[1] Baber, R., Christofides, D., Dang, A. N., Vaughan, E. R., Riis, S. A.:
Graph guessing games and non-Shannon information inequalities. IEEE Trans. Inform. Theory 63 (2016), 7, 4257-4267.
DOI |
MR 3666958
[2] Bamiloshin, M., Ben-Efraim, A., Farras, O., Padro, C.:
Common information, matroid representation, and secret sharing for matroid ports. Designs Codes Cryptogr. 89 (2021), 1, 143-166.
DOI |
MR 4202698
[3] Beimel, A.:
Secret-sharing schemes: A survey. In: International Conference on Coding and Cryptology, Springer 2011, pp. 11-46.
MR 2834691
[4] Beimel, A., Livne, N., Padro, Carles:
Matroids can be far from ideal secret sharing. In: Theory of Cryptography Conference, Springer 2008, pp. 194-212.
MR 2494143
[5] Benaloh, J., Leichter, J.:
Generalized secret sharing and monotone functions. In: Conference on the Theory and Application of Cryptography, Springer 1988, pp. 27-35.
MR 1046379
[6] Blakley, G. R.: Safeguarding cryptographic keys. In: Managing Requirements Knowledge, International Workshop, IEEE Computer Society 1979, pp. 313-313.
[7] Brickell, E. F., Davenport, D. M.:
On the classification of ideal secret sharing schemes. J. Cryptology 4 (1991), 2, 123-134.
DOI |
MR 1062240
[8] Butler, S., Hajiaghayi, M. T., Kleinberg, R. D., Leighton, T.:
Hat guessing games. SIAM Rev. 51 (2009), 2, 399-413.
DOI |
MR 2505586
[9] Capocelli, R. M., Santis, A. De, Gargano, L., Vaccaro, U.:
On the size of shares for secret sharing schemes. J. Cryptology 6 (1993), 3, 157-167.
DOI |
MR 1243646
[10] Christofides, D., Markstr, K.:
The guessing number of undirected graphs. Electr. J. Combin. (2011), 192-192.
DOI 10.37236/679 |
MR 2836827
[11] Csirmaz, L.:
The size of a share must be large. J. Cryptology 10 (1997), 4, 223-231.
DOI |
MR 1476611
[12] Dougherty, R., Freiling, Ch., Zeger, K.:
Non-Shannon information inequalities in four random variables. In: arXiv preprint arXiv:1104.3602 (2011).
MR 2321860
[13] Farras, O.:
Secret sharing schemes for ports of matroids of rank 3. Kybernetika 56 (2020), 5, 903-915.
DOI |
MR 4187779
[14] Farras, O., Kaced, T., Martin, S., Padro, C.:
Improving the linear programming technique in the search for lower bounds in secret sharing. In: Annual International Conference on the Theory and Applications of Cryptographic Techniques, Springer 2018, pp. 597-621.
MR 3794799
[15] Farras, O., Kaced, Tarik, Martin, S., Padro, C.:
Improving the linear programming technique in the search for lower bounds in secret sharing. IEEE Trans. Inform. Theor 66 (2020), 11, 7088-7100.
DOI |
MR 4173629
[16] Fournier, J. C.:
epresentation sur un Corps d Ordre. In: Theorie des Matroides, Springer 1971, pp. 50-61.
MR 0376399
[17] Gurpinar, E., Romashchenko, A.: How to use undiscovered information inequalities: Direct applications of the copy lemma. In: IEEE International Symposium on Information Theory (ISIT), IEEE 2019, pp. 1377-1381.
[18] Ito, M., Saito, A., Nishizeki, T.:
Secret sharing scheme realizing general access structure. In: Electronics and Communications in Japan (Part III: Fundamental Electronic Science).
MR 1048477
[19] Ma, T., Sun, X., Yu, H.:
A new variation of hat guessing games. In: International Computing and Combinatorics Conference, Springer 2011, pp. 616-626.
MR 2875082
[20] Martín-Farras, J., Padro, C.:
VOn secret sharing schemes, matroids and polymatroids. J. Math. Cryptol. 4 (2010), 2, 95-120.
MR 2729351
[21] Martin, J., Rombach, P.:
Guessing Numbers and Extremal Graph Theory. In: arXiv preprint arXiv:1104.3602, 2020.
MR 4441094
[22] Metcalf-Burton, J. R.:
Improved upper bounds for the information rates of the secret sharing schemes induced by the Vamos matroid. Discr. Math. 311 (2011), 8-9, 651-662.
DOI |
MR 2774219
[23] Oxley, J.:
Matroid Theory. Second edition. Oxford University Press, 2011.
MR 2849819
[24] Padro, C.: Lecture notes in secret sharing. In: Cryptology ePrint Archive 2012.
[25] Padro, C., Vazquez, L., Yang, A.:
Finding lower bounds on the complexity of secret sharing schemes by linear programming. Discrete Appl. Math. 161 (2013), 7-8, 1072-1084.
DOI |
MR 3030592
[26] Riis, S.:
Information flows, graphs and their guessing numbers. In: Electr. J. Combinator. (2007), R44-R44.
MR 2320600
[27] Riis, S.: Utilising public information in network coding. General Theory Inform. Transfer Combinator. 4123 (2006), 866-897.
[28] Robinson, S.: Why mathematicians now care about their hat color. In: The New York Times, Science Times Section, page D 5 (2001).
[29] Seymour, P. D.:
A forbidden minor characterization of matroid ports. The Quarterly J. Math. 27 (1976), 4, 407-413.
DOI |
MR 0429611
[30] Shamir, A.:
How to share a secret. Commun. ACM 22 (1979), 11, 612-613.
DOI |
MR 0549252
[31] Shannon, C. E.:
A mathematical theory of communication. Bell Syst. Techn. J. 27 (1948), 3, 379-423.
DOI |
MR 0026286 |
Zbl 1154.94303
[32] Vamos, P.: On the representation of independence structures. Unpublished manuscript, 1968.
[33] Winkler, P.: Games people don't play. 2002
[34] Yeung, R. Wai-Ho:
A first Course in Information Theory. Springer Science and Business Media, 2002.
MR 2042182
[35] Zhang, Z., Yeung, R. Wai-Ho:
A non-Shannon-type conditional inequality of information quantities. IEEE Trans. Inform. Theory 43 (1997), 6, 1982-1986.
DOI 10.1109/18.641561 |
MR 1481054
[36] Zhang, Z., Yeung, R. Wai-Ho:
On characterization of entropy function via information inequalities. IEEE Trans. Inform. Theory 44 (1998), 4, 1440-1452.
DOI 10.1109/18.681320 |
MR 1665794