

3. Dyadic rings of the set theoretical type (s-¢-rings) and dyadic models of the
Godel’s axiomatic theory of finite sets.

In the sequel ,D¢ continues to mean a dyadic ring. If C7 =1 (v == 0,y = 0)
then we often say that the “set” z is an “element” of the “set” x. In order to
prepare the construction of dyadic models (of Godel’s theory of finite sets) we
shall often use the following normal terms introduced by the

Convention XVIII (In accordance with [G], definitions 1.1, 1.11, 1.14,
1.15). We abbreviate: (for every z, y as elements of a dyadic ring)

a) {ayle = [2°] + [2¢] sg (j — y|) (the “pair” (‘“non-ordered’)),

c) {xyyy = {{«}y {®y}s}s (the “ordered pair’),

d) <(a>y = a (the “ordered 1-tuple’),

€) (Xyy ... XDy = (X Xy ... X, D5>y (the “ordered nm-tuple”, by induction
forn = 2,3,...). ‘

Caution. The integers n = 2, 3, ... (n € w,) are to be taken in the relative

sense of our basic set theory (as finite ordinals). But see (8) of the proof of
thm. I!



Lemma XXVIIT (In accordance with [G], thm. 1.13, 1.16). In every dyadic
ring there is

) {xyle = {yah; b) {@h
) {he = {ax}y,
) AW tse = {%Yalse = {01} = {2y} of 2, =0,y =0,7=1,2
d) {ay}, =0=2<0, y<0; e)x=0,y=0,z=y= W({zy}l,) = a;
f) {ayl, =22 F2v f =0, y>0 “04:1/,
g) {ayyy =22 4224 f =0,y =0, v +y; and (y>y = )y =
=2¥jfx=0,y= Ox—y,cmd@y)*.#o
h) oy = @Yoy = (X1 = ) (Y1 = y2) provided z; =0, y; =0 (i =
=1, 2));
i) {xy}e > max (x, y) and {xy>, > max (z,y) if x =0, y = 0;
) A <Ay and (o) < <x2?/>s if y =0, 0=a; <@, {2Y}y <
< {1./2}* and {xy;py < XYy tf = 0,0 =y < Y,
The easy proofs may be omitted. The lemma will often be used tacitly.

20 4f x=0;

H

Let us further introduce the following normal terms and notions:

Convention XIX. a) Forevery ue Rset lu = xif u = (@ydy, 0 S, 0 =
=y — and 'w = — 1 otherwise; if w = <(ay>, then we call 'u = x the “first
member” of the “ordered pair” (xy), (provided x = 0, y = 0, thus especially
Waxy, = x if © = 0);

b) For every we R set 2u = y if u = {ay), provided 0 <2, 0 <y, x F y
— and set 2u = 'u otherwise; if w = {xy),, then call 2u = y the “second
member” of the “ordered pair” uw = <{xy), whenever x = 0, y = 0.

Now we are able to state our main notion of the set theoretical dyadic ring,
called in short s-t-ring. — For the convenience of readers, let us introduce
the definition of this notion by the following explicative remarks:

The definitory requirements (s I)—(s VII) are essentially axioms of the
group B (of [G] in an ‘“‘arithmetical” formulation (the class-complement
axiom B 3 together with the class-product axiom B 2 replaced by a certain
“set-difference axiom’ (s II).) But our “axioms’ have only to do with “sets”
instead of “‘classes’ of the s. ¢. dyadic model (to be constructed). In order to
formulate the arithmetical axiom (s IIT) equivalent to the domain axiom
B 4 of [G], we need two new primitive notions'®) (operations) D, and D,, in
addition to those of the dyadic ring of definition II; we formulate (s I1I) as
an identity requirement for D,;, D,. The last “axiom’ (s VIII) represents a
weakened (“concrete’”) form of the choice axiom E of [G]. And finally, the
singular initial “axiom” (s §) will ensure, first the needed strong existence
metatheorems (M 1)**—(M 6)** of [G] (analogous to M 1—M 6 in the model)

132) During the printing. I happened to define D, as a secondary operation-and to avoid
D, entirely. This will be showa in a next paper, as well as the avoidance of (s VIII).
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and it also will make possible the verification of non C1, C2,C 3, C 4 as we
shall see in the proof of theorem I. Each of the definitory requirements has
a name and is followed by a comment in order to indicate its sense intuitively;
further, conventions are added everywhere in order to introduce the corres-

ponding defined operation (as a function given by a normal term, on the basis
of M 5 of [G]).

Definition IV (The set theoretical dyadic ring). Let & = (RF F,F,F,DD,)
be an ordered seventuple. We say that & is an s-t-ring (set theoretical dyadic
ring), whenever.

a) (RF.F,F,F,> is a dyadic ring in the sense of the def. II,

b) the following requirements (s @), (s 1)—(s VIII) are satisfied. (We use
the already introduced symbols without recalling their definitions, hence the
knowledge of the preceding § 2 is necessary. Let us emphasize, once for all,
that the individual variables as well as their quantifications are all meant to
be relativized to the set R= of nonnegative elements (the s. c.“sets”) of the
dyadic ring in question — if nothing other is said explicitely.)

(s 0) (of the “successor relation™):

(@) B yE)w)(CL = CF [277 2 2=y
(In words: to every ‘“‘set” x there is a “‘set” y formed exactly of all the “ordered
pairs” z = (v v + 1), which are “elements” of x).

Remark to (s #). The y in (s ¢) is uniquely determined by the given « in
view of the decisive lemma XXIII. Therefore on the basis of (s 0), there is a
unique function, say Fg, on R= into R= (we write in a normal term equatlon
Fy x = y)'®) determined by the identity

CF® — = [2-lv=")[2-1"1=*I]  for every », 2, v = 0.
(s I) (on the “to belong’ relation):
(2) & y(2)(@)(v)(CY = CF € [27 =12 1))
(In words: To every “set” ax there is a “set’” y formed exactly of all the “or-

dered pairs” z = <{vu), which are “elements’ of x and such that the “first
member”’ is an “element’ of the ‘“second member’.)

Remark to (sI). By a convention and in the sense analogous to the pre-
ceding one (with (s I) instead of (s #)) we introduce the normal term Fy denoting
the unique function on R= into R= which satisfies the identity (for x, z, u, v =0)

OF® — 02 O [27 02 lv-1]
(s IT) (on the ‘“‘set difference’):
(@)(y) Ha(u)(C;, = [2%-%71))

18b) ¢ is itself a normal term dependent on the normal term ,&‘. Analogously later.
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(In words: To arbitrary “sets” x, y there is a “‘set’” z so that « is an “element”’
for z if and only if » is an “‘element’ of z and « is not an “element’ of y.)

Remark to (s II). By a convention analogous to the preceding ones, we
introduce the normal term F,, as denoting the unique function on R= x R=
into R= such that OFw®) — [2%- €17 jdentically in @, y, u = 0. Fiox, > is
called the “set difference’” between x and y (in &). — Write also for more con-
venience z = x + y instead of z = F,(ay).

(s TIT) (the “‘axiom of the domain”): D, is a function on R= in RS, D, is a
function on R= X R= into R=, D, may be called the first, D, the second of

the s. c. domain-operations; D; and D, satisfy the following identity (in
z, u, w = 0):

Cl N (Cunyouyy, — 1) Oy (C0F — 1) = 0.
Remarks to (s III). a) This non-intuitive arithmetical formulation of the-

axiom B 4 (of the domain, with respect to “‘sets’) is to be understood as follows:
The immediate transcription of B 4 for “sets’ is

§

(@) Hy(u)(Cy = 1 = Ho(Clyy, = 1)) . (*)

(In words: To every “‘set” a there is a “‘set” y se that w is an “element’ of y if

and only if « is the “first member” of an “ordered pair” (uv)>, being an “ele-
ment”’ of z.)

In order to avoid existential quantifiers by the well known device due to

Skolem (see [Sk]), we transform (by an easy logical and arithmetical adapta-

tion) this p. f. into an equivalent (on the basis of the requirements of def. II)
prenex normal form

(@) Ay () To(w)(CUClury, — 1) + Cluwy, (Cu — 1) = 0).. (**)

This form clearly is itself equivalent to the existence of the operations D,
and D, satisfying the identity (s III), on the basis of the axiom of choice K.
b) Returning (in our basic set theory) from the assumed identity sub (s I1I)
to its equivalent form (*), we may and shall introduce, by a convention ana-
logous to the preceding ones, the uniquely determined function, say F;, on

= into R=, such that the equiva]ence

C,'f'“m = - L’{@( (uv)* 1)
is true for every x = 0, w = 0. Write also y = D, instead of y = Fj.
D,z is called the “domain” of x (in &).
(s IV) (on the “direct product’):
(@) Fe)(0)(w)(C = € O 2712wl

(In words: To arbitrary “‘sets’” z, y there is a “set’” z so that z has for its “ele-
ments’” w exactly all the “ordered” pairs (uv), = w with the “first member”’
% an “‘element” of x and the “‘second member’” v an “element’ of y.)
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Remark to (s IV). By a convention analogous to the preceding ones, we
introduce the unique function, say F,,, on R= % R= into R=, such that

CF' o) = T2 |u~‘WI][7 [o— W]

identically in ©* =0, y = 0 w=0, v=0, w=0 Write also z =2 % y
instead of z = F;, <xJ>. x 3 y is called the “direct product” of = by y

The following three requirements ‘“‘on conversions’ in the “ordered pairs”
and “ordered triples” (see conv. XVIlle) as corresponding to the remaining
axioms of the group B, can now be stated in short with the corresponding
conventions as follows:

(s V) (on the “first conversion”):

() A YEHINCE = Oy [271 710120
The corresponding function F , on R= into R= satisfies
Cme - C(’Uu) [)—lu—’zl][2—|”—22|]

identically in « = 0,z = 0, v = 0, v = 0. Write also y = Cnv, () instead of
y = Fi,w and call y the “first conversion” of x (in &).
(s VI) (on the “second conversion’):

(@) T y(2) (@) (0)(w)(OF = Oy, [27 N[220y
The corresponding function F,, on R= into B= satisfies
O = Oy, [2717 927 o 002 o0y

identically in x =0, 2 =0, u = 0, v = 0, w = 0. Write also y = Cnuvg,(x)
instead of y = I, and call 4 the “second conversion” of z (in &).
(s VII) (on the “third conversion”):

(@) B Y(2) () (@) (w)(CF = Clypuy,[271 D271 212200
The corresponding function F 5 on R= into R= satisfies

Of'uw _ |u—2(z )I][‘) |- ‘(2>I][<) |w- “2>)J

(uvw) [)
identically in « =0, 2 =0, u =0, v = 0, w = 0. Write also y = Cnovg,(x)
instead of y = Fyx, and call ¥ the “third conversion” of x (in &).

Remark. This last “conversion axiom” could perhaps be omitted, ac-
cording to a result of A.Hasnan and L.KarmAr [H-KJ; in any case, it will
not do any harm.

The last requirement now is

(s VIII) (the “axiom” of the “dyadic valuation function”, i. e. an “axiom
of choice”)

(@) Ay )(CY = [27F T )

(In words: To every “set”” x there is a “‘set” y having as “‘elements” exactly

all the “ordered pairs” of the form z = (W (v) v>, which are “‘elements” of
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the “set” x. — Since W (v) is always an “element” of v > 0 (see lemma XXIVd),
the connection of (s VIII) with the axiom of choice E of [G] is obvious.

As in the previous cases, we introduce the corresponding function, say
Fis, on R= into R=, such that O = [27 F= (P} 02 jdentically in & = 0,
z = 0, v > 0. — This completes our definition IV.

Remark to the definition IV. S-f-rings exist: the ring of integers is such,
as it is easy to see. The construction of other s-f-rings is one of our main
tasks — see § 4 later. — We shall use ,&° as a normal variable (possibly with
subscripts) for s-t-rings.

Now, we need a suitable modification of the notion of the immediate pseudo-
perfect extension of a dyadic ring, for the case of s-t-rings.

Definition V (The weakly pseudoperfect extension of an s-t-ring). Let
& = (RF,F,F,F,D.D,> be an s-t-ring with the corresponding dyadic ring
D = (RF,F,F,F,>.

Assume R* is a subring of the immediate pseudoperfect extension of ®R the
dyadic ring ©. Then R* is called weakly pseudoperfect with respect to & if the
following (i)—(v) is true. (See conv. XVI and lemma XXII.)

(i) M* is an extension of D (and therefore an immediate extension of D,
see conv. XIV).

(ii) There is an element, say -~ 1>, of ®*, such that C{'" = 1 if and only
if x=<uwu-+ 1),, (w=0). {(+ 1> is said to be “class” of the “successor
relation” of &

(iii) There is an element, say {e,>, of ®*, such that C{*> = 1 if and only
if ¥ = (uwd, and O = 1. (e, is said to be the “class” of the “to belong re-
latton™ of &.

(iv) There is an element of R*, say W,, such that C¥* = 1 if and only if
r = (uvy, and v = W(u). W, is said to be the “universal (dyadic) choice
function’ of &.

(v) Let Z, y be elements of R*. Then there is a) exactly one element of R*,
say & + ¥, such that O“’” U= ] = (O’” = 1)(0" = 0);

b) exactly one element, say & 9, of R*, such that Xﬂc ‘v = 1 if and only
if w = (uu,y, and C“ = Oy =1;

c) exactly one element of R*, say D, (Z), such that 03«5) = 1 if and only

if there is a z = 0 with C'<uz) =1(u=0,z=0),

d) exactly one element, say Cnv,, (), of ®*, such that C’S’”’*‘(;’ = 1if and
only if u = (uuy)y, O<u2ul>* 1;

e) exactly one element, say Cnuv,,(Z), of R*, such that C’C""u“‘) =1 if and

only if u = (uuyusdy, C Cuguugy, = 15

f) exactly oneelement of Eﬁ*, say Cnv,,(Z), such that C’C"”u"” = 1if and only
if v = (uyuyu,), C(uzuzuo = 1.
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The elements of R* required in (v), a)—f) are respectively called the “class
difference”, the “direct product of classes”, the “domain’ of a “class” and the
“first, second and third comversion” of a “‘class”; in general, the elements of
a weakly pseudoperfect immediate extension of the dyadic ring of any s-t-
ring may be called “‘classes’.

Lemma XXIX (A condition for the compatibility of valuation congruence
systems). 4 function r defined on a convex and zero containing subset R, of the
set R= of nommegative elements of any dyadic ring © is a normal'®) compatible
systems of valuation congruences tf and only if the following is true:

(i) C5* = CL™ whenever w < 2, = 2y, 2, € Ry, 2, € Ry (weakened compati-
bility),

(i1) Cf'z = 0 whenever z < v. ze Ry (weakened normality).

Proof. The necessity of (i) and (ii) follows immediately from the correspon-
ding definitions (see § 2). — In order to prove their sufficiency, first assume
without loss of generality) 7'z, = 1'z,, 0 = 2, << 2,, 2, € Ry, 2, € R, satisfying
(i), (ii). Then O, iy + Ciiis, s, by lemma XXIII. In view of (i) and (ii)
this is possible only with Czpy'i’,_uzz rzy = 0 and C[u;f‘r:za,, rzy = 1 as well as with
2y > W(r'zy — 1'2,) = 2;,. Therefore 7'z, — 1’2, = 0 (mod 2%) and the more
80 12y = 1’2, (mod 2*) for every » with 0 = u < z;; q. e. d.

Lemma XXX (On the minimal weakly pseudoperfect immediate extension
of an s-t-ring). Assume the symbols of the definition V.

To every given s-t-ring &, there is a uniquely determined weakly pseudo-
perfect extension (in the sense of the definition V), say Rg, such that Rg is a sub-
ring of any other immediate and weakly pseudoperfect ring extension R* of D.
The ring Rg 1s called the minimal weakly pseudoperfect extension of S. The
power of the set of elements of Rg equals that of the given S.

Proof. First, prove the existence and unicity of the “classes” required in
(ii), (iii) and (iv) of the definition V — as elements of the pseudoperfect im-
mediate extension ®R of D (see conv. XV and lemma XXII).

Ad (ii) of the definition V: Let us define the function (1) on R= into R=
by the (normal term) equation Fg(2 — 1) = (1)’ z (with z = 0). — Note
that if 0 <z, <2, then (z)(C*" "' < C*'-') by the lemma XXIVa). The-
refore in view of (s ¢) of definition IV we observe that the condition (i) of
the lemma XXIX is fullfilled by the r = (41> (with R, = R=). The same is
true as to the second condition (ii) of lemma XXIX. Hence the existence and
unicity of the element of ®R required by (ii) of the definition V is clear.
Ad (iii) of the definition V. — Put Fy(2* — 1) = (e, > 2, use (s I) (instead
of (s ¥)) and argue as before.

Ad (iv) of the definition V. — Put Fy4(2* — 1) = Wiz, use (s VIII) and
argue as before.

19) But not necessarily complete.
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\
Pass to the requirement (v) of the definition V. For the sake of greater |

formal simplicity, let us work, for a moment, in the ring R of complete normal
congruence systems of D, in view of the value preserving isomorphism between |
R and R (see lemma XX). On account of the lemma XXIX, we have to
show that, given normal complete congruence systems r, s, the functions

ris, 138, Dur), Cnug(r) (with i—1,2,3)%) |

defined by the following equations: |

(r+8)z="F,%zsz, : w

(r ¥ 8) 2= F{p(2s — 12" — 1 Fiy(r'zs'a)) |
(Dy(r)) 2 = Fyr'z, ‘

(Cnvy(r)) z = F{0<22 — 1 F1’0<22 —1 F{zﬂ' 2y (1=1,2,3), ‘

satisfy the conditions (i) and (ii) of the lemma XXIX. This is not difficult
(though somewhat lenghty) to prove by the argument just used as based on
(s TI)— (s VII) of the definition IV — exactly in the same manner as we have |
based on (s 0) the first instance. — Now, returning to R (from R), we conclude |
the proof in taking the set B= -+ {(+1>} + {(ex>} + {Wy} of the s. c. “basic |
classes” for “‘basic” elements of the desired ring Rg — and in forming R itself by
means of the closure in ®R of the set of “basic classes” with respect to the
operations 4, X, Dy, Cnv,,; (1 = 1,2, 3) in DR — in the well known sense, |
see e. g. [G], def. 8.7, 8.71, 8.72 and Theorem *8.73. Since the rest of the |
proof is now immediate, the lemma is proved. ‘
Now, we are able to state our first main |

Theorem I (On the dyadic model of Gidel’s axiomatic theory of finite sets). |
Let & = (RF,F,F,F,DD,> be an s-t-ring and R* = (R*FiFiW*> be an
immediate weally pseudoperfect extension of S, in the sense of the definition V. |
Put ‘

Cls,(y) =y e R¥, M,(x) =2xe RS, |
@ ey = (C% = 1)y « R¥)(x € B%)
(admitting formally 0% = 0 if x e R* — R=). ‘

Then Cls,, My, €, define (by interpretation) the s. c. dyadic model A(S, R*) |
of the axiomatic theory of finite sets of [(] as based on the axioms sub A — sub B —
the axiom of infinity C 1 replaced by its contrary ~C 1 (non C 1), . e. by the s. c. ‘
axiom of finity. (Concerning the syntactical notion of interpretation and model, |
see [1], § 1.) ‘

Proof. (o) Axioms A 1, A 2 clearly are valid (see lemma XXT).

. N . . \
) (2 i,f s)".z is the “‘set product” of 7'z ;; s’z by 2% — 1, in order to get the normality
of r i s (analogously later). ‘
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The axiom A 3 of extensionality is given by the lemma XXIIT and by the
corresponding corollary. The pair axiom A 4 obviously is warranted by lemma
XXVIIT and conv XVIII, with the “pair” {xy}, = 2* + 2v if x + y, resp.
with {xa}, = 2°if x = y, of the “sets” a, y. Thus the axioms sub A are verified;
note that this does not depend on the s-t-postulates (s @), (s I)—(s VIII).

Let us agree that the class-theoretical and syntactical notions of our model
shall be systematically written by the corresponding words in quotes; the
symbols of the model shall be denoted by an asterisk. Thus e. g. “proper
class” means an element of the set R* - R= of elements of the ring R* which
are not nonnegative; note that all the negative elements of & are ‘“proper
classes” and e. g. —1 is the “universal class” (see the corollary after lemma
XVI). The phrase, x is an “‘element’ of the “set” y’ and the symbol (z e, ¥) .
. (y e — 1), mean the same. The “pf”’ means: propositional function of the
model (see [I], § 1). _

Returning to the verification of the axioms, we observe that the validity
of the axiom D (of J. v. NEUMANN) is an immediate consequence of the lemma
XXIVd) (and also does not depend on s — t-postulates).

The verification of the axioms of the group B of [G] is now an almost im-
mediate consequence of the lemma XXX and definition V, as it is not difficult
to observe. (Here the s — ¢-postulates (s I) —(s VII) are essential.) Moreover,
the same is true concerning the axiom of choice E of [G], with the “proper
class” W, e R* as the “universal (dyadic) choice function” of the model.

(8) In order to prove that the axioms C 2, C 3, C 4 of [G] are satisfied (as
well as for disproving C 1, i. e. proving non C 1), we need a careful metamathe-
matical analysis of the validity of the existence metatheorems M 1—M 6 of [G] —
i the sense of our model. For the sake of brevity, we shall describe the essential
steps of this analysis only; the details may be left to the reader.

The first difficulty to overcome is that the notion of integer to be used in
the inductive definition of an “ordered n-tuple” (n € w,) is a relative (axiomatic)
one (of the interpreting axiomatic set theory), whereas the syntactical notion
of the propositional function is based on the absolute notion of integer. Ne-
vertheless, this difficulty is unessential for our purpose because we do not
need the mentioned model-metatheorems in their (rather obscure) generality,
but only use a very limited number of their instances; therefore the number
of inductive steps in the proofs of the model-metatheorems to be performed
shall be limited e. g. ton = 1, 2, 3, ..., 50 — and within this limitation (avoid-
ing, in fact, the metamathematical considerations in the obvious manner) the
logical difference between the absolute and relative notions of positive integer
is irrelevant, and will be disregarded in the sequel.

Now, in view of § 1 of (I), we define the notion of the s. c. “basic primitive
propositional function” (of the model), in short the “bppt” (comp. [G] Chap. I1):
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(1) Suppose II, I' are any normal terms denoting elements of R*. Suppose
moreover, that firstly: /7 is a “‘set” variable, i. e. a normal (set) variable ranging
over R=, and secondly: /I does not occur (as a proper subterm) in I". Then
the pf Il e, I"is a “bppf”.

(3) If @ is a “bppf” and IT is a “‘set” variable ranging over R= then {11 ¢ |
is a “bppt” also — provided I7 does not occur as a proper subterm in any term |

in @.
(4) No other pf are “bppf”. (So e. g., x e, y -+ 2" is a “bppt” ,but ,x e, y + ¢ |
and ,x + ¥y e, 2° are not.) ‘

Note that

a) in the sense of the remark in [G] after thm. 2.8, we assume, without ‘
loss of generality, that terms different from ‘‘set” variables do not occur
as first members of the e,-relation — so that our notion of the “bppf” exactly

corresponds (in the model) to the reduced notion (of [G]) of a ppf. Further |
note that

(2) If ¢ and y are “bppf”’ then ~¢ and ¢y are “bppf” too.

b) the caution made in the definition of the “bppf” enables the following
model-analogy, say (M 1)*, of the existential metatheorem M 1, on the basis
of the already verified axioms of the group B: |

Metatheorem (M 1)* (of the model A(&, R*)): Let p(xy, ..., x,) be a “Dppf”
containing no other free “set” variables than the given ,x,’, x5, ..., x,"; (n € w,
is less than an absolutely given numerical constant, e. g. 50). Assume none ‘
of the, &,’, %y, ..., @, occur as proper subterms of any term in .

Then there exists a “class” A* e B* such that ‘(x, ..., %)y €x A¥ is equiva-
lent to @ (on the basis of our interpreting theory, i. e. this equivalence is a
consequence of the axioms A—E of [G].). |

The inductive proof of (M 1)* on the basis of the already verified axioms
sub B and D (of [G]) is exactly the same as that of M 1 of [(G], with the only
change in possibly replacing the word ,special class’ by the word ‘term de-
noting a ““class” (as in) the proof of M 3 of [G]); the reader may realize why
our caution concerning the free “set’” variables is necessary and sufficient in
order to reproduce the arguments of the proof of M 1 (and of M 3) of [(]. ‘

According to [G], we now introduce the notion of the “basic normality” of
concepts of the model, i. e. “basic normal” is defined on the ground of “bppf”
exactly in the same way as ‘“normal” is defined on the basis of ppf in [G],
chap. II. Hereby, we obtain the corresponding model ‘“metatheorems”
(M 2)* — (M 6)* concerning ‘‘basic normal propositional functions” and ‘‘basic
normal terms”, as simple consequences of (M 1)*, exactly in the same manner |
as M 2—M 6 are consequences of M 1 (in [G]).
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As an important (for our purpose) consequence, we obtain the existence and
unicity of the “identity relation”, say I, with I, ¢ R* and

C2Yyy e Iy = (x = ¥) (e — 1) (e — 1).

But thus far we could not have taken even such a simple propositional
function as e. g. , ML ¥ (¢ = y -+ 1)’ for a “basic normal propositional function”
(of the model), because (as it is not difficult to observe) ‘y + 1" perhaps is not
a ‘“‘basic normal term’.2') Therefore a suitable extension of- the notion of
“bppt” (to “ppf’) (and then of “basic normality” to “normality’’) is desir-
able. This is possible on account of the requirement (s ¢) (of the “‘successor
relation’), not used till now, e., we have the special “proper class” (1) ¢ B*
at our disposal in the model, such that <{uv), e, (+1> =u = v -} 1 (assu-
ming v = 0, v = 0).

Therefore we modify the definition of a “bppf” just given as fol-
lows: (i) we admit ‘@, + 17, ...y, + 1", ... (2, %o, ..., e RS, 41, ¥Yg...,e R=, ..))
for the IT and for the I"in (1); (ii) we allow the quantified “‘set” variable /7 to
appear in ¢ in the form I7 + 1 = I" also, in (2) of the just stated definition
of “bppf”’. Hereby we have defined the (extended) notion of “ppf”,
i. e. of the “primitive propositional function’ (of the model in question).

Replacing now “bppf” by “ppf” and weakening the caution in admitting
that the free “‘set’” variables ,x,” ..., x,” may occur in ¢ in terms ,z; + 1’ ...

.%, + ', we obtain the extended model “metatheorem”, say
(M 1)**, from the just stated original (M 1)*.

It is not difficult to observe that in order to prove (M 1)** by the standard
induction of [G], we have to complete the beginning of the induction as well
as the case 2c¢) (of [G]) of the inductive step only.

The cases of ¢ to be performed in addition at the beginninof theg induction
are as follows:

a) x, +le,a,, b)a, +leea, +1, ¢) vy, +1, d)a, + le, X*
(where X* e R*),
where 1 < r < n, 1 < s < n throughout.

We have to find the corresponding “classes” 4* so that
<;L'1, RS xn>* €x A* = P -

In the first three cases, we have to distinguish the subcases r << s, r = s
r > s. But since the first and third of these subcases are equivalent on the
basis of the “first conversion” axiom B 6 (comp. the proof of M 1 in [G]) we
can disregard the third subcases. Concerning the subcases » = s of the cases
a), b), ¢), we can disgregard them also, in writing e. g.

X, + 1 €y Ly == (yr + 1 €x xr)(<xry'r>* €x I*)

)

L e., in general, perhaps cannot be defined by means of e, alone.
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in view of (M 3)* (comp. also the proof of M 1 in [I]). Therefore only the sub—‘
cases r <_ s of a), b), ¢) are essential. Hence suppose ¢ is ,x, + 1 e, x,” with
7 < 8 (case a).

Write the following obvious equivalences: ‘

x, + e vy = U Y ((Yr ex ) - (v =2, + 1)) = ‘
= W (DDn e o) - (g ey CH1)). |

Now, in view of (M 2)*, form the “class” CF such that (y,2,2,%,>, € Cf = ‘
=Yr = 2.

Further, form the “converse class” (f of the “class product” {e,> . (41> ‘
such that (¥,2,2,0,>, € Cr = (Yr¥>u € (€) . ((2,0,04 € (F+1>) . |

Finally, let C'* be the “class product” OFCy of CF and OF. Then clearly x, -
+ 1 ey @, = Y22, €. CF = 0 4, T 2,({Y,2,2,2,) 4 € CF), whence z, + 1 ¢,
€ Xy = (X, T4 €4 Dy (D, (CF)).

Now, it is almost obvious how to define (along [(], see the proof of M 1)
the desired “‘class” 4% such that x, + 1e, &, = (@ ... %, ... X ... XDy €4 AF.

Once the method has been described in the case a), its repeated use in the
remaining cases b), ¢), d) may be omitted. Therefore let us return to the mo-
dification in the inductive step 2c¢) of the proof of (M 1) in [G] as needed in
order to prove (M 1)**. But it is not difficult to see how to reduce, without loss
of equivalence, all the terms (in the ¢ in question) (built up by means of
,+1°) to the form I" + 1, where I” has no subterm of the form /7 + 1, by the
introduction of a number of additional auxiliary “set”” variables and a corres-
ponding number of equations. Thus, we are able to apply the method just
described, replacing the instances of ,I'= /T 4+ 1’ by ,I'll>, e, (41> in
order to complete the proof.

Having proved the extended existence metatheorem (M 1)** (for “ppf”
of the model), we define the notion of “‘normality” (extending in an obvious
manner the previous notion of “basic normality’ of concepts of the model) —
and we prove the corresponding existence metatheorems (M2)** —
— (M 6)** on the basis of the (M 1)** in exactly the same way as the notion of
normality and the methateorems M 2—M 6 are based on M 1 in [G]. — Esp-
ecially, we see that <// -+ 1°, *// — 1’ are ‘“‘normal terms’” whenever ‘//” is
a “normal term’” (provided /7 > 0 in the last case).

(v) After these preparations, we come to an important conclusion: Hvery
§ — t-ring ts logarithmic in the sense of the definition III. — Let us prove
this fact. ‘

First of all, note that every inequality w << v between ‘“‘set” variables now
can be taken for a “normal pf”, in view of the equivalences

U=v= (U e — 1) (R)(Ree 2 — 1D 2€ 20 — 1) =2% — 1C, 2v — ] ==
= ’LLR*U



(with the ‘“‘normal terms”, 2* — 1, 2» — 1) — and with the so defined ‘“‘re-
lation” R, (on account of the lemma XXIVa). Second, note that every “sub-
class” of a “set” is a “‘set” itself, in view of the lemma XVI, together with
lemma XXX.

Now, let > 0 be a “set”. Then because of the inequalities 0 < 2z < 2¢ <
< 2#+1 we can define (by (M 2)**) the “‘set”, say ¥,, uniquely determined by
x, by the equivalence (with the “normal” right hand “pf”):

W€y Yo = U €y (2771 — D)(0)(v & 2D (v < w)), (M

(because every 2% = {z}, (¢ = 0) is given by a “normal term’’). Moreover,
‘Y, ist to be taken for a ‘“normal term’ too, and ¥, is “‘a nonvoid set’” for every
x e R= (because clearly e. g. x ¢, ¥, C, 22+1 — 1). Hence by (M 5)**, we have a
“function”, i. e. a ‘“‘class” Y ¢ R* with (Y);, 2 = ¥,; and the “compound
function” (W, Y), is defined for every x ¢ R= in the model, with the ‘“value”
(W, Y),x = W,(y,) as the smallest “element” of the “set” y, (smallest in
the sense of the ordering of &). Moreover, W(y,) > 0, by the definitory equi-
valence (1). Hence W(y,) — 1 is always a “set”’. But this “set”” can never be
an “element’” of y,, though it is, of course, an “element’ of the “set’ 22+t — 1.
Therefore, in view of the definition of the “set’ y, by (1), we ohserve W (y,) —
— 1 €, « and, moreover, W, (y,) — 11is the greatest “‘element’ of « in the sense
of the ordering of &. This means that indeed W, (y,) — 1 = Log () in view
of the lemma XXV and XXVI, g.e. d.

(0) Now, the verification of the axioms C 2, C 3 and C 4 is relatively easy.
In view of the already proved existence ‘‘metatheorems” (of the model), to
every ‘“‘set’” x we have its “sum class” S, (x), its “potency class” P, (x) — and
with every “function” F e R*, the “image class” (F); 2. It suffices to show
that the mentioned “classes” indeed are ‘‘sets”, in constructing suitable
“sets” “containing” them as “subclasses”.

Ad C 2: By definition (provided x ¢ R=, of course), there is

V€ Sy () = T w((v ey w) (W ey X)) .

If x =0 or x = {0}, = 1, then clearly S,(x) = 0.
Hence we can suppose z > 1, w > 0, (v €, w)(w €, ), i. e. there is (v < w) .
.(w < 2). Then (by lemma XXVIIb)) v < Log (w), w = Log (x), whence

v = Log (Log (x)) < Log (Log (x)) + 1.
Therefore by lemma XXVIa)
S (w) C, 2teees@ sl _ 1 = g e. d.
Ad C 3: By definition (provided x ¢ R=), there is
Ve, Py() =0vC .

By lemma XXVIId) we have v C, x> v = 2z < 2x + 1, whence v C, x
DVe, 224 — 1 4. e. Py(x) &, 222+ — 1, g. e. d.
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Ad C 4: Suppose the “class” X € R* is a “function” and x is a “‘set”.

Without loss of generality, we may limit ourselves to x of the form 27 — 1
(z € R=), because every ‘“set” x is e. g. a ‘“‘subset’” of the “set” 20+1 — 1 of
this form — and if the “image class” (X)y (2°%1 — 1) is a “‘set”, the more so

”

(X)y x, as a “subclass” of the former, also is a “set” (as we know).

Hence assume x = 2?2 — 1 (z = 0) and define the “set’” v as foliow (on ac-
count of the existence ,,metatheorem< (M 3)%**)22)

we,v=(u)((0=u =) (~ M ((X)a(2" — 1) D>we, 2 — 1)).

(In words: the “set”” v is the “‘set product’ of all the “‘subsets” of x of the
form 2 — 1, and such that the “X-image class” of 2* — 1 is a ““proper class”.)

Now assume that the “image class” (X); x is a “proper class”. Then we
have 0 << v C, 2. (Note that 0 e, v, of course, if (X); @ + 0, as assumed.) In
this case we observe that

(0 =2y <z)(R1€x V) D2yey V.
whence on account of 0 << v we easily conclude that v = gles)+1 __ 3 in
view of the lemma XXVI, XXIVa). Here, of course, Log (v) €, v (by the same
lemas).

Further, we have 286 — 1 C 2% T 1 — 4 whence clearly

M, ((X), (2" — 1))
by the definition of ». But since 2We™ ! _ 1 — 2kes® _ ) jk- {Log (v)}, we
easily conclude M, ((X); (2%6® ** — 1)). Therefore Log (v) cannot be an “ele-
ment” of v (by the definition of v); this is a contradiction, i. e. indeed the
“image class” (X); « of the “‘set” x cannot be a “proper class”, q. e. d.

(¢) Concerning the validity of the axiom non C 1 (of finity) in our dyadic
model of theorem I, let us first note the following:

The “universal class” V, = — 1 of our dyadic model is “well ordered’ by the
“relation” Ry, = < of @ and ‘“tsomorphic’ (and the more so isomorphic)
with the “class” On, of “ordinal numbers” of this model (as “well ordered” by
€*).

Indeed, we define (on acount of (M 2)**) the “ordering relation”, say B*, in
V4 = — 1 of our model by the equivalence (xy), e, R, =2 — 1§, 20 — 1,
whence <xy), e, R, = x <y. But clearly R, “well orders” V, since every
“class” C(with C <, V) has its dyadic value I/f/((]) for its smallest “‘element’
in the sense of <. Now the “isomorphism” (as a “‘class”) of On, with V is
given by theorem 7.7.1 of [G], which holds in our model on account of the

facts already proved, since the suppositions of this theorem clearly are satis-
fied. — And finally, we now conclude that every “ordinal number” is indeed

22) Note that ~M, is a ‘“‘normal concept’’; see [G], proof of M 2.
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“finite” because every ‘‘set’”’ x has the Log (x) for its greatest (in the sense
of <<) “element”, q. e. d. Thus the proof of our theorem I is complete.

Let us add some remarks concerning the notion of s-t-rings and the
corresponding dyadic models.

(i) We easily observe that the requirements (s I) — (s VII) are necessarily satis-
fied in any dyadic ring which could serve to form a model of Godelian axiomatic
set theory as that of theorem I (no matter whether with or without the axioms
C 1 and E); but it appears that (s I)—(s VII) alone can hardly be sufficient to
this purpose, since it is in no sense obvious how to ensure the axioms of the
group C in this case. Adding the requirement of logarithmicity of & we ensure

02, C 3, but perhaps not C 4. Further, the logarithmicity itself disproves C 1.

We thus see how strong is the additional requirement (s ) together as giving
(with (s VIII)), the logarithmicity and C 4, i. e. we observe how close is the
connection of the “to belong relation” e* with the “ordering relation” < of
the given s-i-ring &, because of the definability of << in “‘normal terms” of
the model (enabled by (s ¢)) —and thus, by means of ¢, (in the model).

(it) Unfortunately enough, the important question of whether there is a
suitable requirement (other than (s 0)) which, being added to (s I)—(s VIII),
would ensure all the axioms A — E of [(3] including C 1 for €, is to be answered
in the negative, by an easy argument of the general valuation theory.

(iii) Forming the discretely ordered ring of “integers” in the usual way
in our model A(S, RN*) we do not know whether this ring is “isomorphic” with
the original ring (RF F,F,>.

(iv) There are two extreme cases of dyadic models A(S, R*) given by a
certain s-t-ring &: (1) The case of R* = the minimal weakly pseudoperfect
immediate extension of &, of the lemma XXX, and (2) the case of R* = the
(whole) pseudoperfect immediate extension ®R (of D), of the lemma XXII.

In the first case, of ¥, is the power of the set of ‘“‘sets”, then the power of
the set of “classes’ is X, too, wherezas in the second case, this last power is 2%

4. Skolemian extensions of s-f-rings

Thus far we have had only one example of s-t-ring: the ring of integers of
our interpreting theory. Our further main task is to construct an uncountable
transfinite o, — sequence of succesively extended s-f-rings — and then
to obtain the desired s-f-ring of the first uncountable power ¥, as the set
sum of this w,-sequence.

Lemma XXXI. Let R = <R . <> be an ordered ring with R = %, (R is
countable). Let § = I D O =) be a. s. c. asymptotically semiordered ring of
functions on R into R, i. e., with [ ¢ F, g ¢ F we assume

f@g)ae=fz+gx, (fOg)ao=/fr.gz
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and | =S g =[x <g'x for every sufficiently great x > x,,. Let F = N, (s
countable too).

Then there exists a subset P & @ of R such that the following is true:
(i) P s cofinal with R, 4. e. (x) M y((y = x)(y € P)) (with x € R, y € R of course).

(ii) The set Fpof all the functions (f € F) such that f'x = 0 for every sufficiently

great x € P, 1. e. the I'p given by
JeFp=Hay)(@=y)lyeP)>fy=0),
is to be taken for the set of all the elements of a prime ideal P of the ring §.

(iii) Putting [ << § for given elements |, (with fef, ge g) of the coset
ring F/P if f'a < g'x for every sufficiently great x e P, we obtain a simply
ordering relation << for the ring §/V.

(iv) f << g holds in F|VP whenever f < g in F, 1. e., the s. c. natural homo-
morpfic mapping of the ring § into the ring /P is order preserving.

(v) Let R be discretely ordered and let F contain every constant function as an ele-
ment. Then F|P is also discretely ordered and, moreover, we can uniquely determine
(by R and by the “marked” sequence {f,}n,, of all the f ¢ F') a simply discretely
ordered ring, say R, such that R is order isomorphic with /P and R is an ordered
subring of R; (R then is a normal term depending uniquely on ,K°).

(vi) If F contains a function g asymptotically surpassing every constant on a
cofinal subset S of G (i. e. if to every x € R there s an y,, e R so that f t > x
for every t e S with t = v, ;) then R is a proper subring of the ring R; R then is
called the Skolemian extension of R.

Proof. o) Assume that the functions f € F' are arranged in a simple sequence
Fn}new,; for the sake of unicity, {f,},.,, may be the “marked” sequence in the
sense of the axiom of choice E. For more convenience, we shall write sg f'x =
= — 1,0, 1 respectively, according to whether fx <0, fa =0, fa>0
respectively, in the sense of the definition I of § 2. For the sake of further
unicity of choice in the subsequent construction, let us make the following
agreement:

Let S denote a cofinal subset of R.

Given the finite subset e = {f,; ... f,} of F, we observe that for every
i=1,2,...,n

S = SR = S((sgf; ) {—1} + (sgf D"{0} + (sg £, 1)"{1})

with disjoint set summands in R. Writing S, ; = (sg f; 1)"{j}) S (with¢ =1, 2, ..
.on; = — 1,0, 1), we further observe that

8= (Sl,—l + SI,O + Sl,l)(S2,*1 “"” Sz,o 4‘ Sz,l) KR
. (Sn,'l + Sn,o + Sn,l) = z ]_—I Si,t'i

¢ =1
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with the disjoint set products || S,,, as summands, where the set sum > is
i1

extended over all the 3" functions ¢ on the finite set {1, 2, ..., n} into the set
{—1,0,1}.

Now, clearly at least one of these 3" disjoint summands of S is cofinal with
S (and therefore with R).

Hence we can and will agree that S, is the “marked” one (in the sense of
the axiom of choice E of [G]) of these cofinal set summands of §. Then ,S,’ is

n

a normal term, depending on the normal term e. Writing S, = n S, i We

(3

see that with the 7 fixed, sg f;# = (7 is a constant function on S,.

Now, set P, = R and P,:; = (P,)y,...5,), by induction (e = {f,...[.})
Then every P, is a cofinal (and hence nonvoid) subset of R for every n e w,
and clearly

P 2P,2...2P,2...

We further see that sg f, is constant on every P, with ¢+ = n. Let {y,},...
be a fixed (“‘marked’”) simple cofinal increasing sequence of elements of R,
aocording to the suppoqition' i. e., to every x ¢ I there is a n, € w, such that
Ym = x for every m = n,. Let further x, be the “marked” element of the non-
void set of all the x ¢« R with (x = y,)(x € P,). Then define the desired P as
the set of all these x, (n € w,).

This done, the verification of the items of the theorem is now easy.

Ad (i): Clearly P is cofinal with R by definition- and we observe that every
sgf (fe F) is ultimately constant on P, i. e. constant except perhaps on a
finite subset of P.

Ad (ii): 1. If f'2 = 0 for every * =, x € P and ¢’x = 0 for every xz = x,,
xeP, then (f © g) x = 0 for every x = max (z;, x,).

2. If f'a = 0 for every ¢ = x;, x e P, and if g e F, then (f O g)’ « = 0 for
every ¥ = a;, x € P also.

3. Assume (f O g)' « = 0 for every x = x, x ¢ P. By the construction of P,
sg f and sg g are constant for ¥ = x;, eP and for ¥ = xz,, x € P respectively.
Take x = max (Z, z;, z,). Then xe P, x =7, hence (f © g)' =0, i.e. f'a =0 or
g’z =0, i. e. f'x =0 whenever x =2, xe P, or ¢g'x = 0 whenever x =z, x¢ P,
by the definition of z and P.

Thus we have proved (ii) of the lemma. The obvious verification of the
remaining items of the thesis of the lemma now can be omitted. Note only that
A): in the item (v), the desired extension %t of R is obtained by the obvious
replacing of (mutually different) cosets (as elements of F/) of constant
functions f, (with f,t = z) by the corresponding constant values x ¢ R; and b):
in the item (vi), we have to work with the given cofinal subset § = S of R
without changing either the assumptions or the results of the construction.
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Remark to lemma XXXI. Our construction essentially is that of Skolem,
see [Sk]. In spite of a great deal of effort, the author was unable to give an
immediate generalization of the just described extension process as holding
for any (not necessarily countable) power of R or of F resp.

Let us return to the needed preparation of a concrete use of the lemma
XXXT in the case of s-t-rings. This is given by the last and important

Convention XX (The set of the s. c. elementary functions of an s--
ring). Let & = (RF F,F,F,D.D,> be a given s-t-ring in the sense of the
definition IV (see also definitions I, IT and III, as well as the theorem I in-
cluding its proof).

(1) Then the following functions on R, resp. on R X R into R are called
basic primitive operations: I, (the ring-addition) F, (the ring-multiplication),
I, (the signum function), F, (the exponentiation of 2 — this last function as
formally extended to the whole R by means of Fyx = 0 for z < 0, in accordance
with Fyx = [27] in the sense of the convention VI) and D,, D, (the first and
the second domain operation) as formally extended to negative elements
of R by assigning them the value —1. The following operations are called
basic secondary operations:

(2a) The ring subtraction Fy (of the conv. II), the operations Fy and Fy
(with Fg (xy> = the integral part of y divided by 2°, F¥ (xy> = the remainder
of y divided by 2, both as formally extended e. g. by Fg (xy) = 0, FF¥ayy =0
for the previously excluded case of # < 0 and characterized by the inequality
(1) and the identity (2) of the lemma 1X); further, the function ¥, with Fyx =
= W(x) = the dyadic value of « for x % 0, as characterized by (I) and (II)
of the lemma XII and as formally extended to the previously excluded case
x=0e.g by F;0 = — 1.

Remark. In order to enumerate further operations, let us note that the
auxiliary functions on R into R, as given by the terms 'u, 2w of the conv.
XIX and serving to the definition of the “first’” resp. of the “second member”
of an “ordered pair’ u = (u*u), now can be redefined on the whole R as
composed of the just mentioned basic operations. Put e. g.

I'u = [?;L] 1, Gu=|Fju — 2FF

H'w = FiFu . [2 "] — sg (G'u),
Then Y = H'u.sg (1 4+ H'1'w) — [270 7T
Yy = H'T'w . sg [1 + H'w) — [270 Hw)

’

in accordance with their previous definition in conv. XIX. Note further that
the function previously given on R= x R= into {0, 1} by the term C? (the s. c.
“characteristical function” of the convention XII) now is defined on the
whole B x R simultaneously with the defining basic operations.
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(2b) The unary or binary operations Fg, Fy, 1o, F 11, F1y, Frg, Fyy, Fos, Fig,
introduced in the definition IV, on R=, resp. on R* X R= only, will now be
formally extended to the whole R or B X R respectively in putting
their results to be = — 1 in all the previously undefined cases. (The
“nonarithmetical”” operation F,; of the “domain” is excepted, see remark
b) to the requirement (s III).) The (so extended) operations are also called
basic operations of &.

(3) (The elementary functions of &). We define:
(3a) The constant functions and the operations recalled or introduced sub

(1), (2a) and (2b) are elementary functions of &; they are defined on the whole
Roron R X R = R? and are into R.

(3b) If @ is an elementary function of n variables, ¥ an elementary function
of m variables and G, H respectively are basic operations of one respectively
of two variables, then the superposition function given by the (normal) term
of the form '@’ (x, ... x,> or of the form

H (D' Cxyoow,)> V' Yy oo Ymdy
(x;eR, y;eR; t=1,..,n; j=1,...,m)

is another elementary function of & of n* =< n, respectively of k* =n 4 m
variables, defined on the whole direct potency R** or R** into R; (n* and k*
denote the number of different variables among the z;, or respectively among
the x; and y;; m, n, 7, j € w, (recursion in w,). Comp *8.73 of [G]).

(3¢) No other functions are elementary functions of &.

Lemma XXXII.

Let © = (RF,F,F,F,D.D,> be a giwen countable s-t-ring (R = R,). Then
the set of the just defined elementary functions of one variable of & (i. e. with
n* = 1, resp. k* = 1 in (3b) of the preceding convention) can be taken for the
set F of elements of an asymptotically semiordered ring of functions § =
= (FD O 3> of the lemma XXXI, if R = (RF F,F;> vs the corresponding
ordered ring of this lemma.

The ring § now contains the subring of all constant funclions as a subring
order isomorphic with R.

Further define the operations j'4, 51, ﬁz on F, respectively on F x F, as
follows:

(Faf) @ = Fi(f'a),
(Dif) = Di(f'z), for every x e R, feF .
(Delfgy) ® = Dylf'x g'x)

Then F is closed with respect to all the operations @, O, ﬁb i)l, ﬁz.
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The function I e F with I'x = x (= (x 4+ x) — x) asymptotically surpasses
every constant on R. The constant function with the value 1 € R s the unit of §.
The set F is countable if R is countable.

The obvious proof can be omitted.

Remark. 1. Note that we cannot assert that the operations ﬁ4, ﬁl, ]32 have
all the properties (in §) of the operations Fy, D,, D, in &;

2. Every, elementary function @ on R» can and will be transformed “value-
by-value”-wise (in the same manner as with IA"4, j)l, BZ) into a function @ on
Fn, by setting

(@ oy eoor [) @ = Do, oy [

These (normal) symbols will be used in the following

Lemma XXXIII. Using the assumption and the result of the preceding lemma
XXXITI, let us form the discretely (simply) ordered coset ring T/ in the sense
of the lemma XXXI. Then the operations ]71\3(: $9), /ﬁ\'4(: 200), l/)\l, Bz defined
on the set ﬁ, (or on F o« ﬁ) of the cosets f, G ... (or of their ordered pairs <f§>, o))

by the equations
P

D TP
Fof = Fyf . Fof = Fif . Dif = Dif,

~, a =

Dylfg> = Dylfg>
together with the addition i L and multiplication F » m F/P, form an ordered se-
ventuple <ﬁ1?1ﬁ2ﬁ3ﬁ4i)\11{)\2> satisfying all the definitory requirements of the
notion of an s-t-ring. By means of the obvious replacement of the s-t-subring
of cosets of constant functions by the given zsomorpkw s-t- rmg & (of the constant
values) we thus obtatn an s-t-ring, say S = (RF, 7 o v DDy, as an uni-
quely determined (by &) extension of the given s-t-ring &, assumed & is coun-
table.

S is the s. c. Skolemian extension of the given s t-ring S; also & + &. The
term & is normal since S 1s such.

Proof. The principally easy and not new proof (see [Sk] for the general
method) may be merely traced.

We transform every elementary function @ on B* (in the just stated sense)
into the function @ on F*. Then we attempt to consider these functions of
functions as operations on Fr into 27’\, in taking them modulo P, in the obvious
sense. In view of the lemma XXXI, this is successful for the primitive as well
as for the basic operations (and therefore for all the elementary functions),
i. e. we clearly observe by induction that the results of these operations on
Fn indeed do not depend on the choice of a function f € F' in a coset f of f mo-
dulo . Now the desired verification of the definitory requirement of the notion
of an s — f-ring rests, formally speaking, in the folowing procedure:
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We systematically replace each variable running over R (or over R=,
R — {0} respectively) in each identity or resp. general inequality (d II),
(d IIT) of the def. II, (1) and (2) of the lemma IX, (I) and (II) of the lemma
XII, as well as in the identities for Fg, Fy, F'yy, Iy, I3, ey, Fi, Frig and Dy,
D, (in the def. IV), in a one-to-one manner by a corresponding term denoting
the value of a variable elementary function of one common variable. Then we
observe that each identity or inequality thus obtained holds almost everywhere
on the set P of lemma XXXI, if we arbitrarily fix the variable functions in ques-
tion, i. e. we see that the corresponding general identity or inequality holds in
F/P (modulo P in §F). Since each of the functions used is indeed an elementary
function (in the sense of conv. XX) as can be easily verified by following the
successive expressions for them, the lemma may be considered as proved.

(Note that indeed & + &, because of the class f(of &/, in R = R) of the inden-
tity function I (I, = x) which surpasses every constant).

Lemma XXXIV. Suppose that {&},_p = {{B 1 0 Fg0 Fyy FyyDyyDoodlasp
18 an wncreasing well-ordered sequence of successively extended s-t-rings, i. e.
if oF < «, then ©,. 18 a s-t-subring (in the usual sense of the inclusions R . C
c Rou Fz’,a* c Fi,a (7/ = 17 2’ 37 4) 5 -Dj,zx* c D]',a (,} - 1’ 2)) Of the S-t-Ti’Ilg @a-
Then & = (RF,F,F,F,D\D,> with R = > R F,=>F,, (i =1,2,3,4),

x<f x<f
D; = 3 D, is also s-t-ring.
a<f
The proof is obvious, in view of the fact that a set sum of successively

extended discretely ordered rings is a discretely ordered ring and by the form
of the other requirements in the definition of s-f-rings (as general inequa-
lities or identities).

Now we come to the two conclusive main theorems of the paper.

Theorem II. There is an s-t-ring & = (RF,F,F,F,D.D,> such that R (the
power of R) is ¥;.

Proof. (For the sake of brevity and better readability, we do not perform
the transfinite construction along the strictly formal scheme of 7.5 of [G];
this formalization is easy to perform).

1. Put &, =: the s-t-ring of integers (of our basic formalized interpreting
set theory of Godel, see [G]).

2. Given &, with « < w, as a countable s-t-ring, take the Skolemian ex-
tension éa (of the lemma XXXIII) of &, for the &,+,.

3. If {&,},.p with a countable limit ordinal § is an increasing transfinite
sequence of successively extended countable s-i-rings in the sense of the
lemma XXXIV, then take the corresponding set sum s-t-ring of this lemma
for &,.

4. Define & as the s-t-ring resulting from the just defined uncountable
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increasing sequence {&,},_,, of countable s-i-rings, in the sense of the lemma
XXXIV. This is the desired uncountable s-t-ring.

Now, by theorem I we get the

Theorem II1. Let & be the uncoutable s-t-ring of theorem 11, and let R* be
any of the weakly pseudoperfect immediate extensions of &, in the sense of the
definition V. Then the corresponding model A(S, R*) of theorem 1 (of the axio-
matic theory of finite sets) is such that the set of “finite ordinal numbers” of
the model is of the first uncountable power ®,.

If firstly: R* is the minimal weakly pseudoperfect extension of & in the sense
of lemma XXX, then the set of all the “classes’ of the model is also of the power ®,.

If secondly: R* is the (whole) pseudoperfect immediate extension of D in the
sense of the convention XVI (iv), then the set of “classes’ of the model is of the
power 2%,

As a somewhat curious corollary to theorem III we can state: The s. c.
Hessenberg’s ring®?) generated by all countable ordinal numbers of the basic set
theory can be taken for a subring of certain “finite ordinals” of any of the just
considered models (of course, the converse is not true).

This result follows at once from R. Sikorskr’s immersion theorem VIII
(of the paper [S]), as applied to the discretly ordered ring of &.

Corrections to the paper [I]

1. The requirement (V) on p. 326, line 19 from above, can easily be deduced from the
remaining requirements; thus (V) can be omitted.

2. On page 327, line 7 from above, ‘... sequences so that the following is true:” is to
read: “... sequences of elements of  so that the following is true:”

3. After the definition of the notion of ideal (see last lines of page 327) for the case
of the abstract Lindenbaum algebra, i. e. of a free generalized Qoc-algebra, we have
omitted the algebraical characterization of the notion of the individual variable, resp.
constant, as wholly dependent on the given ideal I (of the theory in question, see previous
pages 324 and 328).

Indeed, we have to define: Given an ideal I of the free Qo-algebra (as represented
by the corresponding Lindenbaum algebra of the lower predicate calculus, see bottom
of page 326 and too of page 327), then an individual sign £ is an individual variable re-
latively to I if I is invariant under all the substitution-endomorphisms (of the free ®o-
algebra in question), say under Ag g+, of the form

Ag H([D(... 5] = [(I)*( {i} )] .

(The endomorphism g g« is given by an obvious induction, in view of the characteristical
property (3) on page 327 of the definition of a free Q¢-algebra, in replacing the individual
sign & by the individual sign £*).

23) See [H] and [S] for the notion; the “‘exponentiation” is'(lisregarded!
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In short: & is an individual variable relatively to I (by definition) if Aese (I) CT. —

Remark. If we wish to avoid the use of the representing Lindenbaum algebra, we
have to take ,& and ,&* for variable values of the natural indices (of members of the
generating sequences, in the sense of the definition of the abstract Lindenbaum algebra
see p. 327, line 5 from above). —

Now, any individual sign » that is not an individual variable relatively to I is defined
as an individual constant relatively to I.

The reader is requested to supplement the page 327 by this omitted definition — with-
out changing anything in the sequel.

4. In the new proof of theorem 5.31 of [G], on page 336, line 12 from bottom, no

metamathematical notion of ¢a theory @, stronger than @, needs to be considered, since
the proof indeed is a very simple usual indirect proof.

5. On page 342 line 15 from above, we have omitted the (tacitly made) assumption
that to every x ¢ C, the class of all the y with y e x exists, and moreover, is a set. This
explicit assumption is to be inserted there.

On page 343, line 8 from the bottom, instead of C C P(C) write C C P(().
On page 343, line 9 from above, instead of M, Cls, ¢, write M éls, <.
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Pesiome

KTENEJEBCKON AKCMOMATUYECKONW TEOPUN
MHOMECTB, 11

JIAJIINCJIAB PUTI'EP (Ladislav Rieger), IIpara
(ITocrymwio B pepaximo 22/11 1958 r.)

Hacrosimast paGora sigisiercst ¢BoOOJIHBIM 1IPOROIREHNEM PaboTsl aBTOpa
[1] (rojt Tem sie nassanmeM B TOM ke skypHase, 82 (1957), 323—357).

Han anreopandecku-apuMeTndecKuit MeTON HOCTPOSHIA HEHOPMAJILHBIX MO-
JeJIeH TeIeJIeBCROI aKCMOMAaTHYeCKOH TCOPUY KOHEYHBIX MHOJKCCTB, B CMBICJIC
akcnom A — E u3 [G], rie akcnoma Gecroneunoctu G 1 3amMensiercss akcuoMon
non G 1 (koneunoctn). Mero ocHoBaH Ha U3BECTHOM ODOOIIEHUN IUAINYSCKIX
uitcest [ensenst (Hensel).

InaBubiM  pesyibratoM sIBISICTCST JIOKABATENLCTBO CYNIECTBOBAHUA TaKUX
MoJlesiell, B KOTOPBIX MMCETCH ¥; KOHCUHBIX HOPSAKOBBIX YUCE]I.

Mocne serynuresnnvioro § 1 B § 2 npuBoisTes HEOOXOUMbBIE OCHOBBI TEOPUK
T. H. JIMAJINUCCKUX KOJICI[, B CMBIC/IC

Oupejeaennst Il [{uajndecknM KOJTbIOM HA30BeM MUCKPETHO YHOPAZOYEH-
HOE KOJLIO ¢ CAMHUICH, B KOTOPOM MBI WMeeM emié Jo0aBOYHYIO OLiepaluio
,,BO3BeJIeHUs Yncsa 2 B ¢TeleHb’ JUIs HeOTPUIATeIbHBIX ITOKasaTesiell, yIoBIIe-
TBOPAIONYIO CIICIYIONUM VCIIOBISIM:

(@dT):21=2; (A10): 2.9 — 2e+v; (dIIl):2 = a;

(d IV): i RasAOro ¥ 1 KaGKA0IL crereHn 2% ¢yniecTBYIOT DJICMEHTHI ¢, 7 TaK,
uto ¥ = 22 .q 47, 0 =7 < 2% Tak KaK ¢ ONPEICJICHO OJIHOBHAYHO, ITHINCM

! Y
q = Qm] = eJast YacTh Apo0u 9
(d V): JList kaskporo y cymecrsyer crenenb 2%, RKOTOpas eme JIGIUT ¥, HO
22+l yiRe He JICTIUT Y.
Tar kar KayKIbUT HEHYICBOU HIIEMCHT X JIMAIMUYECKOTO KOIbIA MOKHO 0JHO-
3HAYHO 3BanucaTh B Buje x = 27(2g + 1), mokno Bsectu u (0000meHHYIO)

qmammdeckyio Hopmy p = W(x) B cmbiciie ofimeil Teopuu HOPMEPOBAHHLIX

HOJICI.

BB § 3 0cHOBHBIM sIBJIsSIETCST TIOHSATHE T. H. TEOPETHRO-MHOKECTBEIHOT0 Jmajin-
YeCKOTO KoJbHa (s-t-rkosbna), oM. oupexpenenue 11 9ro — nwagnueckoe
KOJBHO ¢ JABYMs A00aBOYHBIMM NpUMUTHBHLIMU oneparuamy Dy, D,, tar na-
3BIBACMBIMY 1ICPBOI M BTOPON onepanueil obracty, u ¢ 100aBOUHLIMUA a8 KCHOMA-
mit (s @) — (s VIII). JloGaBounnic akenoMbl BHIOpanbl TaK, 4yro0b (110cjie pacuim-
PCHMS IABHOTO §-{-KOJIbLA B T. H. IcEBOIEPPEKTHOE (IOUTU COBEPIICHHOE) 110-
noamenue, (KOTopoc sipisieres 0000INCHMEM  PACHTUPEenus $-(-KOJLIA IeblX
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yucesl B KOJBIO IEIBIX Jmaandecknx umcest ['eHsessi) MOKHO GBI TOKasaTh
clejylouee:
Bunaphoe oTHOIIEHUE €y, ONPEEJICHHOC (POPMYIIOI

Y Yy
.’Jce*yz[@{l——2[2m+l] =1

(criepBa TOJIBRO JJIA HEOTPUNATEABHLIX &, ¥, a IIOTOM 1ICPEHCCCHHOe Ha clIyvail
¥ U3 YIOMAHYTOTO IICceBIonepeKTHOI0 IOLOJIHeHUd) YHIOBAETBOPSICT BCCM
aKCMoOMaM TeJICIIeBCKON aKCHOMATHYeCKOM TEOPHUM KOHEYHBIX MHOmiecTB. (Co-

JiepsRaHme 1epBoil rraBHoll reopemsr 1.)

Hawrownen, B § 4 mocTpoeHa HecueTHAs BO3pacTaioNias HOCJIELOBATCILHOCTD
CUETHBIX  §-f-KOJIeI], HauMHAIOMAsCA —S-{-KOJIBHOM ILeJbX yYncesd, o6nemu-
HeHUE KOTOPOH W SBJSETCS WCKOMBIM HECUCTHBIM S-I-KOJIBIOM; TaKUM 06-
pasom pocruraercsi (B cmbiciie TeopeMsl 1I) riasHsli pesyasrar paGorhl —
recopema III. Meron nocrpoenus pacmvpeHus OcHOBAH Ha 00OOHIEHUMU METOHA
Cromema (Skolem), mcnonssoBansoro B pabore [Sk].
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