Previous |  Up |  Next

Article

Title: Stieltjes differential problems with general boundary value conditions. Existence and bounds of solutions (English)
Author: Marraffa, Valeria
Author: Satco, Bianca
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 1
Year: 2025
Pages: 235-255
Summary lang: English
.
Category: math
.
Summary: We are concerned with first order set-valued problems with very general boundary value conditions $$ \begin{cases} u'_g(t)\in F(t,u(t)),\quad \mu _g \text {-a.e.} \t\in [0,T] , \\ L(u(0),\u(T))=0 \end{cases} $$ involving the Stieltjes derivative with respect to a left-continuous nondecreasing function $g\colon [0,T]\to \mathbb {R}$, a Carathéodory multifunction $F\colon [0,T]\times \mathbb {R}\to \mathcal {P}(\mathbb {R})$ and a continuous $L\colon \mathbb {R}^2\to \mathbb {R}$. Using appropriate notions of lower and upper solutions, we prove the existence of solutions via a fixed point result for condensing mappings. In the periodic single-valued case, combining an existence theory for the linear case with a recent result involving lower and upper solutions (which can be seen as a consequence of our existence theorem mentioned before), we get not only the existence of solutions, but also lower and upper bounds, respectively, by imposing an estimation for the right-hand side. (English)
Keyword: boundary value differential inclusion
Keyword: Stieltjes derivative
Keyword: Kurzweil-Stieltjes integral
Keyword: periodic problem
MSC: 26A24
MSC: 26A42
MSC: 34A06
MSC: 34B15
MSC: 47H10
DOI: 10.21136/CMJ.2024.0125-23
.
Date available: 2025-03-11T16:02:15Z
Last updated: 2025-03-19
Stable URL: http://hdl.handle.net/10338.dmlcz/152906
.
Reference: [1] Aubin, J.-P., Frankowska, H.: Set-Valued Analysis.Systems and Control: Foundations and Applications 2. Birkhäuser, Boston (1990). Zbl 10.1007/978-0-8176-4848-0, MR 1048347
Reference: [2] Banas, J., Goebel, K.: Measures of Noncompactness in Banach Spaces.Lecture Notes in Pure and Applied Mathematics 60. Marcel Dekker, New York (1980). Zbl 0441.47056, MR 0591679
Reference: [3] Benchohra, M., Ntouyas, S. K.: The lower and upper solutions method for first order differential inclusions with nonlinear boundary conditions.JIPAM, J. Inequal. Pure Appl. Math. 3 (2002), Article ID 14, 8 pages. Zbl 1003.34013, MR 1888929
Reference: [4] Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions.Lecture Notes in Mathematics 580. Springer, Berlin (1977). Zbl 0346.46038, MR 0467310, 10.1007/BFb0087685
Reference: [5] Cichoń, M., Satco, B. R.: Measure differential inclusions -- between continuous and discrete.Adv. Difference Equ. 2014 (2014), Article ID 56, 18 pages. Zbl 1350.49014, MR 3348625, 10.1186/1687-1847-2014-56
Reference: [6] Cichoń, M., Satco, B., Sikorska-Nowak, A.: Impulsive nonlocal differential equations through differential equations on time scales.Appl. Math. Comput. 218 (2011), 2449-2458. Zbl 1247.34138, MR 2838154, 10.1016/j.amc.2011.07.057
Reference: [7] Piazza, L. Di, Marraffa, V., Satco, B.: Approximating the solutions of differential inclusions driven by measures.Ann. Mat. Pura Appl. (4) 198 (2019), 2123-2140. Zbl 1440.34005, MR 4031842, 10.1007/s10231-019-00857-6
Reference: [8] Piazza, L. Di, Marraffa, V., Satco, B.: Measure differential inclusions: Existence results and minimum problems.Set-Valued Var. Anal. 29 (2021), 361-382. Zbl 1479.34008, MR 4272032, 10.1007/s11228-020-00559-9
Reference: [9] Dimitriu, G., Satco, B.: Urysohn measure driven integral equations in the space of bounded variation functions and applications.Application of Mathematics in Technical and Natural Sciences AIP Conference Proceedings 1773. AIP, New York (2016), Article ID 050002. 10.1063/1.4964972
Reference: [10] Federson, M., Mesquita, J. G., Slavík, A.: Measure functional differential equations and functional dynamic equations on time scales.J. Diff. Equations 252 (2012), 3816-3847. Zbl 1239.34076, MR 2875603, 10.1016/j.jde.2011.11.005
Reference: [11] Federson, M., Mesquita, J. G., Slavík, A.: Basic results for functional differential and dynamic equations involving impulses.Math. Nachr. 286 (2013), 181-204. Zbl 1266.34115, MR 3021475, 10.1002/mana.201200006
Reference: [12] Fraňková, D.: Regulated functions.Math. Bohem. 116 (1991), 20-59. Zbl 0724.26009, MR 1100424, 10.21136/MB.1991.126195
Reference: [13] Frigon, M., Gilbert, H.: Systems of first order inclusions on time scales.Topol. Methods Nonlinear Anal. 37 (2011), 147-163. Zbl 1271.34092, MR 2839521
Reference: [14] Frigon, M., Pouso, R. López: Theory and applications of first-order systems of Stieltjes differential equations.Adv. Nonlinear Anal. 6 (2017), 13-36. Zbl 1361.34010, MR 3604936, 10.1515/anona-2015-0158
Reference: [15] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock.Graduate Studies in Mathematics 4. AMS, Providence (1994). Zbl 0807.26004, MR 1288751, 10.1090/gsm/004
Reference: [16] Halidias, N., Papageorgiou, N. S.: Second-order multivalued boundary value problems.Arch. Math., Brno 34 (1998), 267-284. Zbl 0915.34021, MR 1645320
Reference: [17] Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter.Czech. Math. J. 7 (1957), 418-449. Zbl 0090.30002, MR 0111875, 10.21136/CMJ.1957.100258
Reference: [18] Kurzweil, J.: Nichtabsolut konvergente Integrale.Teubner-Texte zur Mathematik 26. B. G. Teubner, Leipzig (1980), German. Zbl 0441.28001, MR 0597703
Reference: [19] Pouso, R. López, Albés, I. Márquez: General existence principles for Stieltjes differential equations with applications to mathematical biology.J. Differ. Equations 264 (2018), 5388-5407. Zbl 1386.34021, MR 3760178, 10.1016/j.jde.2018.01.006
Reference: [20] Pouso, R. López, Rodríguez, A.: A new unification of continuous, discrete and impulsive calculus through Stieltjes derivatives.Real Anal. Exch. 40 (2015), 319-353. Zbl 1384.26024, MR 3499768, 10.14321/realanalexch.40.2.0319
Reference: [21] Maia, L., Khattabi, N. El, Frigon, M.: Existence and multiplicity results for first-order Stieltjes differential equations.Adv. Nonlinear Stud. 22 (2022), 684-710. Zbl 1509.34005, MR 4521244, 10.1515/ans-2022-0038
Reference: [22] Albés, I. Márquez: Notes on the linear equation with Stieltjes derivatives.Electron. J. Qual. Theory Differ. Equ. 2021 (2021), Article ID 42, 18 pages. Zbl 1499.34099, MR 4275332, 10.14232/ejqtde.2021.1.42
Reference: [23] Marraffa, V., Satco, B.: Stieltjes differential inclusions with periodic boundary conditions without upper semicontinuity.Mathematics 10 (2022), Article ID 55, 17 pages. 10.3390/math10010055
Reference: [24] Martelli, M.: A Rothe's type theorem for non-compact acyclic-valued maps.Boll. Unione Mat. Ital., IV. Ser. 11 (1975), 70-76. Zbl 0314.47035, MR 0394752
Reference: [25] Monteiro, G. A., Satco, B.: Distributional, differential and integral problems: Equivalence and existence results.Electron. J. Qual. Theory Differ. Equ. 2017 (2017), Article ID 7, 26 pages. Zbl 1413.34062, MR 3606985, 10.14232/ejqtde.2017.1.7
Reference: [26] Monteiro, G. A., Slavík, A.: Extremal solutions of measure differential equations.J. Math. Anal. Appl. 444 (2016), 568-597. Zbl 1356.34094, MR 3523392, 10.1016/j.jmaa.2016.06.035
Reference: [27] Monteiro, G. A., Slavík, A., Tvrdý, M.: Kurzweil-Stieltjes Integral: Theory and Its Applications.Series in Real Analysis 15. World Scientific, Hackensack (2019). Zbl 1437.28001, MR 3839599, 10.1142/9432
Reference: [28] Saks, S.: Theory of the Integral.Monografie Matematyczne 7. Instytut Matematyczny PAN, Warszawa (1937),\99999JFM99999 63.0183.05. Zbl 0017.30004, MR 0167578
Reference: [29] Satco, B.: A Komlós-type theorem for the set-valued Henstock-Kurzweil-Pettis integral and applications.Czech. Math. J. 56 (2006), 1029-1047. Zbl 1164.28301, MR 2261675, 10.1007/s10587-006-0078-5
Reference: [30] Satco, B.: Existence results for Urysohn integral inclusions involving the Henstock integral.J. Math. Anal. Appl. 336 (2007), 44-53. Zbl 1123.45004, MR 2348489, 10.1016/j.jmaa.2007.02.050
Reference: [31] Satco, B.: Nonlinear Volterra integral equations in Henstock integrability setting.Electron. J. Differ. Equ. 2008 (2008), Article ID 39, 9 pages. Zbl 1169.45300, MR 2392943
Reference: [32] Satco, B.: Continuous dependence results for set-valued measure differential problems.Electron. J. Qual. Theory Differ. Equ. 2015 (2015), Article ID 79, 15 pages. Zbl 1349.34051, MR 3425546, 10.14232/ejqtde.2015.1.79
Reference: [33] Satco, B., Smyrlis, G.: Applications of Stieltjes derivatives to periodic boundary value inclusions.Mathematics 8 (2020), Article ID 2142, 23 pages. MR 4161917, 10.3390/math8122142
Reference: [34] Satco, B., Smyrlis, G.: Periodic boundary value problems involving Stieltjes derivatives.J. Fixed Point Theory Appl. 22 (2020), Article ID 94, 23 pages. Zbl 1464.34008, MR 4161917, 10.1007/s11784-020-00825-1
Reference: [35] Schwabik, Š.: Generalized Ordinary Differential Equations.Series in Real Analysis 5. World Scientific, Singapore (1992). Zbl 0781.34003, MR 1200241, 10.1142/1875
Reference: [36] Tvrdý, M.: Differential and integral equations in the space of regulated functions.Mem. Differ. Equ. Math. Phys. 25 (2002), 1-104. Zbl 1081.34504, MR 1903190
Reference: [37] Young, W. H.: On integrals and derivatives with respect to a function.Proc. Lond. Math. Soc. (2) 15 (1916), 35-63 \99999JFM99999 46.0386.01. MR 1576571, 10.1112/plms/s2-15.1.35
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo