[4] Bogatov, E. M., Mukhin, R. R.:
The averaging method, a pendulum with a vibrating suspension: N. N. Bogolyubov, A. Stephenson, P. L. Kapitza and others. Izv. VUZ, Appl. Nonlinear Dyn. 25 (2017), 69-87 Russian.
DOI 10.18500/0869-6632-2017-25-5-69-87
[5] Bogolyubov, N. N.: Theory of perturbations in nonlinear mechanics. Collection of Works 14 Institute of Construction Mechanics, Ukrainian Academy of Sciences, Kiev (1950), 9-34 Russian.
[9] Demidovich, B. P.:
Lectures on Mathematical Stability Theory. Nauka, Moscow (1967), Russian.
MR 0226126 |
Zbl 0155.41601
[12] Holubová, G.:
Optimal conditions for the maximum principle for second-order periodic problems. Electron. J. Differential Equations, Special Issue 2023 (2023), 151-160.
DOI 10.58997/ejde.sp.02.h2 |
MR 4803584
[13] Kapitza, P. L.: Dynamic stability of the pendulum with vibrating suspension point. Sov. Phys. JETP 21 (1951), 588-597 Russian.
[14] Kapitza, P. L.: Pendulum with an oscillating pivot. Usp. fiz. nauk 44 (1951), 7-20 Russian.
[15] Komlenko, J. V., Tonkov, E. L.:
A periodic boundary value problem for an ordinary second-order differential equation. Dokl. Akad. Nauk SSSR 179 (1968), 17-19 Russian.
MR 0226119 |
Zbl 0172.11604
[19] Lomtatidze, A.:
Theorems on differential inequalities and periodic boundary value problem for second-order ordinary differential equations. Mem. Differ. Equ. Math. Phys. 67 (2016), 1-129.
MR 3472904 |
Zbl 1352.34033
[20] Sansone, G.:
Ordinary differential equations. Vol. I. Izd. Inostrannoj Literatury, Moscow (1953), Russian.
MR 0064221
[22] Tonkov, E. L.:
The second order periodic equation. Dokl. Akad. Nauk SSSR 184 (1969), 296-299 Russian.
MR 0237880 |
Zbl 0184.12102