[1] Bogolyubov, N. N., Mitropol'skij, Y. A.:
Asymptotic Methods in the Theory of Nonlinear Oscillations. International Monographs on Advanced Mathematics and Physics. Gordon and Breach, New York (1961).
MR 0141845 |
Zbl 0151.12201
[2] Bongiorno, B.:
A new integral for the problem of antiderivatives. Matematiche 51 (1996), 299-313 Italian.
MR 1488074 |
Zbl 0929.26007
[3] Bongiorno, B., Pfeffer, W. F.:
A concept of absolute continuity and a Riemann type integral. Commentat. Math. Univ. Carol. 33 (1992), 189-196.
MR 1189651 |
Zbl 0776.26011
[5] Carathéodory, C.:
Vorlesungen über reelle Funktionen. B. G. Teubner, Leipzig (1918), German \99999JFM99999 46.0376.12.
MR 0225940
[6] Cauchy, A.-L.:
Résumé des leçons données a l'École Royale Polytechnique, sur le calcul infinitésimal. Tome premier. De l'Imprimerie Royale, Paris (1823), French.
MR 1193026
[7] Cauchy, A.-L.:
Équations différentielles ordinaires: Cours inédit, fragment. Études vivantes. Johnson Reprint, Paris (1981), French.
MR 1013996 |
Zbl 0558.01039
[9] Denjoy, A.: Une extension de l'intégrale de M. Lebesgue. C. R. Acad. Sci., Paris 154 (1912), 859-862 French \99999JFM99999 43.0360.01.
[10] Pauw, T. De:
Autour du théorème de la divergence. Autour du centenaire Lebesgue Panoramas & Synthèses 18. Société Mathématique de France, Paris (2004), 85-121 French.
MR 2143414 |
Zbl 1105.26011
[11] Euler, L.: Institutiones calculi integralis. Volumen primum. Imperial Academy of Sciences, St. Petersburg (1768), Latin \99999JFM99999 44.0011.01.
[12] Fatou, P.:
Sur le mouvement d'un système soumis à des forces à courte période. Bull. Soc. Math. Fr. 56 (1928), 98-139 French \99999JFM99999 54.0834.01.
DOI 10.24033/bsmf.1131 |
MR 1504928
[14] Gichman, I. I.:
Concerning a theorem of N. N. Bogolyubov. Ukr. Mat. Zh. 4 (1952), 215-219 Russian.
MR 0075386 |
Zbl 0049.34503
[16] Jarník, J., Krejčí, P., Slavík, A., Tvrdý, M., Vrkoč, I.:
Ninety years of Jaroslav Kurzweil. Math. Bohem. 141 (2016), 115-128.
DOI 10.21136/MB.2016.10 |
MR 3499779 |
Zbl 1389.01013
[26] Krasnosel'skii, M. A., Krejn, S. G.:
On the principle of averaging in nonlinear mechanics. Usp. Mat. Nauk 10 (1955), 147-152 Russian.
MR 0071596 |
Zbl 0064.33901
[31] Kurzweil, J.:
The Perron-Ward integral and related concepts: Appendix A. Measure and Integral: Probability and Mathematical Statistics Academic Press, New York (1978), 515-533.
MR 0514702 |
Zbl 0446.28001
[32] Kurzweil, J.:
Nichtabsolut konvergente Integrale. Teubner-Texte zur Mathematik 26. B. G. Teubner, Leipzig (1980), German.
MR 0597703 |
Zbl 0441.28001
[33] Kurzweil, J.:
The integral as a limit of integral sums. Jahrb. Überblicke Math. 1984, Math. Surv. 17 (1984), 105-136.
Zbl 0554.26007
[34] Kurzweil, J.:
Henstock-Kurzweil Integration: Its Relation to Topological Vector Spaces. Series in Real Analysis 7. World Scientific, Singapore (2000).
DOI 10.1142/4333 |
MR 1763305 |
Zbl 0954.28001
[35] Kurzweil, J.:
Integration Between the Lebesgue Integral and the Henstock-Kurzweil Integral: Its Relation to Local Convex Vector Spaces. Series in Real Analysis 8. World Scientific, Singapore (2002).
DOI 10.1142/5005 |
MR 1908744 |
Zbl 1018.26005
[36] Kurzweil, J.:
Generalized Ordinary Differential Equations: Not Absolutely Continuous Solutions. Series in Real Analysis 11. World Scientific, Hackensack (2012).
DOI 10.1142/7907 |
MR 2906899 |
Zbl 1248.34001
[42] Kurzweil, J., Jarník, J.:
A convergence theorem for Henstock-Kurzweil integral and its relation to topology. Bull. Cl. Sci., VI. Sér., Acad. R. Belg. 8 (1997), 217-230.
MR 1709540 |
Zbl 1194.26013
[43] Kurzweil, J., Jarník, J.:
Henstock-Kurzweil integration: Convergence cannot be replaced by a locally convex topology. Bull. Cl. Sci., VI. Sér., Acad. R. Belg. 9 (1998), 331-347.
MR 1728847 |
Zbl 1194.26012
[47] Mawhin, J.:
Generalized Riemann integrals and the divergence theorem for differentiable vector fields. E. B. Christoffel: The Influence of His Work on Mathematics and the Physical Sciences Birkhäuser, Basel (1981), 704-714.
DOI 10.1007/978-3-0348-5452-8_55 |
MR 0661109 |
Zbl 0562.26003
[48] Mawhin, J.:
Integration and the fundamental theory of ordinary differential equations: A historical sketch. Constantin Carathéodory: An International Tribute. Volume II World Scientific, Singapore (1991), 828-849.
DOI 10.1142/9789814350921_0043 |
MR 1130868 |
Zbl 0744.34003
[49] McShane, E. J.:
A Riemann-type integral that includes Lebesgue-Stieltjes, Bochner and stochastic integrals. Memoirs of the American Mathematical Society 88. AMS, Providence (1969).
DOI 10.1090/memo/0088 |
MR 0265527 |
Zbl 0188.35702
[50] Monteiro, G. A., Slavík, A., Tvrdý, M.:
Kurzweil-Stieltjes Integral: Theory and Applications. Series in Real Analysis 15. World Scientific, Hackensack (2019).
DOI 10.1142/9432 |
MR 3839599 |
Zbl 1437.28001
[51] Moonens, L.:
Intégration, de Riemann à Kurzweil et Henstock: La construction progressive des théories ``modernes" de l'intégrale. Références Sciences. Ellipses, Paris (2017), French.
Zbl 1397.26002
[53] Perron, O.: Über den Integralbegriff. Heidelb. Ak. Sitzungsber. 14 (1914), 16 pages German \99999JFM99999 45.0445.01.
[55] Pfeffer, W. F.:
The Riemann Approach to Integration: Local Geometric Theory. Cambridge Tracts in Mathematics 109. Cambridge University Press, Cambridge (1993).
MR 1268404 |
Zbl 0804.26005
[56] Riemann, B.: Ueber die Darstellbarkeit einer Funktion durch eine trigonometrische Reihe. Abh. Kön. Ges. Wiss. Göttingen 14 (1868), 1-16 German \99999JFM99999 01.0131.03.
[58] Volterra, V.: Sui principii del calcolo integrale. Battaglini G. 19 (1881), 333-372 Italian \99999JFM99999 13.0213.02.