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NOTE ON K. MENGER’S PROBABILISTIC GEOMETRY

ANTONIN SPACEK, Praha.
(Received June 28, 1955.)

The purpose of this note is to establish a number of completely
clementary results in Menger’s probabilistic geometry from the point
of view of the theory of random processes.

Following roug:hly the definition of K. MENGER in [1] the probabilistic geo-
metry is a theory of random distance functions in an abstract space X = 0.
It will be considered here as a probability measure in a properly chosen
o-algebra of random events in the space F of all real functions defined in
the Cartesian power X2 = X X X. This o-algebra § is defined to be the
smallest o-algebra of subsets of F' containing the class

{f:f@y) <rt:awyeX,reR},
where R denotes the space of all real numbers. If 4 is a probability measure in
& then, according to the definition in [2], (F, §, #) is a random function.

For 4 c X let us denote by 7'(A4) the set of all functions from F which are
distance functions in A. The random function (F,§, u) is said to be a distance
function or a metric with probability one, if u(T(X)) = 1, where x denotes the
outer measure induced by u. This definition seems to be the natural one.

Clearly, the class © of all denumerable subsets of X satisfies the conditions
(2) and (3) in [2] and the transform 7' satisfies the conditions (6), (7) and (8) in
[2]. The property (5) of T' in [2] follows from the obvious fact that if 4 ¢ X and
p is a metric in A then there exists a metric é in X such that 6 and p coincide
on 4. Using theorem 1 in [2] we obtain

Theorem 1. A necessary and sufficient condition for a random function (F,F, 1)
to be a metric with probability one is that

(1) wWf @, x) =0} =1 for xe X,

(2) mf f@,y) >0 =1 Jor . yeX, v £y,
(3) wlf f@y) = f. @)} =1 for ,ye X,
(

4) /‘{ff(xy)+f(y»z)2f(x>z)}:1 fOT Z,y,ZGX.



If the power of X does not exceed 2%, if 4 c X is denumerable and ¢ is
a metric in A then there exists a metric d in X such that the space X is separ-
able with respect to 6 and d coincides with p on 4; hence, using in addition the
fact that the separability is a hereditary property, we can state

Theorem 2. If the power of X does not exceed 2% and the random function
(F, §, ) is @ metric with probability one then it is a separable metric with proba-
bility one. '

Using theorem 1 we can easily verify that a necessary condition for a random
function (F, §, u) to be a metric with probability one is that

(5) /\z{f:f(x,x)<r}:lfor:ceX.r>0,
(6) wif f@y) <r} =0 for 2, yeX, r <0,
(7) mif @, y) <rh=pif: f(y. @) <7} for 2, yeX, reR,
(8) wif @, y) + Hy, 2) < rh = pdf : f(@,2) <1}
for x,y,ze X, re R.

But unfortunately it i¢s not sufficient as will be shown by the following
example:

Let X = {a, b, ¢} be a set consisting of three points. Then there is a proba-
bility measure , in § such that

wolf < f(a, @) = 0} = puo{f : f(b, b) = 0} = uoff : f(c,¢) = 0} =1,
uolf @, ) < & = polf : fla, ¢) < 1 = puglf < f(bo o) < 1} =
=1 —e~t or 0 according as t > 0 or £ < 0,
mo({f < f(a, b) <t} o {f: f(a, ¢) <t} 0 {f:[(b.c) < t}) =
= piolf : [(@, b) <t} uolf : fla. e) <t} uolf : f(b,€) <t} .

hence (5), (6), (7) and (8) are satisfied, but for example

uolf : f(a, b) = f(b, a)} = 0,
toff = fa, b) + f(b. ¢) = [(a, ¢)} = £,

i. e. (3) and (4) do not hold and uy(7'(X)) = 0. Essentially the same example
can be constructed if X is of arbitrary power. We can state that the random
function (F,§, ue) is a metric with probability zero or that it is almost never a
metric.

We see from [1] that (5), (6), (7), (8) correspond exactly to the definition of
a random metric given by Menger, hence, Menger’s conditions do not suffice
for the characterization of a random metric in the sense of our definition.

BIBLIOGRAPHY

[1] K. Menger: Probabilistic geometry. Proc. Nat. Acad. Sci. USA, vol. 37 (1951), pp.
226—229.

[2] A. Spacek: Regularity properties of random transforms. Czechoslowak Mathematical
Journal, vol. 80 (1955), pp. 143—151.

73



Peswome

3AMETKA K BEPOATHOCTHOW TI'EOMETPUU
K. MEHT'EPA

AHTOH IMAYEK (Antonin Spagek), ITpara.
(ITocrynuio B pegarxuuio 28/VI 1955 r.)

Eciu Mbl OnpejiesiuM 1puBefeHHEM B CTaTbe HATYPAIbHBIM CIOCOGOM Iy -
JafiHylo MeTpHKY, TO MKl CMOXKeM BHIPa3UTh HCOOXOQUMBIE 1 JIOCTATOYHBIE
YCJI0BUA I TOTO, 4TO0B cayuaiiHas (QyHKIIA NBYX nepeMeHHBIX, OINpefe-
JeHHas B a0CTPAKTHOM IIPOCTpancTBe, ObIAA MOYTH HABEPHO merpukoit. Ecmou
MOUIHOCTH HTOYO IPOCTPAHCTBA He IHpeBocxoant 2% I ecj npUBEJEHHO e
caydaiinoe npeoOpasoBaHiie ABIAETCA 110YTH HABEPHO METPUKOI, TO OHO I0Y-
TII HaBepHO OyAer cenapabeiabHoil MeTpuKoii. Yrasano, 4ro axenomer Menrepa
HEeOCTATOYHBL JJIA ONPeReJIeHust CIyIaiiHol MeTpUuK.
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