Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
References:
[1] Fonda, A.: The Kurzweil-Henstock Integral for Undergraduates. A Promenade Along the Marvelous Theory of Integration. Compact Textbooks in Mathematics. Birkhäuser, Cham (2018). DOI 10.1007/978-3-319-95321-2 | MR 3839629 | Zbl 1410.26007
[2] Henstock, R.: The efficiency of convergence factors for functions of a continuous real variable. J. Lond. Math. Soc. 30 (1955), 273-286. DOI 10.1112/jlms/s1-30.3.273 | MR 0072968 | Zbl 0066.09204
[3] Henstock, R.: A new descriptive definition of the Ward integral. J. Lond. Math. Soc. 35 (1960), 43-48. DOI 10.1112/jlms/s1-35.1.43 | MR 0110780 | Zbl 0095.04504
[4] Henstock, R.: The equivalence of generalized forms of the Ward, variational, Denjoy-Stieltjes, and Perron-Stieltjes integrals. Proc. Lond. Math. Soc., III. Ser. 10 (1960), 281-303. DOI 10.1112/plms/s3-10.1.281 | MR 0121460 | Zbl 0131.29702
[5] Henstock, R.: Definitions of Riemann type of the variational integrals. Proc. Lond. Math. Soc., III. Ser. 11 (1961), 402-418. DOI 10.1112/plms/s3-11.1.402 | MR 0132147 | Zbl 0099.27402
[6] Henstock, R.: $N$-variation and $N$-variational integrals of set valued functions. Proc. Lond. Math. Soc., III. Ser. 11 (1961), 109-133. DOI 10.1112/plms/s3-11.1.109 | MR 0123671 | Zbl 0095.26601
[7] Henstock, R.: Theory of Integration. Butterworth, London (1963). MR 0158047 | Zbl 0154.05001
[8] Henstock, R.: Lectures on the Theory of Integration. Series in Real Analysis 1. World Scientific, Singapore (1988). DOI 10.1142/0510 | MR 0963249 | Zbl 0668.28001
[9] Henstock, R.: The General Theory of Integration. Oxford University Press, Oxford (1991). DOI 10.1093/oso/9780198535669.001.0001 | MR 1134656 | Zbl 0745.26006
[10] Jarník, J., Schwabik, Š.: Jaroslav Kurzweil septuagenarian. Czech. Math. J. 46 (1996), 375-382. DOI 10.21136/CMJ.1996.127300 | MR 1388626 | Zbl 0870.01012
[11] Jarník, J., Schwabik, Š.: Jaroslav Kurzweil septuagenarian. Math. Bohem. 121 (1996), 215-222. DOI 10.21136/MB.1996.126099 | MR 1400614 | Zbl 0863.01013
[12] Jarník, J., Schwabik, Š., Tvrdý, M., Vrkoč, I.: Sixty years of Jaroslav Kurzweil. Czech. Math. J. 36 (1986), 147-166. DOI 10.21136/CMJ.1986.102076 | MR 0822877 | Zbl 0596.01029
[13] Jarník, J., Schwabik, Š., Tvrdý, M., Vrkoč, I.: Eighty years of Jaroslav Kurzweil. Math. Bohem. 131 (2006), 113-143. DOI 10.21136/MB.2006.134088 | MR 2242840 | Zbl 1106.01319
[14] Knees, D., Zanini, C.: Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete Contin. Dyn. Syst., Ser. S 14 (2021), 121-149. DOI 10.3934/dcdss.2020332 | MR 4186206 | Zbl 1458.35439
[15] Krejčí, P., Liero, M.: Rate independent Kurzweil processes. Appl. Math., Praha 54 (2009), 117-145. DOI 10.1007/s10492-009-0009-5 | MR 2491851 | Zbl 1212.49007
[16] Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter. Czech. Math. J. 7 (1957), 418-449. DOI 10.21136/CMJ.1957.100258 | MR 0111875 | Zbl 0090.30002
[17] Kurzweil, J.: Generalized ordinary differential equations. Czech. Math. J. 8 (1958), 360-388. DOI 10.21136/CMJ.1958.100311 | MR 0111878 | Zbl 0094.05804
[18] Kurzweil, J.: On integration by parts. Czech. Math. J. 8 (1958), 356-359. DOI 10.21136/CMJ.1958.100310 | MR 0111877 | Zbl 0094.03505
[19] Kurzweil, J.: Nichtabsolut konvergente Integrale. Teubner-Texte zur Mathematik 26. B. G. Teubner, Leipzig (1980), German. MR 0597703 | Zbl 0441.28001
[20] Kurzweil, J.: Ordinary Differential Equations: Introduction to the Theory of Ordinary Differential Equations in the Real Domain. Studies in Applied Mechanics 13. Elsevier, Amsterdam (1986). MR 0929466 | Zbl 0667.34002
[21] Kurzweil, J.: Henstock-Kurzweil Integration: Its Relation to Topological Vector Spaces. Series in Real Analysis 7. World Scientific, Singapore (2000). DOI 10.1142/4333 | MR 1763305 | Zbl 0954.28001
[22] Kurzweil, J.: Integration Between the Lebesgue Integral and the Henstock-Kurzweil Integral: Its Relation to Local Convex Vector Spaces. Series in Real Analysis 8. World Scientific, Singapore (2002). DOI 10.1142/5005 | MR 1908744 | Zbl 1018.26005
[23] Kurzweil, J.: Generalized Ordinary Differential Equations: Not Absolutely Continuous Solutions. Series in Real Analysis 11. World Scientific, Singapore (2012). DOI 10.1142/7907 | MR 2906899 | Zbl 1248.34001
[24] Mawhin, J.: In memoriam Jaroslav Kurzweil (1926-2022). Real Anal. Exch. 47 (2022), 251-260. DOI 10.14321/realanalexch.47.2.1654513566 | MR 4551034 | Zbl 1511.01045
[25] Monteiro, G. A., Slavík, A., Tvrdý, M.: Kurzweil-Stieltjes Integral: Theory and Applications. Series in Real Analysis 15. World Scientific, Hackensack (2019). DOI 10.1142/9432 | MR 3839599 | Zbl 1437.28001
[26] Pavlíček, T. W.: Ninety-five years of Jaroslav Kurzweil. Math. Bohem. 146 (2021), 115-129. DOI 10.21136/MB.2021.0045-21 | MR 4261362 | Zbl 1499.01042
[27] Pavlíček, T. W., Kulawiaková, B.: The training of the Czech mathematician Jaroslav Kurzweil with Władysław Orlicz in Poland. Antiq. Math. 15 (2021), 181-206. DOI 10.14708/am.v15i1.7078 | MR 4467508 | Zbl 1518.01014
[28] Schwabik, Š.: Generalized Ordinary Differential Equations. Series in Real Analysis 5. World Scientific, Singapore (1992). DOI 10.1142/1875 | MR 1200241 | Zbl 0781.34003
[29] Schwabik, Š., Tvrdý, M., Vejvoda, O.: Differential and Integral Equations: Boundary Value Problems and Adjoints. D. Reidel, Dordrecht (1979). MR 0542283 | Zbl 0417.45001
[30] Tvrdý, M.: Jaroslav Kurzweil (7. 5. 1926-17. 3. 2022). Equadiff 15: Conference on Differential Equations and Their Applications Masaryk University Press, Brno (2022), 25-28.
Partner of
EuDML logo