[1] Ariño M., Muckenhoupt B.:
Maximal functions on classical Lorentz spaces and Hardy’s inequality with weights for nonincreasing functions. Trans. Amer. Math. Soc. 320 (1990), no. 2, 727–735. Zbl 0716.42016, MR 90k:42034.
MR 0989570 |
Zbl 0716.42016
[2] Benedetto J. J., Heinig H. P.:
Weighted Hardy spaces and the Laplace transform. Harmonic Analysis Conference, Cortona, Italy. Lecture Notes in Math. vol. 992, Springer Verlag, Berlin, Heidelberg, 1983, pp. 240–277. Zbl 0513.44001, MR 85j:44001.
MR 0729358 |
Zbl 0513.44001
[5] Bennett C., Sharpley R.:
Interpolation of Operators. Pure and Applied Mathematics, 129. Academic Press, Inc., Boston, MA, 1988. Zbl 0647.46057, MR 89e:46001.
MR 0928802 |
Zbl 0647.46057
[6] Brudnyi, Yu. A., Krugljak N. Ya.:
Interpolation Functors and Interpolation Spaces. North-Holland Mathematical Library, 47. North-Holland Publishing Co., Amsterdam, 1991. Zbl 0743.46082, MR 93b:46141.
MR 1107298 |
Zbl 0743.46082
[7] Calderón A. P.:
Spaces between $L^1$ and $L^\infty $ and the theorem of Marcinkiewicz. Studia Math. 26 (1966), 273–299. Zbl 0149.09203, MR 34 #3295.
MR 0203444
[8] Carro M., Gogatishvili A., Martín J., Pick L.:
Functional properties of rearrangement invariant spaces defined in terms of oscillations. J. Funct. Anal. 229 (2005), no. 2, 375–404. Zbl 1110.46012, MR 2006g:46051.
DOI 10.1016/j.jfa.2005.06.012 |
MR 2182593 |
Zbl 1110.46012
[9] Gogatishvili A., Pick L.:
Duality principles and reduction theorems. Math. Inequal. Appl. 3 (2000), no. 4, 539–558. Zbl 0985.46013, MR 2002c:46056.
MR 1786395 |
Zbl 0985.46013
[10] Gogatishvili A., Pick L.:
Discretization and anti-discretization of rearrangement-invariant norms. Publ. Mat. 47 (2003), no. 2, 311–358. Zbl 1066.46023, MR 2005f:46053.
MR 2006487 |
Zbl 1066.46023
[11] Gol’dman M. L. Heinig H. P., Stepanov V. D.:
On the principle of duality in Lorentz spaces. Canad. J. Math. 48 (1996), no. 5, 959–979. Zbl 0874.47011, MR 97h:42008.
MR 1414066
[13] Hardy G., Littlewood J. E., Pólya G.:
Inequalities. Second Edition. Cambridge University Press, Cambridge, 1952. Zbl 0047.05302, MR 13,727e.
MR 0046395 |
Zbl 0047.05302
[15] Heinig H. P., Maligranda L.:
Weighted inequalities for monotone and concave functions. Studia Math. 116 (1995), no. 2, 133–165. Zbl 0851.26012, MR 96g:26022.
MR 1354136 |
Zbl 0851.26012
[16] Jr M. Jodeit ,. Torchinsky A.:
Inequalities for Fourier transforms. Studia Math. 37 (1971), 245–276. Zbl 0224.46037, MR 45 #9121.
MR 0300073
[17] Kerman R., Milman M., Sinnamon G.:
On the Brudnyi-Krugljak duality theory of spaces formed by the K-method of interpolation. To appear.
MR 2351114
[18] Kufner A., Persson L.-E.:
Weighted Inequalities of Hardy Type. World Scientific Publishing Co., London, 2003. Zbl 1065.26018, MR 2004c:42034.
MR 1982932 |
Zbl 1065.26018
[19] Lorentz G. G.:
Bernstein Polynomials. Mathematical Expositions, no. 8. University of Toronto Press, Toronto, 1953. Zbl 0051.05001, MR 15,217a.
MR 0057370 |
Zbl 0051.05001
[20] Maligranda L.:
Weighted inequalities for monotone functions. Fourth International Conference on Function Spaces (Zielona Góra, 1995). Collect. Math. 48 (1997), no. 2–4, 687–700. Zbl 0916.26007, MR 98m:26015).
MR 1602636
[21] Maligranda L.:
Weighted inequalities for quasi-monotone functions. J. London Math. Soc. (2) 57 (1998), no. 2, 363–370. Zbl 0923.26016, MR 99j:26017.
MR 1644209 |
Zbl 0923.26016
[22] Opic B., Kufner A.:
Hardy-type Inequalities. Pitman Research Notes in Mathematics Series, 219. Longman Scientific & Technical, Longman House, Burnt Mill, Harlow, Essex, England, 1990. Zbl 0698.26007, MR 92b:26028.
MR 1069756 |
Zbl 0698.26007
[23] Sawyer E. T.:
Boundedness of classical operators on classical Lorentz spaces. Studia Math. 96 (1990), no. 2, 145–158. Zbl 0705.42014, MR 91d:26026.
MR 1052631 |
Zbl 0705.42014
[24] Sinnamon G.:
Operators on Lebesgue Spaces with General Measures. Doctoral Thesis, McMaster University, 1987.
MR 2635708
[26] Sinnamon G.:
Interpolation of spaces defined by the level function. Harmonic Analysis (Sendai, 1990), ICM-90 Satell. Conf. Proc. Springer, Tokyo, 1991, pp. 190–193. Zbl 0783.46018, MR 94k:46063.
MR 1261440
[27] Sinnamon G.:
Spaces defined by the level function and their duals. Studia Math. 111 (1994), no. 1, 19–52. Zbl 0805.46027, MR 95k:46043.
MR 1292851 |
Zbl 0805.46027
[28] Sinnamon G.:
The level function in rearrangement invariant spaces. Publ. Mat. 45 (2001), no. 1,175–198. Zbl 0987.46033, MR 2002b:46048.
MR 1829583
[29] Sinnamon G.:
Embeddings of concave functions and duals of Lorentz spaces. Publ. Mat. 46 (2002), no. 2, 489–515. Zbl 1043.46026, MR 2003h:46042.
MR 1934367 |
Zbl 1043.46026
[30] Sinnamon G.:
The Fourier transform in weighted Lorentz spaces. Publ. Mat. 47 (2003), no. 1, 3–29. Zbl 1045.42004, MR 2004a:42032.
MR 1970892 |
Zbl 1045.42004
[31] Sinnamon G.:
Transferring monotonicity in weighted norm inequalities. Collect. Math. 54 (2003), no. 2, 181–216. Zbl 1093.26025, MR 2004m:26031.
MR 1995140 |
Zbl 1093.26025
[32] Sinnamon G.: Hardy’s inequality and monotonicity. Function Spaces, Differential Operators and Nonlinear Analysis (P. Drábek and J. Rákosník, eds.). Conference Proceedings, Milovy, Czech Republic, May 28-June 2, 2004. Mathematical Institute of the Academy of Sciences of the Czech Republic, Prague, 2005, pp. 292–310.
[33] Sinnamon G., Mastyło M.:
A Calderón couple of down spaces. J. Funct. Anal. 240 (2006), no. 1, 192–225. Zbl pre05083447, MR 2007i:46021.
MR 2259895 |
Zbl 1116.46015
[34] Sinnamon G., Stepanov V. D.:
The weighted Hardy inequality: New proofs and the case $p=1$. London Math. Soc. (2) 54 (1996), no. 1, 89–101. Zbl 0856.26012, MR 97e:26021.
MR 1395069 |
Zbl 0856.26012
[35] Zaanen A. C.:
Integration. Completely revised edition of An introduction to the theory of integration North-Holland Publishing Co., Amsterdam; Interscience Publishers John Wiley & Sons, Inc., New York, 1967. Zbl 0175.05002, MR 36 #5286.
MR 0222234 |
Zbl 0175.05002