Previous |  Up |  Next

Article

Summary:
Given any operator ideal $\mathcal{I}$, there are two natural functionals $\gamma_{\mathcal{I}}(T)$, $\beta_{\mathcal{I}}(T)$ that one can use to show the deviation of the operator $T$ to the closed surjective hull of $\mathcal{I}$ and to the closed injective hull of $\mathcal{I}$, respectively. We describe the behaviour under interpolation of $\gamma_{\mathcal{I}}$ and $\beta_{\mathcal{I}}$. The results are part of joint works with A. Martínez, A. Manzano and P. Fernández-Martínez.
References:
[1] Aksoy A. G., Maligranda L. : Real interpolation and measure of weak noncompactness. Math. Nachr. 175 (1995), 5–12. MR 1355009 | Zbl 0843.46013
[2] Astala K. : On measures of non-compactness and ideal variations in Banach spaces. Ann. Acad. Sci. Fenn. Ser. A. I Math. Dissertationes 29 (1980), 1–42. MR 0575533
[3] Astala K., Tylli H.-O. : Seminorms related to weak compactness and to Tauberian operators. Math. Proc. Cambridge Philos. Soc. 107 (1990), 367–375. MR 1027789 | Zbl 0709.47009
[4] Beauzamy B. : Espaces d’Interpolation Réels: Topologie et Géométrie. Springer-Verlag, Lecture Notes in Math. 666, Berlin 1978. MR 0513228 | Zbl 0382.46021
[5] Bergh J., Löfström J. : Interpolation spaces. An Introduction. Springer-Verlag, Berlin 1976. MR 0482275 | Zbl 0344.46071
[6] Beucher O. J. : On interpolation of strictly (co-)singular linear operators. Proc. Royal Soc. Edinburgh 112 A (1989), 263–269. MR 1014656 | Zbl 0691.46048
[7] Cobos F., Edmunds D. E., Potter A. J. B. : Real interpolation and compact linear operators. J. Funct. Anal. 88 (1990), 351–365. MR 1038446 | Zbl 0704.46049
[8] Cobos F., Fernandez D. L. : On interpolation of compact operators. Ark. Mat. 27 (1989), 211–217. MR 1022277 | Zbl 0691.46047
[9] Cobos F., Martínez P. Fernández,- Martínez A. : Interpolation of the measure of non-compactness by the real method. preprint.
[10] Cobos F., Kühn T., Schonbek T. : One-sided compactness results for Aronszajn-Gagliardo functors. J. Funct. Anal. 106 (1992), 274–313. MR 1165856 | Zbl 0787.46061
[11] Cobos F., Manzano A., Martínez A. : Interpolation theory and measures related to operator ideals. preprint. Zbl 0945.46009
[12] Cobos F., Martínez A. : Remarks on interpolation properties of the measure of weak non-compactness and ideal variations. To appear in Math. Nachr. MR 1719795 | Zbl 0944.46012
[13] Cobos F., Martínez A. : Extreme estimates for interpolated operators by the real method. To appear in J. London Math. Soc. MR 1753819 | Zbl 0940.46011
[14] Cobos F., Peetre J. : Interpolation of compactness using Aronszajn-Gagliardo functors. Israel J. Math. 68 (1989), 220–240. MR 1035891 | Zbl 0716.46054
[15] Cwikel M. : Real and complex interpolation and extrapolation of compact operators. Duke Math. J. 65 (1992), 333–343. MR 1150590 | Zbl 0787.46062
[16] Davis W. J., Figiel T., Johnson W. B., Pelczyński A. : Factoring weakly compact operators. J. Funct. Anal. 17 (1974), 311–327. MR 0355536
[17] Blasi F. S. De : On a property of the unit sphere in a Banach space. Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.) 21 (1977), 259–262. MR 0482402 | Zbl 0365.46015
[18] González M., Saksman E., Tylli H.-O. : Representing non-weakly compact operators. Studia Math. 113 (1995), 265–282. MR 1330211 | Zbl 0832.47039
[19] Heinrich S. : Closed operator ideals and interpolation. J. Funct. Anal. 35 (1980), 397–411. MR 0563562 | Zbl 0439.47029
[20] Jarchow H., Matter U. : Interpolative constructions for operator ideals. Note Mat. 8 (1988), 45–56. MR 1050508 | Zbl 0712.47039
[21] Kantorovich L. V., Akilov G. P. : Functional analysis. Pergamon, Oxford 1982. MR 0664597 | Zbl 0484.46003
[22] skii M. A. Krasnosel,’ : On a theorem of M. Riesz. Soviet Math. Dokl. 1 (1960), 229–231. MR 0119086
[23] skii M. A. Krasnosel,’ Zabreiko P. P., Pustylnik E. I., Sobolevskii P. E. : Integral operators in spaces of summable functions. Noordhoff Inter. Publ., Leyden 1976. MR 0385645
[24] Lebow A., Schechter M. : Semigroups of operators and measures of non-compactness. J. Funct. Anal. 7 (1971), 1–26. MR 0273422
[25] ,,
[26] Lions J. L., Peetre J. : Sur une classe d’espaces d’interpolation. Inst. Hautes Etudes Sci. Publ. Math. 19 (1964), 5–68. MR 0165343 | Zbl 0148.11403
[27] Maligranda L., Quevedo A. : Interpolation of weakly compact operators. Arch. Math. 55 (1990), 280–284. MR 1075053 | Zbl 0696.46049
[28] Mastylo M. : On interpolation of weakly compact operators. Hokkaido Math. J. 22 (1993), 105–114. MR 1226586 | Zbl 0789.46061
[29] Neidinger R. D. : Factoring operators through hereditarily-$\ell _p$ spaces. In: Banach Spaces, Proc. Conf. Columbia /Mo. 1984, Lecture Notes in Math. 1166, Springer-Verlag, Berlin 1985, 116–128. MR 0827767
[30] Neidinger R. D. : Concepts in the real interpolation of Banach spaces. Longhorn Notes of the Univ. of Texas at Austin, Funct. Anal. Seminar 1986–1987, 1–15. MR 0967087
[31] Pelczyński A. : On strictly singular and strictly cosingular operator. I: Strictly singular and strictly cosingular operators in $C(S)$-spaces. Bull. Acad. Pol. Sci., Ser. Sci. Math. Astron. Phys. 13 (1965), 31–41. MR 0177300
[32] Pietsch A. : Operator Ideals. North-Holland, Amsterdam 1980. MR 0582655 | Zbl 0455.47032
[33] Rosenthal H. P. : A characterization of Banach spaces containing $\ell _1$. Proc. Nat. Acad. Sci. USA 71 (1974), 2411–2413. MR 0358307
[34] Teixeira M. F., Edmunds D. E. : Interpolation theory and measure of non-compactness. Math. Nachr. 104 (1981), 129–135. MR 0657887
[35] Triebel H. : Interpolation theory, function spaces, differential operators. North-Holland, Amsterdam 1978. MR 0503903 | Zbl 0387.46033
[36] Tylli H.-O. : The essential norm of an operator is not self-dual. Israel J. Math. 91 (1995), 93–110. MR 1348307 | Zbl 0838.47010
[37] Weis L. : On the surjective (injective) envelope of strictly (co-)singular operators. Studia Math. 54 (1976), 285–290. MR 0399908 | Zbl 0323.47016
Partner of
EuDML logo