Previous |  Up |  Next

Article

MSC: 35B65, 35K51, 35K57
Keywords:
Strongly coupled parabolic systems, local existence of solutions, global existence of solutions, gradient flow, duality method, boundedness-by-entropy method, nonlinear Aubin-Lions lemma, Kullback-Leibler entropy
Summary:
Some results on cross-diffusion systems with entropy structure are reviewed. The focus is on local-in-time existence results for general systems with normally elliptic diffusion operators, due to Amann, and global-in-time existence theorems by Lepoutre, Moussa, and co-workers for cross-diffusion systems with an additional Laplace structure. The boundedness-by-entropy method allows for global bounded weak solutions to certain diffusion systems. Furthermore, a partial result on the uniqueness of weak solutions is recalled, and some open problems are presented.
References:
[1] Alt, H.-W., Luckhaus., S.: Quasilinear elliptic-parabolic differential equations. Math. Z. 183(1983), 311-341. MR 0706391
[2] Amann., H.: Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems. Diff. Int. Eqs. 3 (1990), 13-75. MR 1014726
[3] Amann., H.: Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. In: H.J. Schmeisser and H. Triebel (editors), Function Spaces, Differential Operators and Nonlinear Analysis, pp. 9-126. Teubner, Stuttgart, 1993. MR 1242579
[4] Bothe., D.: On the Maxwell-Stefan equations to multicomponent diffusion. In: Progress in Nonlinear Differential Equations and their Applications, pp. 81-93. Springer, Basel, 2011. MR 3052573
[5] Burger, M., Francesco, M. Di, Pietschmann, J.-F., HASH(0x1502c88), Schlake., B.: Nonlinear cross-diffusion with size exclusion. SIAM J. Math. Anal. 42 (2010), 2842-2871. DOI 10.1137/100783674 | MR 2745794
[6] Carrillo, J. A., Jüngel, A., Markowich, P., Toscani, G., HASH(0x15056a0), Unterreiter., A.: Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities. Monatsh. Math. 133 (2001), 1-82. DOI 10.1007/s006050170032 | MR 1853037
[7] Chen, L., Jüngel., A.: Analysis of a parabolic cross-diffusion population model without selfdiffusion. J. Diff. Eqs. 224 (2006), 39-59. DOI 10.1016/j.jde.2005.08.002 | MR 2220063
[8] Chen, X., Daus, E., HASH(0x1507b50), Jüngel., A.: Global existence analysis of cross-diffusion population systems for multiple species. To appear in Arch. Ration. Mech. Anal., 2017. arXiv:1608.03696. MR 3740386
[9] Chen, X., Jüngel., A.: A note on the uniqueness of weak solutions to a class of cross-diffusion systems. Submitted for publication, 2017. arXiv:1706.08812. MR 3820423
[10] Chen, X., J\"ungel., A.: Global renormalized solutions to reaction-cross-diffusion systems. Work in progress, 2017. MR 3996789
[11] Chen, X., J\"ungel, A., HASH(0x150e390), Liu., J.-G.: A note on Aubin-Lions-Dubinskiı̆ lemmas. Acta Appl. Math. 133 (2014), 33-43. DOI 10.1007/s10440-013-9858-8 | MR 3255076
[12] Desvillettes, L., Lepoutre, T., HASH(0x150edb0), Moussa., A.: Entropy, duality, and cross diffusion. SIAM J. Math. Anal. 46 (2014), 820-853. DOI 10.1137/130908701 | MR 3165911
[13] Desvillettes, L., Lepoutre, T., Moussa, A., HASH(0x1511518), Trescases., A.: On the entropic structure of reactioncross diffusion systems. Commun. Partial Diff. Eqs. 40 (2015), 1705-1747. DOI 10.1080/03605302.2014.998837 | MR 3359162
[14] Dı́az, J. I., Galiano, G., HASH(0x1512ff0), Jüngel., A.: On a quasilinear degenerate system arising in semiconductor theory. Part I: existence and uniqueness of solutions. Nonlin. Anal. RWA 2 (2001), 305-336. DOI 10.1016/S0362-546X(00)00102-4 | MR 1835610
[15] Dreher, M., J\"ungel., A.: Compact families of piecewise constant functions in $L^p(0, T;B)$. Nonlin. Anal. 75 (2012), 3072-3077. DOI 10.1016/j.na.2011.12.004 | MR 2890969
[16] Fellner, K., Prager, W., Tang., B. Q.: The entropy method for reaction-diffusion systems without detailed balance: first order chemical reaction networks. Kinetic Related Models 10 (2017), 1055-1087. DOI 10.3934/krm.2017042 | MR 3622100
[17] Fischer., J.: Global existence of renormalized solutions to entropy-dissipating reaction-diffusion systems. Arch. Ration. Mech. Anal. 218 (2015), 553-587. DOI 10.1007/s00205-015-0866-x | MR 3360745
[18] Fischer., J.: Weak-strong uniqueness of solutions to entropy-dissipating reaction-diffusion equations. Submitted for publication, 2017. arXiv:1703.00730. MR 3659829
[19] Gajewski., H.: On a variant of monotonicity and its application to differential equations. Nonlin. Anal. TMA 22 (1994), 73-80. DOI 10.1016/0362-546X(94)90006-X | MR 1256171
[20] Gerstenmayer, A., Jüngel., A.: Analysis of a degenerate parabolic cross-diffusion system for ion transport. Submitted for publication, 2017. arXiv:1706.07261. MR 3759555
[21] Herberg, M., Meyries, M., Pr\"uss, J., HASH(0x151c4d8), Wilke., M.: Reaction-diffusion systems of Maxwell-Stefan type with reversible mass-action kinetics. Nonlin. Anal. 159 (2017), 264-284. DOI 10.1016/j.na.2016.07.010 | MR 3659831
[22] Hittmeir, S., J\"ungel., A.: Cross diffusion preventing blow up in the two-dimensional Keller–Segel model. SIAM J. Math. Anal. 43 (2011), 997-1022. DOI 10.1137/100813191 | MR 2801186
[23] Hoang, L., Nguyen, T., Phan., T. V.: Gradient estimates and global existence of smooth solutions to a cross-diffusion system. SIAM J. Math. Anal. 47 (2015), 2122-2177. DOI 10.1137/140981447 | MR 3352604
[24] J\"ungel., A.: The boundedness-by-entropy method for cross-diffusion systems. Nonlinearity 28(2015), 1963-2001. DOI 10.1088/0951-7715/28/6/1963 | MR 3350617
[25] J\"ungel., A.: Entropy Methods for Diffusive Partial Differential Equations. BCAM Springer Briefs,2016. MR 3497125
[26] J\"ungel, A., Stelzer., I.: Entropy structure of a cross-diffusion tumor-growth model. Math. Models Meth. Appl. Sci. 22 (2012), 1250009, 26 pages. DOI 10.1142/S0218202512500091 | MR 2924784
[27] J\"ungel, A., Zamponi., N.: Qualitative behavior of solutions to cross-diffusion systems from population dynamics. J. Math. Anal. Appl. 440 (2016), 794-809. DOI 10.1016/j.jmaa.2016.03.076 | MR 3484995
[28] Kullback, S., Leibler., R.: On information and sufficiency. Ann. Math. Statist. 22 (1951), 79-86. DOI 10.1214/aoms/1177729694 | MR 0039968
[29] Le., D.: Global existence for a class of strongly coupled parabolic systems. Ann. Matem. 185 (2006), 133-154. DOI 10.1007/s10231-004-0131-7 | MR 2179585
[30] Lepoutre, T., Moussa., A.: Entropic structure and duality for multiple species cross-diffusion systems. Nonlin. Anal. 159 (2017), 298-315. DOI 10.1016/j.na.2017.02.008 | MR 3659833
[31] Moussa., A.: Some variants of the classical Aubin-Lions lemma. J. Evol. Eqs. 16 (2016), 65-93. DOI 10.1007/s00028-015-0293-3 | MR 3466213
[32] Otto., F.: $L^1$-contraction and uniqueness for quasilinear elliptic-parabolic equations. J. Diff. Eqs. 131 (1996), 20-38. DOI 10.1006/jdeq.1996.0155 | MR 1415045
[33] Pham, D., Temam., R.: A result of uniqueness of solutions of the Shigesada-Kawasaki-Teramoto equations. Adv. Nonlin. Anal., online first, 2017. arXiv:1703.10544. MR 3918387
[34] Pierre., M.: Global existence in reaction-diffusion systems with control of mass: a survey. Milan J. Math. 78 (2010), 417-455. DOI 10.1007/s00032-010-0133-4 | MR 2781847
[35] Pierre, M., Schmitt., D.: Blow up in reaction-diffusion systems with dissipation of mass. SIAM J. Math. Anal. 28 (1997), 259-269. DOI 10.1137/S0036141095295437 | MR 1434034
[36] Shigesada, N., Kawasaki, K., HASH(0x1532dc8), Teramoto., E.: Spatial segregation of interacting species. J. Theor. Biol. 79 (1979), 83-99. DOI 10.1016/0022-5193(79)90258-3 | MR 0540951
[37] Stará, J., John., O.: Some (new) counterexamples of parabolic systems. Comment. Math. Univ. Carolin. 36 (1995), 503-510. MR 1364491
[38] Wesselingh, J., Krishna., R.: Mass Transfer in Multicomponent Mixtures. Delft University Press, Delft, 2000.
[39] Zamponi, N., Jüngel., A.: Analysis of degenerate cross-diffusion population models with volume filling. Ann. Inst. H. Poincaré Anal. Non Lin. 34 (2017), 1-29. DOI 10.1016/j.anihpc.2015.08.003 | MR 3592676
Partner of
EuDML logo