Previous |  Up |  Next

Article

Title: Almost complete convergence of a recursive kernel estimator of the density with complete and censored independent data (English)
Author: Leulmi, Safia
Author: Leulmi, Sarra
Author: Mezhoud, Kenza Assia
Author: Belaloui, Soheir
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 61
Issue: 1
Year: 2025
Pages: 1-17
Summary lang: English
.
Category: math
.
Summary: In this paper, we firstly introduce a recursive kernel estimator of the density in the censored data case. Then, we establish its pointwise and uniform almost complete convergences, with rates, in both complete and censored independent data. Finally, we illustrate the accuracy of the proposed estimators throughout a simulation study. (English)
Keyword: recursive kernel estimator
Keyword: density
Keyword: almost complete convergence
Keyword: censored indepented data
Keyword: right censored data
Keyword: rate of convergence
MSC: 62G05
MSC: 62G07
MSC: 62G20
MSC: 62N01
DOI: 10.14736/kyb-2025-1-0001
.
Date available: 2025-04-07T09:31:34Z
Last updated: 2025-04-07
Stable URL: http://hdl.handle.net/10338.dmlcz/152920
.
Reference: [1] Amiri, A.: Rates of almost sure convergence of families of recursive kernel estimators..Ann. Inst. Stat. Univ. Paris LIV 3 (2010), 3-24. MR 2858150
Reference: [2] Amiri, A., Machkouri, M. El: Recursive kernel density estimation for time series..IEEE Trans. 66, Issue: 10 (2020) 6378-6388. MR 4173545,
Reference: [3] Bitouzé, D., Laurent, B., Massart, P.: A dvoretzky-kiefer-wolfowitz type inequality for the Kaplan-Meier estimator..Ann. Inst. Henri Poincaré - Probab. Stat. 35 (1999), 735-63. MR 1725709, 10.1016/S0246-0203(99)00112-0
Reference: [4] Chen, Y. C.: A tutorial on kernel density estimation and recent advances..Biostatist. Epidemiol. 1 (2017), 1, 161-187.
Reference: [5] Deheuvels, P.: Sur l'estimation séquentielle de la densité..C. R. Acad. Sci. Paris Sér. A 276, (1973), 1119-1121. MR 0334393
Reference: [6] Devroye, L. P., Wagner, T. J.: The strong uniform consistency of kernel density estimates in multivariate analysis - V..North-Holland Publishing Company 1980, pp. 59-77. MR 0566330
Reference: [7] Guessoum, Z., Ould-Said, E.: On nonparametric estimation of the regression function under random censorship model..Stat. Decisions 26 (2008), 3, 159-177. MR 2512266,
Reference: [8] Kaplan, E. M., Meier, P.: Nonparametric estimation from incomplete observations..J. Amer. Stat. Assoc. 53 (1958), 282, 457-481. Zbl 0089.14801, MR 0093867,
Reference: [9] Khardani, S., Semmar, S.: Nonparametric conditional density estimation for censored data based on a recursive kernel..Electron. J. Stat. 8 (2014), 2541-2556. MR 3285875,
Reference: [10] Khardani, S., Slaoui, Y.: Adaptive recursive kernel conditional density estimators under censoring data..ALEA - Latin Amer. J. Probab. Math. Stat. 17 (2020), 389-417. MR 4105924,
Reference: [11] Kitouni, A., Boukeloua, M., Messaci, F.: Rate of strong consistency for nonparametric estimators based on twice censored data..Stat. Probab. Lett. 96 (2015) , 255-261. MR 3281773,
Reference: [12] Mezhoud, K. A., Mohdeb, Z., Louhichi, S.: Recursive kernel estimation of the density under $\eta$-weak dependence..J. Korean Stat. Soc. 33 (2014), 1065-1076. MR 3233079,
Reference: [13] Parzen, E.: On estimation of a probability density function and mode..Ann. Math. Stat. 33 (1962), 1065-1076. Zbl 0116.11302, MR 0143282,
Reference: [14] Tran, L. T.: Recursive density estimation under dependence..IEEE Trans. Inform. Theory 35 (1989), 5, 1103-1108. MR 1023252,
Reference: [15] Wegman, E. J., Davies, H. I.: Remarks on some recursive estimators of a probability density..Ann. Stat. 7 (1979), 2, 316-327. MR 0520242,
Reference: [16] Wolverton, C., Wagner, T. J.: Recursive estimates of probability densities..IEEE Trans. 5 (1969), 307-308.
Reference: [17] Hoeffding, W.: Probability inequalities for sums of bounded random variables..In: The Collected Works of Wassily Hoeffding, Springer 1994, pp. 409-426. MR 1307621
.

Files

Files Size Format View
Kybernetika_61-2025-1_1.pdf 460.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo