[1] Benhammouda, B., Vazquez-Leal, H.:
A new multi-step technique with differential transform method for analytical solution of some nonlinear variable delay differential equations. SpringerPlus, (2016), 5, 1723. DOI 10.1186/s40064-016-3386-8.
DOI 10.1186/s40064-016-3386-8
[2] Khan, Y., Svoboda, Z., Šmarda, Z.:
Solving certain classes of Lane-Emden type equations using the differential transformation method. Advances in Difference Equations, 174, (2012).
MR 3016691
[3] Odibat, Z. M., Bertelle, C., Aziz-Alaouic, M. A., Duchampd, H. E. G.:
A multi-step differential transform method and application to non-chaotic or chaotic systems. Computers and Mathematics with Applications, 59, (2010), pp. 1462-1472.
DOI 10.1016/j.camwa.2009.11.005 |
MR 2591936
[4] Odibat, Z. M., Kumar, S., Shawagfeh, N., Alsaedi, A., Hayat, T.:
A study on the convergence conditions of generalized differential transform method. Mathematical Methods in the Applied Sciences, 40, (2017), pp 40-48.
DOI 10.1002/mma.3961 |
MR 3583033
[5] Polyanin, A. D., Zhurov, A. I.:
Functional constraints method for constructing exact solutions to delay reactiondiffusion equations and more complex nonlinear equations. Commun. Nonlinear Sci. Numer. Simulat., 19, (2014), pp 417-430.
DOI 10.1016/j.cnsns.2013.07.017 |
MR 3111621
[6] Rebenda, J., Šmarda, Z.:
A differential transformation approach for solving functional differential equations with multiple delays. Commun. Nonlinear Sci. Numer. Simulat., 48, (2017), pp. 246-257.
DOI 10.1016/j.cnsns.2016.12.027 |
MR 3607372
[7] Rebenda, J., Šmarda, Z., Khan, Y.:
A New Semi-analytical Approach for Numerical Solving of Cauchy Problem for Differential Equations with Delay. FILOMAT, 31, (2017), pp. 4725-4733.
DOI 10.2298/FIL1715725R |
MR 3725533