[1] Abdulle, A., Henning, P.:
Localized orthogonal decomposition method for the wave equation with a continuum of scales. Math. Comp., 86 (2017), pp. 549–587.
DOI 10.1090/mcom/3114 |
MR 3584540
[2] Babuška, I. M., Sauter, S. A.:
Is the pollution effect avoidable for the Helmholtz equation considering high wave numbers?. SIAM Rev., 42 (2000), pp. 451–484.
MR 1786934
[3] Jr., P. Ciarlet, Fliss, S., HASH(0x2ad2750), Stohrer, C.:
On the approximation of electromagnetic fields by edge finite elements. Part 2: A heterogeneous multiscale method for Maxwell’s equations, Comput. Math. Appl., 73 (2017), pp. 1900–1919.
DOI 10.1016/j.camwa.2017.02.043 |
MR 3634959
[5] Gallistl, D., Henning, P., HASH(0x2ad4f60), Verf\"urth, B.:
Numerical homogenization of H(curl)-problems. arXiv:1706.02966 (2017), preprint.
MR 3810505
[6] Gallistl, D., Peterseim, D.:
Stable multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering. Comp. Appl. Mech. Eng., 295 (2015), pp. 1–17.
DOI 10.1016/j.cma.2015.06.017 |
MR 3388822
[7] Hellman, F., P.Henning, HASH(0x2ad7fe0), M{\aa}lqvist, A.:
Multiscale mixed finite elements. Discr. Contin. Dyn. Syst. Ser. S, 9 (2016), pp. 1269–1298.
DOI 10.3934/dcdss.2016051 |
MR 3591945
[8] Henning, P., M{\aa}lqvist, A.:
Localized orthogonal decomposition techniques for boundary value problems. SIAM J. Sci. Comput., 36 (2014), pp. A1609–A1634.
DOI 10.1137/130933198 |
MR 3240855
[9] Henning, P., Ohlberger, M., HASH(0x2adb738), Verf\"urth, B.:
A new Heterogeneous Multiscale Method for time-harmonic Maxwell’s equations. SIAM J. Numer. Anal., 54 (2016), pp. 3493–3522.
DOI 10.1137/15M1039225 |
MR 3578028
[10] Henning, P., Ohlberger, M., HASH(0x2adc158), Verf\"urth, B.:
Analysis of multiscale methods for time harmonic Maxwell’s equations. Pro. Appl. Math. Mech., 16 (2016), pp. 559–560.
DOI 10.1002/pamm.201610268 |
MR 3578028
[11] Hiptmair, R.:
Maxwell equations: continuous and discrete. in Computational Electromagnetism, A. Bermúdez de Castro and A. Valli, eds., Lecture Notes in Mathematics, Springer, Cham, 2015, pp. 1–58.
MR 3382059
[13] Moiola, A.: Trefftz-Discontinuous Galerkin methods for time-harmonic wave problems. PhD thesis, ETH Z\"urich, 2011.
[14] Monk, P.:
Finite element methods for Maxwell’s equation. Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2003.
MR 2059447
[15] Ohlberger, M., Verf\"urth, B.:
Localized Orthogonal Decomposition for two-scale Helmholtz-type problems. AIMS Mathematics, 2 (2017), pp. 458–478.
DOI 10.3934/Math.2017.2.458
[16] Peterseim, D.:
Eliminating the pollution effect by local subscale correction. Math. Comp., 86(2017), pp. 1005–1036.
DOI 10.1090/mcom/3156 |
MR 3614010