Previous |  Up |  Next

Article

Title: The positive cone of a Banach lattice. Coincidence of topologies and metrizability (English)
Author: Lipecki, Zbigniew
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 64
Issue: 4
Year: 2023
Pages: 475-483
Summary lang: English
.
Category: math
.
Summary: Let $X$ be a Banach lattice, and denote by $X_+$ its positive cone. The weak topology on $X_+$ is metrizable if and only if it coincides with the strong topology if and only if $X$ is Banach-lattice isomorphic to $l^1(\Gamma)$ for a set $\Gamma$. The weak$^*$ topology on $X_+^*$ is metrizable if and only if $X$ is Banach-lattice isomorphic to a $C(K)$-space, where $K$ is a metrizable compact space. (English)
Keyword: normed lattice
Keyword: Banach lattice
Keyword: positive cone
Keyword: AM-space
Keyword: AL-space
Keyword: Banach lattice $C(K)$
Keyword: Banach lattice $l^1(\Gamma)$
Keyword: strong topology
Keyword: weak topology
Keyword: weak$^*$ topology
Keyword: coincidence of topologies
Keyword: metrizability
Keyword: nonatomic measure
MSC: 46B42
MSC: 46E05
MSC: 54E35
DOI: 10.14712/1213-7243.2024.004
.
Date available: 2024-11-05T11:50:31Z
Last updated: 2024-11-05
Stable URL: http://hdl.handle.net/10338.dmlcz/152626
.
Reference: [1] Aliprantis C. D., Burkinshaw O.: Positive Operators.Pure and Applied Mathematics, 119, Academic Press, Orlando, 1985. Zbl 1098.47001, MR 0809372
Reference: [2] Barroso C. S., Kalenda O. F. K., Lin P.-K.: On the approximate fixed point property in abstract spaces.Math. Z. 271 (2012), no. 3–4, 1271–1285. MR 2945607, 10.1007/s00209-011-0915-6
Reference: [3] Bauer H.: Measure and Integration Theory.De Gruyter Studies in Mathematics, 26, Walter de Gruyter, Berlin, 2001. MR 1897176
Reference: [4] Dilworth S. J.: A weak topology characterization of $l_1(m)$.Geometry of Banach Spaces, Strobl 1989, London Math. Soc. Lecture Note Ser., 158, Cambridge University Press, Cambridge, 1990, pages 89–94. MR 1110188
Reference: [5] Dunford N., Schwartz J. T.: Linear Operators. I. General Theory.Pure and Applied Mathematics, 7, Interscience Publishers, New York, 1958. MR 0117523
Reference: [6] Edgar G. A., Wheeler R. F.: Topological properties of Banach spaces.Pacific J. Math. 115 (1984), no. 2, 317–350. MR 0765190, 10.2140/pjm.1984.115.317
Reference: [7] Engelking R.: General Topology.Monografie Matematyczne, 60, PWN---Polish Scientific Publishers, Warszawa, 1977. Zbl 0684.54001, MR 0500780
Reference: [8] Halmos P. R.: A Hilbert Space Problem Book.D. van Nostrand Co., Princeton, 1967. MR 0208368
Reference: [9] Lipecki Z.: On compactness and extreme points of some sets of quasi-measures and measures. IV.Manuscripta Math. 123 (2007), no. 2, 133–146. Zbl 1118.28003, MR 2306629, 10.1007/s00229-007-0085-3
Reference: [10] Lipecki Z.: Order intervals in $C(K)$. Compactness, coincidence of topologies, metrizability.Comment. Math. Univ. Carolin. 63 (2022), no. 3, 295–306. MR 4542790
Reference: [11] Rudin W.: Functional Analysis.McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York, 1973. Zbl 0867.46001, MR 0365062
Reference: [12] Semadeni Z.: Banach Spaces of Continuous Functions. Vol. I.Monografie Matematyczne, 55, PWN---Polish Scientific Publishers, Warszawa, 1971. MR 0296671
Reference: [13] Varadarajan V. S.: Weak convergence of measures on separable metric spaces.Sankhyā 19 (1958), 15–22. MR 0094838
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo