Previous |  Up |  Next

Article

Title: Exponential stability for Timoshenko model with thermal effect (English)
Author: Miranda, Luiz Gutemberg Rosário
Author: Alves, Bruno Magalhães
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 70
Issue: 2
Year: 2025
Pages: 149-168
Summary lang: English
.
Category: math
.
Summary: We performe an exponential decay analysis for a Timoshenko-type system under the thermal effect by constructing the Lyapunov functional. More precisely, this thermal effect is acting as a mechanism for dissipating energy generated by the bending of the beam, acting only on the vertical displacement equation, different from other works already existing in the literature. Furthermore, we show the good placement of the problem using semigroup theory. (English)
Keyword: Timoshenko beams
Keyword: thermoelastic
Keyword: well-posedness
Keyword: semigroup
Keyword: exponential decay
Keyword: Lyapunov functional
MSC: 35A01
MSC: 35A02
MSC: 35B35
MSC: 35B40
MSC: 35L45
MSC: 35Q74
MSC: 74A15
MSC: 74F05
DOI: 10.21136/AM.2025.0161-24
.
Date available: 2025-05-26T12:14:28Z
Last updated: 2025-06-02
Stable URL: http://hdl.handle.net/10338.dmlcz/152977
.
Reference: [1] Júnior, D. S. Almeida, Elishakoff, I., Ramos, A. J. A., Miranda, L. G. R.: The hypothesis of equal wave speeds for stabilization of Timoshenko beam is not necessary anymore: The time delay cases.IMA J. Appl. Math. 84 (2019), 763-796. Zbl 1476.74067, MR 3987834, 10.1093/imamat/hxz014
Reference: [2] Júnior, D. S. Almeida, Santos, M. L., Rivera, J. E. Muñoz: Stability to weakly dissipative Timoshenko systems.Math. Methods Appl. Sci. 36 (2013), 1965-1976. Zbl 1273.74072, MR 3091687, 10.1002/mma.2741
Reference: [3] Júnior, D. S. Almeida, Santos, M. L., Rivera, J. E. Muñoz: Stability to 1-D thermoelastic Timoshenko beam acting of shear force.Z. Angew. Math. Phys. 65 (2014), 1233-1249. Zbl 1316.35044, MR 3279528, 10.1007/s00033-013-0387-0
Reference: [4] Apalara, T. A., Messaoudi, S. A., Mustafa, M. I.: Energy decay in thermoelasticity type III with viscoelastic damping and delay term.Electron. J. Differ. Equ. 2012 (2012), Article ID 128, 15 pages. Zbl 1254.35144, MR 2967193
Reference: [5] Borichev, A., Tomilov, Y.: Optimal polynomial decay of functions and operator semigroups.Math. Ann. 347 (2010), 455-478. Zbl 1185.47044, MR 2606945, 10.1007/s00208-009-0439-0
Reference: [6] Casas, P. S., Quintanilla, R.: Exponential decay in one-dimensional porous-thermo-elasticity.Mech. Res. Commun. 32 (2005), 652-658. Zbl 1192.74156, MR 2158183, 10.1016/j.mechrescom.2005.02.015
Reference: [7] Gearhart, L.: Spectral theory for contraction semigroups on Hilbert space.Trans. Am. Math. Soc. 236 (1978), 385-394. Zbl 0326.47038, MR 0461206, 10.1090/S0002-9947-1978-0461206-1
Reference: [8] Huang, F.: Characteristic condition for exponential stability of linear dynamical systems in Hilbert spaces.Ann. Differ. Equations 1 (1985), 43-56. Zbl 0593.34048, MR 0834231
Reference: [9] Rivera, J. E. Muñoz, Racke, R.: Mildly dissipative nonlinear Timoshenko systems -- global existence and exponential stability.J. Math. Anal. Appl. 276 (2002), 248-278. Zbl 1106.35333, MR 1944350, 10.1016/S0022-247X(02)00436-5
Reference: [10] Prüss, J.: On the spectrum of $C_0$-semigroups.Trans. Am. Math. Soc. 284 (1984), 847-857. Zbl 0572.47030, MR 0743749, 10.1090/S0002-9947-1984-0743749-9
Reference: [11] Soufyane, A.: Stabilisation de la poutre de Timoshenko.C. R. Acad. Sci., Paris, Sér. I, Math. 328 (1999), 731-734 French. Zbl 0943.74042, MR 1680836, 10.1016/S0764-4442(99)80244-4
Reference: [12] Timoshenko, S. P.: On the correction for shear of the differential equation for transverse vibrations of prismatic bars.Phil. Mag. (6) 41 (1921), 744-746. 10.1080/14786442108636264
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo