Previous |  Up |  Next

Article

Title: New generalization of compound Rayleigh distribution: Different estimation methods based on progressive type-II censoring schemes and applications (English)
Author: Shojaee, Omid
Author: Azimi, Reza
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 70
Issue: 2
Year: 2025
Pages: 231-256
Summary lang: English
.
Category: math
.
Summary: Fitting a suitable distribution to the data from a real experiment is a crucial topic in statistics. However, many of the existing distributions cannot account for the effect of environmental conditions on the components under test. Moreover, the components are usually heterogeneous, meaning that they do not share the same distribution. In this article, we aim to obtain a new generalization of the Compound Rayleigh distribution by using mixture models and incorporating the environmental conditions on the components. The new distribution is expected to be a flexible distribution that encompasses some other distributions as special cases. We will also examine the properties and aging criteria of the new distribution. Over the past decades, various methods to estimate the unknown parameters of a statistical distribution have been proposed from the availability of type-II censored data. Thus, we estimate the parameters of the proposed distribution in the presence of type-II censored data using a Monte Carlo simulation study and real data analysis with maximum likelihood, maximum product of spacings, and Bayesian methods. Finally, different methods are compared by calculating the mean square error (MSE) of the resulting estimators. (English)
Keyword: Bayesian estimation
Keyword: compound Rayleigh distribution
Keyword: maximum likelihood
Keyword: maximum product of spacings
Keyword: Monte Carlo simulation
Keyword: Rayleigh distribution
MSC: 62E15
MSC: 62F10
MSC: 62N05
MSC: 62P10
DOI: 10.21136/AM.2025.0078-24
.
Date available: 2025-05-26T12:17:15Z
Last updated: 2025-06-02
Stable URL: http://hdl.handle.net/10338.dmlcz/152981
.
Reference: [1] Al-Babtain, A. A.: A new extended Rayleigh distribution.J. King Saud Univ. Sci. 32 (2020), 2576-2581. 10.1016/j.jksus.2020.04.015
Reference: [2] Algarni, A., Almarashi, A. M., Abd-Elmougod, G. A., Abo-Eleneen, Z. A.: Two compound Rayleigh lifetime distributions in analyses the jointly type-II censoring samples: DSGT2018.J. Math. Chem. 58 (2020), 950-966. Zbl 1439.62212, MR 4087456, 10.1007/s10910-019-01058-5
Reference: [3] Ali, S.: Mixture of the inverse Rayleigh distribution: Properties and estimation in a Bayesian framework.Appl. Math. Modelling 39 (2015), 515-530. Zbl 1432.62340, MR 3282592, 10.1016/j.apm.2014.05.039
Reference: [4] Al-Zahrani, B., Ali, M. A.: Recurrence relations for moments of multiply type-II censored order statistics from Lindley distribution with applications to inference.Stat. Optim. Inf. Comput. 2 (2014), 147-160. MR 3351377, 10.19139/soic.v2i2.55
Reference: [5] Asgharzadeh, A., Valiollahi, R., Raqab, M. Z.: Estimation of $ Pr(Y<X)$ for the two-parameter generalized exponential records.Commun. Stat., Simulation Comput. 46 (2017), 379-394. Zbl 1359.62159, MR 3563501, 10.1080/03610918.2014.964046
Reference: [6] Balakrishnan, N., Aggarwala, R.: Progressive Censoring: Theory, Methods, and Applications.Birkhäuser, Boston (2000). MR 1763020, 10.1007/978-1-4612-1334-5
Reference: [7] Balakrishnan, N., Cramer, E.: The Art of Progressive Censoring.Statistics for Industry and Technology. Birkhäuser, New York (2014). Zbl 1365.62001, MR 3309531, 10.1007/978-0-8176-4807-7
Reference: [8] Barot, D. R., Patel, M. N.: Posterior analysis of the compound Rayleigh distribution under balanced loss functions for censored data.Commun. Stat., Theory Methods 46 (2017), 1317-1336. Zbl 1360.62032, MR 3565627, 10.1080/03610926.2015.1019140
Reference: [9] Bhattacharya, S. K., Tyagi, R. K.: Bayesian survival analysis based on the Rayleigh model.Trab. Estad. 5 (1990), 81-92. Zbl 0717.62029, 10.1007/BF02863540
Reference: [10] Chalabi, I.: High-resolution sea clutter modelling using compound inverted exponentiated Rayleigh distribution.Remote Sensing Lett. 14 (2023), 433-441. 10.1080/2150704X.2023.2215894
Reference: [11] Chiodo, E., Fantauzzi, M., Mazzanti, G.: The compound inverse Rayleigh as an extreme wind speed distribution and its Bayes estimation.Energies 15 (2022), Article ID 861, 26 pages. 10.3390/en15030861
Reference: [12] Demiray, D., laslan, F. Kızı: Stress-strength reliability estimation of a consecutive $k$-out-of-$n$ system based on proportional hazard rate family.J. Stat. Comput. Simulation 92 (2022), 159-190. Zbl 07497826, MR 07497826, 10.1080/00949655.2021.1935947
Reference: [13] Dey, S., Dey, T.: On progressively censored generalized inverted exponential distribution.J. Appl. Stat. 41 (2014), 2557-2576. Zbl 1514.62525, MR 3262679, 10.1080/02664763.2014.922165
Reference: [14] Dey, S., Pradhan, B.: Generalized inverted exponential distribution under hybrid censoring.Stat. Methodol. 18 (2014), 101-114. Zbl 1486.62263, MR 3151866, 10.1016/j.stamet.2013.07.007
Reference: [15] Diamoutene, A., Noureddine, F., Kamsu-Foguem, B., Barro, D.: Reliability analysis with proportional hazard model in aeronautics.Int. J. Aeronaut. Space Sci. 22 (2021), 1222-1234. 10.1007/s42405-021-00371-1
Reference: [16] Dube, M., Krishna, H., Garg, R.: Generalized inverted exponential distribution under progressive first-failure censoring.J. Stat. Comput. Simulation 86 (2016), 1095-1114. Zbl 1510.62409, MR 3441558, 10.1080/00949655.2015.1052440
Reference: [17] Fatima, K., Jan, U., Ahmad, S. P.: Statistical properties of Rayleigh Lomax distribution with applications in survival analysis.J. Data Sci. 16 (2018), 531-548. 10.6339/JDS.201807_16(3).0005
Reference: [18] Feroze, N., Aslam, M., Khan, I. H., Khan, M. H.: Bayesian reliability estimation for the Topp-Leone distribution under progressively type-II censored samples.Soft Comput. 25 (2021), 2131-2152. Zbl 1491.62138, 10.1007/s00500-020-05285-w
Reference: [19] Finkelstein, M.: Failure Rate Modelling for Reliability and Risk.Springer, London (2008). 10.1007/978-1-84800-986-8
Reference: [20] Galton, F.: Inquiries into Human Faculty and its Development.Macmillan, London (1988).
Reference: [21] Hamad, A. M., Salman, B. B.: On estimation of the stress-strength reliability on POLO distribution function.Ain Shams Eng. J. 12 (2021), 4037-4044. 10.1016/j.asej.2021.02.029
Reference: [22] Hussein, L. K., Rasheed, H. A., Hussein, I. H.: A class of exponential Rayleigh distribution and new modified weighted exponential Rayleigh distribution with statistical properties.Ibn Al-Haitham J. Pure Appl. Sci. 36 (2023), 390-406. 10.30526/36.2.3044
Reference: [23] Jain, K., Singla, N., Sharma, S. K.: The generalized inverse generalized Weibull distribution and its properties.J. Probab. 2014 (2014), Article ID 736101, 11 pages. MR 3115122, 10.1155/2014/736101
Reference: [24] Karim, R., Hossain, P., Begum, S., Hossain, F.: Rayleigh mixture distribution.J. Appl. Math. 2011 (2011), Article ID 238290, 17 pages. Zbl 1235.62016, MR 2852849, 10.1155/2011/238290
Reference: [25] Kayal, T., Tripathi, Y. M., Kundu, D., Rastogi, M. K.: Statistical inference of Chen distribution based on type I progressive hybrid censored samples.Stat. Optim. Inf. Comput. 10 (2022), 627-642. MR 4401418, 10.19139/soic-2310-5070-486
Reference: [26] Lindley, D. V.: Approximate Bayesian methods.Trab. Estad. 31 (1980), 223-245. Zbl 0458.62002, MR 0638879, 10.1007/BF02888353
Reference: [27] Ma, J., Wang, L., Tripathi, Y. M., Rastogi, M. K.: Reliability inference for stress-strength model based on inverted exponential Rayleigh distribution under progressive type-II censored data.Commun. Stat., Simulation Comput. 52 (2023), 2388-2407. Zbl 07714513, MR 4602539, 10.1080/03610918.2021.1908552
Reference: [28] Mansour, M. M., Yousof, H. M., Shehata, W. A. M., Ibrahim, M.: A new two parameter Burr XII distribution: Properties, copula, different estimation methods and modeling acute bone cancer data.J. Nonlinear Sci. Appl. 13 (2020), 223-238. MR 4075793, 10.22436/jnsa.013.05.01
Reference: [29] Mohammed, N., Ali, F.: Estimation of parameters of finite mixture of Rayleigh distribution by the expectation-maximization algorithm.J. Math. 2022 (2022), Article ID 7596449, 7 pages. MR 4529459, 10.1155/2022/7596449
Reference: [30] Moors, J. J. A.: A quantile alternative for kurtosis.The Statistician 37 (1988), 25-32. 10.2307/2348376
Reference: [31] Mostert, P. J., Roux, J. J. J., Bekker, A.: Bayes estimators of the lifetime parameters using the compound Rayleigh model.S. Afr. Stat. J. 33 (1999), 117-138. Zbl 0944.62029
Reference: [32] Nabeel, M., Ali, S., Shah, I.: Robust proportional hazard-based monitoring schemes for reliability data.Quality Reliability Eng. Int. 37 (2021), 3347-3361. 10.1002/qre.2921
Reference: [33] Ng, H. K. T., Luo, L., Hu, Y., Duan, F.: Parameter estimation of three-parameter Weibull distribution based on progressively type-II censored samples.J. Stat. Comput. Simulation 82 (2012), 1661-1678. Zbl 1431.62460, MR 2984568, 10.1080/00949655.2011.591797
Reference: [34] Rahman, M. M.: Cubic transmuted Rayleigh distribution: Theory and application.Aust. J. Stat. 51 (2022), 164-177. 10.17713/ajs.v51i3.1280
Reference: [35] Ren, J., Gui, W.: Inference and optimal censoring scheme for progressively type-II censored competing risks model for generalized Rayleigh distribution.Comput. Stat. 36 (2021), 479-513. Zbl 1505.62336, MR 4215401, 10.1007/s00180-020-01021-y
Reference: [36] Shatti, R. N., Al-Kinani, I. H.: Estimating the parameters of exponential-Rayleigh distribution under type-I censored data.Baghdad Sci. J. 21 (2024), 146-150. 10.21123/bsj.2023.7962
Reference: [37] Shojaee, O., Asadi, M., Finkelstein, M.: On some properties of $\alpha$-mixtures.Metrika 84 (2021), 1213-1240. Zbl 1496.62108, MR 4323163, 10.1007/s00184-021-00818-1
Reference: [38] Shojaee, O., Asadi, M., Finkelstein, M.: Stochastic properties of generalized finite $\alpha$-mixtures.Prob. Eng. Inf. Sci. 36 (2022), 1055-1079. Zbl 1524.62496, MR 4504699, 10.1017/S0269964821000243
Reference: [39] Shojaee, O., Asadi, M., Finkelstein, M.: On the hazard rate of $\alpha$-mixture of survival functions.Commun. Stat., Theory Methods 53 (2024), 4062-4084. Zbl 07880501, MR 4732493, 10.1080/03610926.2023.2172586
Reference: [40] Shojaee, O., Momeni, R.: The $\alpha$-mixture of cumulative distribution functions: Properties, applications to parallel system and stochastic comparisons.J. Indian Soc. Probab. Stat. 24 (2023), 599-621. 10.1007/s41096-023-00169-2
Reference: [41] Shojaee, O., Piriaei, H., Babanezhad, M.: E-Bayesian estimations and its E-MSE for compound Rayleigh progressive type-II censored data.Stat. Optim. Inf. Comput. 10 (2022), 1056-1071. MR 4492188, 10.19139/soic-2310-5070-1359
Reference: [42] Shojaee, O., Zarei, H., Naruei, F.: E-Bayesian estimation and the corresponding E-MSE under progressive type-II censored data for some characteristics of Weibull distribution.Stat. Optim. Inf. Comput. 12 (2024), 962-981. MR 4753792, 10.19139/soic-2310-5070-1709
Reference: [43] Sirisha, G., Jayasree, G.: Compound Rayleigh lifetime distribution-I.EPH Int. J. Math. Stat. 3 (2017), 22-28. 10.53555/eijms.v4i1.18
Reference: [44] D. M. Stablein, W. H. Carter, Jr., J. W. Novak: Analysis of survival data with nonproportional hazard functions.Controlled Clinical Trials 2 (1981), 149-159. 10.1016/0197-2456(81)90005-2
Reference: [45] Valiollahi, R., Asgharzadeh, A., Raqab, M. Z.: Estimation of $P(Y<X)$ for Weibull distribution under progressive Type-II censoring.Commun. Stat., Theory Methods 42 (2013), 4476-4498. Zbl 1282.65017, MR 3171012, 10.1080/03610926.2011.650265
Reference: [46] Wu, M., Gui, W.: Estimation and prediction for Nadarajah-Haghighi distribution under progressive type-II censoring.Symmetry 13 (2021), Article ID 999, 22 pages. 10.3390/sym13060999
Reference: [47] Yahaya, A., Abdullahi, J., Ieren, T. G.: Properties and applications of a transmuted Weibull-Rayleigh distribution.J. Pure Appl. Sci. 19 (2019), 126-138. 10.5455/sf.66126
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo