Previous |  Up |  Next

Article

Title: Infinitely many solutions for Kirchhoff-type equations involving critical growth in Orlicz-Sobolev with negative energies (English)
Author: Bendib, Elmostafa
Author: Khiddi, Mustapha
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 70
Issue: 3
Year: 2025
Pages: 441-456
Summary lang: English
.
Category: math
.
Summary: We investigate a class of Kirchhoff-type equations characterized by critical growth within Orlicz-Sobolev spaces. The main result establishes the existence of infinitely many solutions with negative energy. Using an adapted concentration-compactness principle and advanced variational methods, we overcome key challenges such as non-compactness and non-differentiability to the associated functionals. This work extends existing results to more general functional spaces, offering new insights into nonlocal nonlinear equations. (English)
Keyword: Kirchhoff type problem
Keyword: Orlicz-Sobolev space
Keyword: $\Delta _{2}$-condition
MSC: 35A15
MSC: 35J62
MSC: 46E30
DOI: 10.21136/AM.2025.0059-25
.
Date available: 2025-07-01T12:21:02Z
Last updated: 2025-07-07
Stable URL: http://hdl.handle.net/10338.dmlcz/153027
.
Reference: [1] Benci, V., Fortunato, D., Pisani, L.: Soliton like solutions of a Lorentz invariant equation in dimension 3.Rev. Math. Phys. 10 (1998), 315-344. Zbl 0921.35177, MR 1626832, 10.1142/S0129055X98000100
Reference: [2] Dacorogna, B.: Introduction to the Calculus of Variations.World Scientific, Singapore (2025). Zbl 1548.49001, MR 4810953, 10.1142/q0451
Reference: [3] Donaldson, T.: Nonlinear elliptic boundary value problems in Orlicz-Sobolev spaces.J. Differ. Equations 10 (1971), 507-528. Zbl 0218.35028, MR 0298472, 10.1016/0022-0396(71)90009-X
Reference: [4] Donaldson, T. K., Trudinger, N. S.: Orlicz-Sobolev spaces and imbedding theorems.J. Funct. Anal. 8 (1971), 52-75. Zbl 0216.15702, MR 0301500, 10.1016/0022-1236(71)90018-8
Reference: [5] Fukagai, N., Ito, M., Narukawa, K.: Positive solutions of quasilinear elliptic equations with critical Orlicz-Sobolev nonlinearity on $\Bbb{R}^N$.Funkc. Ekvacioj, Ser. Int. 49 (2006), 235-267. Zbl 1387.35405, MR 2271234, 10.1619/fesi.49.235
Reference: [6] Fukagai, N., Ito, M., Narukawa, K.: Quasilinear elliptic equations with slowly growing principal part and critical Orlicz-Sobolev nonlinear term.Proc. R. Soc. Edinb., Sect. A, Math. 139 (2009), 73-106. Zbl 1169.35017, MR 2487034, 10.1017/S0308210507000765
Reference: [7] Fukagai, N., Narukawa, K.: Nonlinear eigenvalue problem for a model equation of an elastic surface.Hiroshima Math. J. 25 (1995), 19-41. Zbl 0836.35112, MR 1322600, 10.32917/hmj/1206127823
Reference: [8] Fukagai, N., Narukawa, K.: On the existence of multiple positive solutions of quasilinear elliptic eigenvalue problems.Ann. Mat. Pura Appl. (4) 186 (2007), 539-564. Zbl 1223.35132, MR 2317653, 10.1007/s10231-006-0018-x
Reference: [9] Azorero, J. Garcia, Alonso, I. Peral: Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term.Trans. Am. Math. Soc. 323 (1991), 877-895. Zbl 0729.35051, MR 1083144, 10.1090/S0002-9947-1991-1083144-2
Reference: [10] Hssini, E. M., Tsouli, N., Haddaoui, M.: Existence results for a Kirchhoff type equation in Orlicz-Sobolev spaces.Adv. Pure Appl. Math. 8 (2017), 197-208. Zbl 1381.35041, MR 3667067, 10.1515/apam-2016-0065
Reference: [11] Kavian, O.: Introduction à la théorie des points critiques et applications aux problèmes elliptiques.Mathématiques & Applications (Berlin) 13. Springer, Paris (1993), French. Zbl 0797.58005, MR 1276944
Reference: [12] Khiddi, M., Sbai, S. M.: Infinitely many solutions for non-local elliptic non-degenerate $p$-Kirchhoff equations with critical exponent.Complex Var. Elliptic Equ. 65 (2020), 368-380. Zbl 1430.35255, MR 4052692, 10.1080/17476933.2019.1627527
Reference: [13] Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The limit case. I.Rev. Mat. Iberoam. 1 (1985), 145-201. Zbl 0704.49005, MR 0834360, 10.4171/RMI/6
Reference: [14] Mihăilescu, M., Repovš, D.: Multiple solutions for a nonlinear and non-homogeneous problem in Orlicz-Sobolev spaces.Appl. Math. Comput. 217 (2011), 6624-6632. Zbl 1211.35117, MR 2773249, 10.1016/j.amc.2011.01.050
Reference: [15] Tsouli, N., Haddaoui, M., Hssini, E. M.: Multiple solutions for a critical $p(x)$-Kirchhoff type equations.Bol. Soc. Parana Mat. (3) 38 (2020), 197-211. Zbl 1431.35014, MR 3912304
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo