Previous |  Up |  Next

Article

Title: Converse problem for the two-component radial Gross-Pitaevskii system with a large coupling parameter (English)
Author: Casteras, Jean-Baptiste
Author: Sourdis, Christos
Language: English
Journal: Proceedings of Equadiff 14
Volume: Conference on Differential Equations and Their Applications, Bratislava, July 24-28, 2017
Issue: 2017
Year:
Pages: 397-406
.
Category: math
.
Summary: We consider strongly coupled competitive elliptic systems that arise in the study of two-component Bose-Einstein condensates. As the coupling parameter tends to infinity, solutions that remain uniformly bounded are known to converge to a segregated limiting profile, with the difference of its components satisfying a limit scalar PDE. In the case of radial symmetry, under natural non-degeneracy assumptions on a solution of the limit problem, we establish by a perturbation argument its persistence as a solution to the elliptic system. (English)
Keyword: Singular perturbation, competitive elliptic system, segregation
MSC: 35J57
.
Date available: 2019-09-27T08:25:57Z
Last updated: 2019-09-27
Stable URL: http://hdl.handle.net/10338.dmlcz/703044
.
Reference: [1] Aftalion, A., Sourdis, C.: Interface layer of a two-component Bose-Einstein condensate., Commun. Contemp. Math. 19 (2017), 1650052. MR 3670791, 10.1142/S0219199716500528
Reference: [2] Aftalion, A., Pacella, F.: Uniqueness and nondegeneracy for some nonlinear elliptic problems in a ball., J. Differential Equations 195 (2003), pp. 380-397. MR 2016817, 10.1016/S0022-0396(02)00194-8
Reference: [3] Ao, W., Wei, J., Yao, W.: Uniqueness and nondegeneracy of sign-changing radial solutions to an almost critical elliptic problem., Advances in Differential Equations 21 (2016), pp. 1049–1084. MR 3556760
Reference: [4] Berestycki, H., Lin, T-C., Wei, J., Zhao, C.: On phase-separation models: asymptotics and qualitative properties., Arch. Ration. Mech. Anal. 208 (2013), pp. 163–200. MR 3021546, 10.1007/s00205-012-0595-3
Reference: [5] Berestycki, H., Terracini, S., Wang, K., Wei, J.: On entire solutions of an elliptic system modeling phase separations., Adv. Math. 243 (2013), pp. 102–126. MR 3062741, 10.1016/j.aim.2013.04.012
Reference: [6] Conti, M., Terracini, S., Verzini, G.: Asymptotic estimates for the spatial segregation of competitive systems., Adv. Math. 195 (2005), pp. 524-560. MR 2146353, 10.1016/j.aim.2004.08.006
Reference: [7] Dancer, E. N., Du, Y.: Competing species equations with diffusion, large interactions, andjumping nonlinearities., J. Differential Equations 114 (1994), pp. 434–475. MR 1303035, 10.1006/jdeq.1994.1156
Reference: [8] Dancer, E. N., Wang, K., Zhang, Z.: Uniform H\"older estimate for singularly perturbed parabolic systems of Bose–Einstein condensates and competing species., J. Differential Equations 251 (2011), pp. 2737–2769. MR 2831712, 10.1016/j.jde.2011.06.015
Reference: [9] Dancer, E. N., Wang, K., Zhang, Z.: The limit equation for the Gross-Pitaevskii equations and S. Terracini’s conjecture., J. Functional Analysis 262 (2012), pp. 1087–1131. MR 2863857, 10.1016/j.jfa.2011.10.013
Reference: [10] Dancer, E. N.: On the converse problem for the Gross-Pitaevskii equations with a large parameter., Discr. Cont. Dyn. Syst. 34 (2014), pp. 2481–2493. MR 3177644, 10.3934/dcds.2014.34.2481
Reference: [11] Dancer, E. N.: Slides., https://math.umons.ac.be/anum/pde2015/documents/Dancer.pdf.
Reference: [12] Felmer, P., Martinez, S., Tanaka, K.: Uniqueness of radially symmetric positive solutions for $−\Delta u + u = u^p$ in an annulus., J. Differential Equations 245 (2008), pp. 1198–1209. MR 2436828, 10.1016/j.jde.2008.06.006
Reference: [13] Noris, B., Tavares, H., Terracini, S., Verzini, G.: Uniform H\"older bounds for nonlinear Schr\"odinger systems with strong competition., Comm. Pure Appl. Math. 63 (2010), pp. 267–302. MR 2599456, 10.1002/cpa.20309
Reference: [14] Pacella, F.: Uniqueness of positive solutions of semilinear elliptic equations and related eigenvalue problems., Milan Journal of Mathematics 73 (2005), pp. 221–236. MR 2175043, 10.1007/s00032-005-0045-x
Reference: [15] Santos, E. Moreira dos, Pacella, F.: Morse index of radial nodal solutions of Hénon type equations in dimension two., Communications in Contemporary Mathematics 19 (2017), 1650042. MR 3631930, 10.1142/S0219199716500425
Reference: [16] Shioji, N., Watanabe, K.: A generalized Pohožaev identity and uniqueness of positive radial solutions of $\Delta u + g(r)u + h(r)u^p = 0$., J. Differential Equations 255 (2013), pp. 4448–4475. MR 3105928, 10.1016/j.jde.2013.08.017
Reference: [17] Shioji, N., Watanabe, K.: Uniqueness and nondegeneracy of positive radial solutions of $\operatorname{div}(\rho\nabla u) + \rho(−gu + hu^p) = 0$., Calc. Var. Partial Differential Equations 55 (2016), 42pp. MR 3470747
Reference: [18] Soave, N., Zilio, A.: Uniform bounds for strongly competing systems: The optimal Lipschitz case., Arch. Ration. Mech. Anal. 218 (2015), pp. 647–697. MR 3375537, 10.1007/s00205-015-0867-9
Reference: [19] Soave, N., Zilio, A.: Multidimensional entire solutions for an elliptic system modelling phase separation., Analysis and PDE 9 (2016), pp. 1019-1041. MR 3531365, 10.2140/apde.2016.9.1019
Reference: [20] Soave, N., Zilio, A.: On phase separation in systems of coupled elliptic equations: Asymptotic analysis and geometric aspects., Ann. Inst. H. Poincaré Anal. Non Linéaire 34 (2017), pp. 625–654. MR 3633738, 10.1016/j.anihpc.2016.04.001
Reference: [21] Tanaka, S.: Uniqueness of sign-changing radial solutions for $\Delta u − u + |u|^{p−1}u = 0$ in some ball and annulus., J. Math. Anal. Appl. 439 (2016), pp. 154–170. MR 3474355, 10.1016/j.jmaa.2016.02.036
Reference: [22] Tavares, H., Terracini, S.: Regularity of the nodal set of segregated critical configurations under a weak reflection law., Calc. Var. 45 (2012), pp. 273–317. MR 2984134, 10.1007/s00526-011-0458-z
Reference: [23] Zhang, S., Liu, Z.: Singularities of the nodal set of segregated configurations., Calc. Var. 54 (2015), pp. 2017–2037. MR 3396442, 10.1007/s00526-015-0854-x
Reference: [24] Wang, K.: Uniform Lipschitz regularity of flat segregated interfaces in a singularly perturbed problem., Calc. Var. (2017) 56:135. MR 3690006
Reference: [25] Wei, J., Weth, T.: Asymptotic behaviour of solutions of planar elliptic systems with strong competition., Nonlinearity 21 (2008), pp. 305–317. MR 2384550, 10.1088/0951-7715/21/2/006
Reference: [26] Wei, J., Weth, T.: Radial solutions and phase separation in a system of two coupled Schr\"odinger equations., Arch. Ration. Mech. Anal. 190 (2008), pp. 83-106. MR 2434901, 10.1007/s00205-008-0121-9
.

Files

Files Size Format View
Equadiff_14-2017-1_47.pdf 438.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo