Previous |  Up |  Next

Article

Keywords:
linear difference equation; linear differential-difference equation; meromorphic function; logarithmic order; logarithmic lower order
Summary:
Firstly we study the growth of meromorphic solutions of linear difference equation of the form$$ A_{k}(z)f(z+c_{k})+\cdots +A_{1}(z)f(z+c_{1})+A_{0}(z)f(z)=F(z), $$ where $A_{k}(z),\ldots ,A_{0}(z)$ and $F(z)$ are meromorphic functions of finite logarithmic order, $c_{i}$ $(i=1,\ldots ,k, k\in \mathbb {N})$ are distinct nonzero complex constants. Secondly, we deal with the growth of solutions of differential-difference equation of the form $$ \sum _{i=0}^{n}\sum _{j=0}^{m}A_{ij}(z)f^{(j)}(z+c_{i})=F(z), $$ where $A_{ij}(z)$ $(i=0,1,\ldots ,n, j=0,1,\ldots ,m,n, m\in \mathbb {N})$ and $F(z)$ are meromorphic functions of finite logarithmic order, $c_{i}$ $(i=0,\ldots ,n)$ are distinct complex constants. We extend some previous results obtained by Zhou and Zheng and Biswas to the logarithmic lower order.\looseness -1
References:
[1] Belaïdi, B.: Growth of meromorphic solutions of finite logarithmic order of linear difference equations. Fasc. Math. 54 (2015), 5-20. DOI 10.1515/fascmath-2015-0001 | MR 3410127 | Zbl 1331.39002
[2] Belaïdi, B.: Some properties of meromorphic solutions of logarithmic order to higher order linear difference equations. Bul. Acad. Ştiinţe Repub. Mold., Mat. 2017 (2017), 15-28. MR 3683507 | Zbl 1390.39008
[3] Belaïdi, B.: Study of solutions of logarithmic order to higher order linear differential-difference equations with coefficients having the same logarithmic order. Univ. Iagell. Acta Math. 54 (2017), 15-32. DOI 10.4467/20843828am.17.002.7078 | MR 3974205 | Zbl 1396.30003
[4] Belaïdi, B.: Differential polynomials generated by solutions of second order non-homogeneous linear differential equations. Rad Hrvat. Akad. Znan. Umjet., Mat. Znan. 26 (2022), 139-153. DOI 10.21857/y26kecl839 | MR 4489511 | Zbl 1496.34129
[5] Biswas, N.: Growth of solutions of linear differential-difference equations with coefficients having the same logarithmic order. Korean J. Math. 29 (2021), 473-481. DOI 10.11568/kjm.2021.29.3.473 | MR 4337211 | Zbl 1494.30060
[6] Cao, T.-B., Liu, K., Wang, J.: On the growth of solutions of complex differential equations with entire coefficients of finite logarithmic order. Math. Rep., Buchar. 15 (2013), 249-269. MR 3241648 | Zbl 1349.34382
[7] Chen, B. Q., Chen, Z. X., Li, S.: Properties on solutions of some $q$-difference equations. Acta Math. Sin., Engl. Ser. 26 (2010), 1877-1886. DOI 10.1007/s10114-010-8339-5 | MR 2718087 | Zbl 1202.30049
[8] Chern, P. T.-Y.: On meromorphic functions with finite logarithmic order. Trans. Am. Math. Soc. 358 (2006), 473-489. DOI 10.1090/s0002-9947-05-04024-9 | MR 2177027 | Zbl 1079.30038
[9] Chiang, Y.-M., Feng, S.-J.: On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane. Ramanujan J. 16 (2008), 105-129. DOI 10.1007/s11139-007-9101-1 | MR 2407244 | Zbl 1152.30024
[10] Ferraoun, A., Belaïdi, B.: Growth and oscillation of solutions to higher order linear differential equations with coefficients of finite logarithmic order. Sci. Stud. Res., Ser. Math. Inform. 26 (2016), 115-144. MR 3626894 | Zbl 1399.30122
[11] Goldberg, A. A., Ostrovskii, I. V.: Value Distribution of Meromorphic Functions. Translations of Mathematical Monographs 236. AMS, Providence (2008). DOI 10.1090/mmono/236 | MR 2435270 | Zbl 1152.30026
[12] Hayman, W. K.: Meromorphic Functions. Oxford Mathematical Monographs. Clarendon Press, Oxford (1964). MR 0164038 | Zbl 0115.06203
[13] Heittokangas, J., Korhonen, R., Rättyä, J.: Generalized logarithmic derivative estimates of Gol'dberg-Grinshtein type. Bull. Lond. Math. Soc. 36 (2004), 105-114. DOI 10.1112/s0024609303002649 | MR 2011984 | Zbl 1067.30060
[14] Laine, I.: Nevanlinna Theory and Complex Differential Equations. de Gruyter Studies in Mathematics 15. Walter de Gruyter, Berlin (1993). DOI 10.1515/9783110863147 | MR 1207139 | Zbl 0784.30002
[15] Liu, H., Mao, Z.: On the meromorphic solutions of some linear difference equations. Adv. Difference Equ. 2013 (2013), Article ID 133, 12 pages. DOI 10.1186/1687-1847-2013-133 | MR 3066837 | Zbl 1390.39080
[16] Wen, Z.-T.: Finite logarithmic order solutions of linear $q$-difference equations. Bull. Korean Math. Soc. 51 (2014), 83-98. DOI 10.4134/bkms.2014.51.1.083 | MR 3163379 | Zbl 1282.39010
[17] Wu, S., Zheng, X.: Growth of meromorphic solutions of complex linear differential-difference equations with coefficients having the same order. J. Math. Res. Appl. 34 (2014), 683-695. DOI 10.3770/j.issn:2095-2651.2014.06.006 | MR 3288070 | Zbl 1324.34183
[18] Yang, C.-C., Yi, H.-X.: Uniqueness Theory of Meromorphic Functions. Mathematics and its Applications 557. Kluwer Academic, Dordrecht (2003). DOI 10.1007/978-94-017-3626-8 | MR 2105668 | Zbl 1070.30011
[19] Zheng, X.-M., Chen, Z.-X.: Some properties of meromorphic solutions of $q$-difference equations. J. Math. Anal. Appl. 361 (2010), 472-480. DOI 10.1016/j.jmaa.2009.07.009 | MR 2568711 | Zbl 1185.39006
[20] Zhou, Y.-P., Zheng, X.-M.: Growth of meromorphic solutions to homogeneous and non-homogeneous linear (differential)-difference equations with meromorphic coefficients. Electron. J. Differ. Equ. 2017 (2017), Article ID 34, 15 pages. MR 3609162 | Zbl 1359.30048
Partner of
EuDML logo