Title: | Nobelova cena za zásadní objevy a inovace v oblasti umělých neuronových sítí. Od biologické inspirace k moderní umělé inteligenci (Czech) |
Title: | Nobel Prize for Foundational Discoveries and Innovations in Artificial Neural Networks. From Biological Inspiration to Modern Artifical Intelligence (English) |
Author: | Buk, Zdeněk Buk |
Language: | Czech |
Journal: | Pokroky matematiky, fyziky a astronomie |
ISSN: | 0032-2423 |
Volume: | 69 |
Issue: | 4 |
Year: | 2024 |
Pages: | 193-219 |
Summary lang: | Czech |
. | |
Category: | physics |
. | |
Summary: | V roce 2024 byla Nobelova cena za fyziku udělena Geoffreyovi Hintonovi a Johnu Hopfieldovi za zásadní objevy a inovace, které umožnily strojové učení s umělými neuronovými sítěmi. Tento článek se zaměřuje na historický vývoj neuronových sítí od jejich počátků, inspirovaných biologickými modely, až po moderní architektury, jako jsou hluboké sítě, rekurentní modely či konvoluční sítě a transformery. Popisuje klíčové milníky, teoretické základy a aplikace, které dnes ovlivňují širokou škálu oblastí od počítačového vidění po zpracování přirozeného jazyka. (Czech) |
. | |
Date available: | 2025-01-30T08:29:59Z |
Last updated: | 2025-01-30 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152862 |
. | |
Reference: | [1] Buk, Z., Koutník, J., Šnorek, M.: NEAT in HyperNEAT substituted with genetic programming.. In: Kolehmainen, M., Toivanen, P., Beliczynski, B. (eds.): Adaptive and Natural Computing Algorithms, Springer, 2009, 243–252. |
Reference: | [2] Geoffrey, H., Sejnowski, T.: Optimal perceptual inference.. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1983. |
Reference: | [3] Geoffrey, H. E., Sejnowski, T. J.: Learning and relearning in Boltzmann machines.. In: Rumelhart, D. E., McClelland, J. L. (eds.): Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Volume 1: Foundations, MIT Press, 1986, 282–317. |
Reference: | [4] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial networks. [online]. https://arxiv.org/abs/1406.2661 |
Reference: | [5] Haykin, S. S.: Neural networks and learning machines.. Third edition, Pearson Education, 2009. |
Reference: | [6] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, 770–778. |
Reference: | [7] Hebb, D.: The organization of behavior: A neuropsychological theory.. John Wiley, 1949. |
Reference: | [8] Hochreiter, S., Schmidhuber, J.: Long short-term memory.. Neural Comput. 9 (1997), 1735–1780. 10.1162/neco.1997.9.8.1735 |
Reference: | [9] Holland, J. H.: Adaptation in natural and artificial systems.. MIT Press, 1992. MR 0441393 |
Reference: | [10] Kohonen, T.: Self-organized formation of topologically correct feature maps.. Biol. Cybernet. 43 (1982), 59–69. 10.1007/BF00337288 |
Reference: | [11] Krizhevsky, A., Sutskever, I., Hinton, G. E.: Imagenet classification with deep convolutional neural networks.. Commun. ACM 60 (2017), 84–90. 10.1145/3065386 |
Reference: | [12] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., Jackel, L. D.: Backpropagation applied to handwritten zip code recognition.. Neural Comput. 1 (1989), 541–551. 10.1162/neco.1989.1.4.541 |
Reference: | [13] Lefkowitz, M.: Professor’s perceptron paved the way for AI – 60 years too soon. [online]. https://news.cornell.edu/stories/2019/09/professors-perceptron-paved-way-ai-60-years-too-soon |
Reference: | [14] Lynn, C. N.: A representation for the adaptive generation of simple sequential programs.. In: Grefenstette, J. J. (ed.): Proceedings of the 1st International Conference on Genetic Algorithms, L. Erlbaum Associates, Inc., 1985, 183–187. |
Reference: | [15] McCulloch, W. S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity.. Bull. Math. Biophys. 5 (1943), 115–133. MR 0010388, 10.1007/BF02478259 |
Reference: | [16] Minsky, M., Papert, S.: Perceptrons.. MIT Press, 1969. |
Reference: | [17] Park, J., Sandberg, I. W.: Universal approximation using radial-basis-function networks.. Neural Comput. 3 (1991), 246–257. 10.1162/neco.1991.3.2.246 |
Reference: | [18] Rosenblatt, F.: The perceptron: A probabilistic model for information storage and organization in the brain.. Psychol. Rev. 65 (1958), 386–408. MR 0122606, 10.1037/h0042519 |
Reference: | [19] Rumelhart, D. E., Hinton, G. E., Williams, R. J.: Learning representations by back-propagating errors.. Nature 323 (1986), 533–536. 10.1038/323533a0 |
Reference: | [20] Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K., Woo, W.-Ch.: Convolutional LSTM network: A machine learning approach for precipitation nowcasting.. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.): Advances in Neural Information Processing Systems, vol. 28, Curran Associates, Inc., 2015. |
Reference: | [21] Stanley, K. O., D’Ambrosio, D. B., Gauci, J.: A hypercube-based encoding for evolving large-scale neural networks.. Artif. Life 15 (2009), 185–212. 10.1162/artl.2009.15.2.15202 |
Reference: | [22] Stanley, K. O., Miikkulainen, R.: Evolving neural networks through augmenting topologies.. Evol. Comput. 10 (2002), 99–127. 10.1162/106365602320169811 |
Reference: | [23] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., Polosukhin, I.: Attention is all you need. [online]. https://arxiv.org/abs/1706.03762 |
. |
Fulltext not available (moving wall 12 months)