[1] Agrawal, V., Gautam, S. S.:
IGA: A simplified introduction and implementation details for finite element users. J. Inst. Engineers (India), Ser. C 100 (2019), 561-585.
DOI 10.1007/s40032-018-0462-6
[2] Argyris, J. H., Scharpf, D. W.:
A sequel to Technical Note 13: The curved tetrahedronal and triangular elements TEC and TRIC for the matrix displacement method. Aeronaut. J. 73 (1969), 55-65.
DOI 10.1017/s0001924000053574
[4] Babuška, I.:
The stability of the domain of definition with respect to basic problems of the theory of partial differential equations, especially with respect to the theory of elasticity. II. Czech. Math. J. 11 (1961), 165-203 Russian.
DOI 10.21136/cmj.1961.100453 |
MR 0125326 |
Zbl 0126.11401
[7] Berger, A. E.:
Error Estimates for the Finite Element Method: Ph.D. Thesis. Massachusetts Institute of Technology, Cambridge (1972).
MR 2940236
[8] Berger, A. E.:
Two types of piecewise quadratic spaces and their order of accuracy for Poisson's equation. The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations Academic Press, New York (1972), 757-761.
DOI 10.1016/b978-0-12-068650-6.50033-2 |
MR 0416064 |
Zbl 0282.65078
[10] Berger, A. E., Scott, R., Strang, G.:
Approximate boundary conditions in the finite element method. Symposia Mathematica. Vol. X Academic Press, London (1972), 295-313.
MR 0403258 |
Zbl 0266.73050
[12] Blair, J. J.:
Approximate Solution of Elliptic and Parabolic Boundary Value Problems: Ph.D. Thesis. University of California, Berkeley (1970).
MR 2619649
[17] Chessa, J.:
Programing the finite element method with Matlab. Available at
https://www.math.purdue.edu/ {caiz/math615/matlab_fem.pdf} (2002).
[19] Ciarlet, P. G., Raviart, P.-A.:
The combined effect of curved boundaries and numerical integration in isoparametric finite element methods. The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations Academic Press, New York (1972), 409-474.
DOI 10.1016/b978-0-12-068650-6.50020-4 |
MR 0421108 |
Zbl 0262.65070
[21] Dey, S.: Curvilinear Mesh generation in 3D. Proceedings of the 8th International Meshing Roundtable South Lake Tahoe, California, USA (1999), 407-417.
[24] Geuzaine, C., Johnen, A., Lambrechts, J., Remacle, J.-F., Toulorge, T.:
The generation of valid curvilinear meshes. IDIHOM: Industrialization of High-Order Methods -- A Top-Down Approach Notes on Numerical Fluid Mechanics and Multidisciplinary Design 128. Springer, Cham (2015), 15-39.
DOI 10.1007/978-3-319-12886-3_2
[25] Geuzaine, C., Remacle, J.-F.:
Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79 (2009), 1309-1331.
DOI 10.1002/nme.2579 |
MR 2566786 |
Zbl 1176.74181
[27] Hussain, F., Karim, M. S., Ahamad, R.: Appropriate Gaussian quadrature formulae for triangles. Int. J. Appl. Math. Comput. 4 (2012), 24-38.
[30] Jordan, W. B.:
Plane Isoparametric Structural Element. Knolls Atomic Power Laboratory, New York (1970).
DOI 10.2172/4157041
[43] Ruiz-Gironés, E., Sarrate, J., Roca, X.:
Generation of curved high-order meshes with optimal quality and geometric accuracy. Procedia Eng. 163 (2016), 315-327.
DOI 10.1016/j.proeng.2016.11.108
[45] Sastry, S. P., Kirby, R. M.:
On interpolation errors over quadratic nodal triangular finite elements. Proceedings of the 22nd International Meshing Roundtable Springer, Cham (2014), 349-366.
DOI 10.1007/978-3-319-02335-9_20
[46] Scott, L. R.:
Finite-Element Techniques for Curved Boundaries: Ph.D. Thesis. Massachusetts Institute of Technology, Cambridge (1973).
MR 2940387
[48] Sevilla, R., Fernández-Méndez, S.:
Numerical integration over 2D NURBS-shaped domains with applications to NURBS-enhanced FEM. Finite Elem. Anal. Des. 47 (2011), 1209-1220.
DOI 10.1016/j.finel.2011.05.011 |
MR 2817724
[49] Sevilla, R., Fernández-Méndez, S., Huerta, A.:
NURBS-enhanced finite element method. European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2006 Delft University of Technology, Delft (2006), 1-13.
MR 2455923
[54] Sevilla, R., Fernández-Méndez, S., Huerta, A.:
NURBS-enhanced finite element method (NEFEM): A seamless bridge between CAD and FEM. Arch. Comput. Methods Eng. 18 (2011), 441-484.
DOI 10.1007/s11831-011-9066-5 |
MR 2851386
[58] Xie, Z., Sevilla, R., Hassan, O., Morgan, K.:
The generation of arbitrary order curved meshes for 3D finite element analysis. Comput. Mech. 51 (2013), 361-374.
DOI 10.1007/s00466-012-0736-4 |
MR 3029066
[59] Xue, D.:
Control of Geometry Error in $hp$ Finite Element (FE) Simulations of Electromagnetic (EM) Waves: Ph.D. Thesis. The University of Texas at Austin, Austin (2005).
MR 2707661
[60] Xue, D., Demkowicz, L.:
Control of geometry induced error in $hp$ finite element (FE) simulations. I. Evaluation of FE error for curvilinear geometries. Int. J. Numer. Anal. Model. 2 (2005), 283-300.
MR 2112649 |
Zbl 1073.65122