[19] Kurzweil, J.:
Nichtabsolut konvergente Integrale. Teubner-Texte zur Mathematik 26. B. G. Teubner, Leipzig (1980), German.
MR 0597703 |
Zbl 0441.28001
[20] Kurzweil, J.:
Ordinary Differential Equations: Introduction to the Theory of Ordinary Differential Equations in the Real Domain. Studies in Applied Mechanics 13. Elsevier, Amsterdam (1986).
MR 0929466 |
Zbl 0667.34002
[21] Kurzweil, J.:
Henstock-Kurzweil Integration: Its Relation to Topological Vector Spaces. Series in Real Analysis 7. World Scientific, Singapore (2000).
DOI 10.1142/4333 |
MR 1763305 |
Zbl 0954.28001
[22] Kurzweil, J.:
Integration Between the Lebesgue Integral and the Henstock-Kurzweil Integral: Its Relation to Local Convex Vector Spaces. Series in Real Analysis 8. World Scientific, Singapore (2002).
DOI 10.1142/5005 |
MR 1908744 |
Zbl 1018.26005
[23] Kurzweil, J.:
Generalized Ordinary Differential Equations: Not Absolutely Continuous Solutions. Series in Real Analysis 11. World Scientific, Singapore (2012).
DOI 10.1142/7907 |
MR 2906899 |
Zbl 1248.34001
[25] Monteiro, G. A., Slavík, A., Tvrdý, M.:
Kurzweil-Stieltjes Integral: Theory and Applications. Series in Real Analysis 15. World Scientific, Hackensack (2019).
DOI 10.1142/9432 |
MR 3839599 |
Zbl 1437.28001
[29] Schwabik, Š., Tvrdý, M., Vejvoda, O.:
Differential and Integral Equations: Boundary Value Problems and Adjoints. D. Reidel, Dordrecht (1979).
MR 0542283 |
Zbl 0417.45001
[30] Tvrdý, M.: Jaroslav Kurzweil (7. 5. 1926-17. 3. 2022). Equadiff 15: Conference on Differential Equations and Their Applications Masaryk University Press, Brno (2022), 25-28.